LARSON—MATH 310—CLASSROOM WORKSHEET 39
Singular Value Decomposition.

Given any $m \times n$ matrix A we can find orthogonal matrices U and V and a diagonal matrix Σ so that $A = U\Sigma V^T$. This is it, the SVD.

Furthermore $V = [\vec{v}_1 \ldots \vec{v}_r \ldots \vec{v}_n]$ (where r is the rank of A), Σ is an $m \times n$ 0s matrix with positive numbers $\sigma_1, \ldots, \sigma_r$ on the diagonal, $A\vec{v}_i = \sigma_i \vec{v}_i$, $\sigma_i = ||A\vec{v}_i||$, and $U = [\vec{u}_1 \ldots \vec{u}_r \ldots \vec{u}_n]$, where $\vec{u}_i = \frac{1}{\sigma_i} A\vec{v}_i$ for $i = 1, \ldots r$.

The σ_i's are singular values.

Let $A = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$.

1. A is an $m \times n$ matrix. Find m and n. The following algorithm works for any $m \times n$ matrix!

2. Find the rank r of A. (This tells you how many vectors are in the row space and null space of A). We proved that this is also the rank of $A^T A$ and AA^T.

3. Find $A^T A$.

4. Find the eigenvalues of $A^T A$. There will be r positive eigenvalues: $\sigma^2_1, \ldots, \sigma^2_r$.

5. Find the corresponding eigenvectors for these eigenvalues (of $A^T A$) and normalize them. Call these: $\vec{v}_1, \ldots, \vec{v}_r$. (We proved in class that they must be orthogonal).

6. Normalize the vectors corresponding to the 0-eigenvalues of $A^T A$. Call these $\vec{v}_{r+1}, \ldots, \vec{v}_n$. (In the general case you need to use Gram-Schmidt to find an orthonormal basis of these.)
7. Let \(V = \begin{bmatrix} v_1 \ldots v_r \ldots v_n \end{bmatrix} \).

8. Show that \(V \) is orthogonal.

9. For each \(i \in \{1, \ldots, r\} \), find \(\|A\vec{v}_i\| \). Check that \(\sigma_i = \|A\vec{v}_i\| \).

10. Let \(\Sigma \) be the \(m \times n \) matrix with the \(\sigma_i \)'s on the diagonal for \(i = 1, \ldots, r \), and 0 for every other entry.

11. Find \(AA^T \).

12. Find the eigenvalues of \(AA^T \). There will be \(r \) positive eigenvalues and they should be the same as the ones for \(A^T A \): \(\sigma_1^2, \ldots, \sigma_r^2 \).

13. Find the corresponding eigenvectors for these eigenvalues (of \(AA^T \)) and normalize them. Call these: \(\vec{u}_1, \ldots, \vec{u}_r \). (We proved in class that they must be orthogonal).

14. Let \(U = \begin{bmatrix} u_1 \ldots u_r \ldots u_m \end{bmatrix} \).

15. Show that \(U \) is orthogonal.

16. For each \(i = 1, \ldots, r \), check that \(A\vec{v}_i = \sigma_i \vec{u}_i \).

17. Show that \(A = U\Sigma V^T \).