Let \(A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \).

\(A^T A \) will be significant when we investigate the *singular value decomposition* (SVD). We proved that \(A^T A \) is symmetric. Symmetric matrices have real eigenvalues. \(A^T A \) is also positive semi-definite: it has no negative eigenvalues.

1. Find \(A^T A \).

2. Find \((A^T A - \lambda I) \).

3. Find \(\det(A^T A - \lambda I) \).
 (\(\lambda \) is a variable—so your answer will have \(\lambda \)s in it).
4. Solve \(\det(A^T A - \lambda I) = 0 \).

5. For each solution \(\lambda \), write the equation \((A^T A - \lambda I)x = 0\), and solve for \(x \).

6. Check that your eigenvalue-eigenvector pairs work!