A is an $m \times n$ matrix (m rows, n columns), with rank r. The **Four Subspaces** are $C(A)$, $C(A^T)$, $N(A)$ and $N(A^T)$.

Fundamental Theorem of Linear Algebra, Part 1

- The column space and row space both have dimension r.

- The nullspaces have dimension $n-r$ and $m-r$.

\[
A = \begin{bmatrix}
1 & 3 & 0 & 5 \\
0 & 0 & 1 & 6 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

1. What is the rank r of A?

2. Find a *basis* for the row space of A.

3. What is the dimension of the row space of A?

4. Find a *basis* for the null space of A.

5. What is the dimension of the nullspace of A?

6. Check that the dimension of the nullspace of A is $n-r$.

7. Find A^T, then find the RREF for A^T, and a basis for the column space of A.

8. What is the dimension of the column space of A?

9. Find a basis for the null space of A^T.

10. What is the dimension of the nullspace of A^T?

11. Check that the dimension of the nullspace of A^T is $n-r$.

Fundamental Theorem of Linear Algebra, Part 2

- The row space of A and the null space of A are orthogonal.

 (So the row space of A^T and the null space of A^T are orthogonal. So...)

- The column space of A and the null space of A^T are orthogonal.