Null Space of a Matrix.

The *column space* $C(A)$ of a matrix A is the set of all linear combinations of its columns.

Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$.

1. List the columns of A.

2. Write the definition for $C(A)$ in terms of these columns.

3. Can you find a vector that is not in the column space of A?

4. Can you find a “nice” description of $C(A)$?

The *row space* $C(A^T)$ of a matrix A is the set of all linear combinations of its rows.

5. List the rows of A.

6. Write the definition for $C(A^T)$ in terms of these rows.
7. Can you find a vector that is not in the row space of A?

8. Can you find a “nice” description of $C(A^T)$?

9. Find a specific (non-trivial) vector \vec{v} in the row space of A.

The null space $N(A)$ of a matrix A is the set of all vectors \vec{x} where $A\vec{x} = \vec{0}$.

10. Find $N(A)$ by solving $A\vec{x} = \vec{0}$.

11. Find a specific (non-trivial) vector \vec{x} in the null space of A.

12. Check that $\vec{v} \cdot \vec{x} = 0$.

13. Can you find a “nice” description of $N(A)$?