3. \[a \equiv b \pmod{n} \quad | \quad 3 \equiv 28 \pmod{5} \]
 \[n \mid (a-b) \quad | \quad 5 \mid (3-28) \]

4. \[\mathbb{Z}/n\mathbb{Z} = \{ a + n\mathbb{Z} : a \in \mathbb{Z} \} \]
 where \[a+n\mathbb{Z} = \{ a+nk : k \in \mathbb{Z} \} \]

Those are the objects. Even better is to add "structure": operations.
We really use \[\mathbb{Z}/n\mathbb{Z} \] as shorthand for \((\mathbb{Z}/n\mathbb{Z}, +, \times) \) where \(a \) "+" and \(a \) "\times" is defined.

So, \[\mathbb{Z}/3\mathbb{Z} = \{ 0+3\mathbb{Z}, 1+3\mathbb{Z}, 2+3\mathbb{Z} \} \]
noting that any \(a + 3\mathbb{Z} \) must be one of these.
and we can define operations directly with an addition and multiplication table

<table>
<thead>
<tr>
<th></th>
<th>0 + 3Z</th>
<th>1 + 3Z</th>
<th>2 + 5Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 3Z</td>
<td>0 + 3Z</td>
<td>1 + 3Z</td>
<td>2 + 5Z</td>
</tr>
<tr>
<td>1 + 3Z</td>
<td>1 + 3Z</td>
<td>2 + 3Z</td>
<td>0 + 3Z</td>
</tr>
<tr>
<td>2 + 3Z</td>
<td>2 + 3Z</td>
<td>1 + 3Z</td>
<td>1 + 3Z</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0 + 3Z</th>
<th>1 + 3Z</th>
<th>2 + 3Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 + 3Z</td>
<td>0 + 3Z</td>
<td>0 + 3Z</td>
<td>0 + 3Z</td>
</tr>
<tr>
<td>1 + 3Z</td>
<td>0 + 3Z</td>
<td>1 + 3Z</td>
<td>2 + 3Z</td>
</tr>
<tr>
<td>2 + 3Z</td>
<td>2 + 3Z</td>
<td>1 + 3Z</td>
<td>1 + 3Z</td>
</tr>
</tbody>
</table>

5. A unit in \(\mathbb{Z}/n\mathbb{Z} \) is an element with a multiplicative inverse.

ex. In \(\mathbb{Z}/3\mathbb{Z} \), 2 + 3Z is its own multiplicative inverse.
That is, \((2+3z)(2+3z) = 1+3z\)

\[\phi(n) = \sum_{1 \leq a \leq n \text{ such that } \gcd(a,n) = 1} a \]

Example:

\[\phi(10) = \# \{1, 3, 7, 9\} = 4 \]

- \(\gcd(2, 10) > 1\)
- \(\gcd(4, 10) > 1\)
- \(\gcd(5, 10) > 1\)
- \(\gcd(6, 10) > 1\)
- \(\gcd(8, 10) > 1\)

For every non-zero \(x\), prime \(p\)

\[x^{p-1} \equiv 1 \pmod{p} \]

Example:

When \(p = 5\)

- \(4^4 \equiv 1 \pmod{5}\)
- \(2^4 \equiv 16 \equiv 1 \pmod{5}\)
- \(3^4 \equiv 81 \equiv 1 \pmod{5}\)
- \(4^4 \equiv 256 \equiv 1 \pmod{5}\)

Let \(p_1, p_2, \ldots, p_k\) be primes.

Let \(p = p_1 \cdot p_2 \cdot \cdots \cdot p_k + 1\)

Note: \(p\) divided by any \(p_i\) has
remainder 1. That is, \(p \mid p \)

So \(p \) has a prime factor different from any of \(p_1, p_2, \ldots, p_k \)

That is, there must be another prime. This argument shows that there can't be a limit to the number of primes.

\[\Rightarrow \]

Suppose \(a + n \in \mathbb{Z} \) a unit in \(\mathbb{Z}/n\mathbb{Z} \). So \(\exists b + n \mathbb{Z} \) such that \((a + n\mathbb{Z})(b + n\mathbb{Z}) = 1 + n\mathbb{Z} \)

So \(ab \equiv 1 \pmod{n} \) and \(n \mid (ab - 1) \). So \(n \) has no non-trivial common factor with \(ab \) and thus not with \(a \). So \(\gcd(a, n) = 1 \)

\[\Leftarrow \]

Suppose \(\gcd(a, n) = 1, 0 < a < n \)

Let \(U = \{a_i : \gcd(a_i, n) = 1, 0 \leq a_i < n\} \)

Note: \(a \in U \)

\[1 \in U \]

and the product of any pair
of elements of U is in U.

Consider: $U' = \{a \cdot a_i : a_i \in U\}$

Suppose $a \cdot a_i \equiv a \cdot a_j \pmod{n}$

That is, $n \mid a(a_i - a_j)$

So, $n \mid (a_i - a_j)$

and $a_i \equiv a_j \pmod{n}$

So $U' \subseteq U$ and all elements are different. Thus $U = U'$

and $\exists a_i \in U$ with $a \cdot a_i = 1$

So $a + n\mathbb{Z}$ is a unit in $\mathbb{Z}/n\mathbb{Z}$

with inverse $a_i + n\mathbb{Z}$.

The example in the book is:

$11! + 2, 11! + 3, \ldots, 11! + 11$

Claim: $(a + n\mathbb{Z})^+ = \{b : a \equiv b \pmod{n}\}$

(\subseteq) Let $a + nK \in a + n\mathbb{Z}$, $K \in \mathbb{Z}$
So \(a = a + nk \pmod{n} \)
So \(a + nk \in \{ b : a \equiv b \pmod{n} \} \)

(2) Let \(b \in \{ b : a \equiv b \pmod{n} \} \)
\(a \equiv b \pmod{n} \)
\(\Leftrightarrow n \mid (b-a) \)
\(\Leftrightarrow \exists k \in \mathbb{Z} \enspace nk = b-a \)
\(b = a + nk \)
\(\Rightarrow b \in a + n\mathbb{Z} \)

15.
\[\text{gcd} (1, 10) = 1 \]
\[\text{gcd} (2, 10) > 1 \]
\[\text{gcd} (3, 10) = 1 \]
\[\text{gcd} (4, 10) > 1 \]
\[\text{gcd} (5, 10) > 1 \]
\[\text{gcd} (6, 10) > 1 \]
\[\text{gcd} (7, 10) = 1 \]
\[\text{gcd} (8, 10) > 1 \]
\[\text{gcd} (9, 10) = 1 \]
\[\text{gcd} (10, 10) > 1 \]

So the units are:
1 + 10\(\mathbb{Z} \), 3 + 10\(\mathbb{Z} \), 7 + 10\(\mathbb{Z} \), 9 + 10\(\mathbb{Z} \)
16. If p is prime and 1 ≤ k < p then \(\gcd(k, p) = 1 \)

So \(1 + pZ, 2 + pZ, \ldots, (p-1) + pZ \)

are all units in \(\mathbb{Z}/p\mathbb{Z} \)

17. If p is prime, every non-zero element of \(\mathbb{Z}/p\mathbb{Z} \) is a unit. So by definition \(\mathbb{Z}/p\mathbb{Z} \) is a field.

18. The order of \(1 + 10Z \) is 1

\[1' \equiv 1 \pmod{10} \]

The order of \(3 + 10Z \) is 4

\[3' \equiv 3, 3^2 \equiv 9, 3^3 \equiv 7, 3^4 \equiv 1 \pmod{10} \]

The order of \(7 + 10Z \) is 4

\[7' \equiv 7, 7^2 \equiv 9, 7^3 \equiv 3, 7^4 \equiv 1 \pmod{10} \]

The order of \(9 + 10Z \) is 2

\[9' \equiv 9, 9^2 \equiv 1 \pmod{10} \]
19. Suppose \(d | a, d | b, d | n \) and
\(a \equiv b \pmod{n} \)
\(d \mid (a - b) \)
\(\exists k \in \mathbb{Z} \) such that
\(n \mid (a - b) \)
\(d \mid n \)
\(\exists k \in \mathbb{Z} \) such that
\(n \mid (a - b) \)
\(d(a) = \exists a', d a' = a \quad a' = a/d \in \mathbb{Z} \)
\(d(b) = \exists b', d b' = b \quad b' = b/d \in \mathbb{Z} \)
\(d(n) = \exists n', d n' = n \quad n' = n/d \in \mathbb{Z} \)
so
\(d n' k = d a' - d b' \)
so
\(n' k = a' - b' \)
so
\(a' \equiv b' \pmod{n'} \)
or
\(\frac{a}{d} = \frac{b}{d} \pmod{\frac{n}{d}} \)
\(\checkmark \)

20. Suppose \(a_r, \ldots, a_n \) is a complete set of residues mod \(n \) and \(a \) is a unit \(\pmod{n} \).
Consider: \(a \cdot a_r, a \cdot a_2, \ldots, a \cdot a_n \) (mod \(n \))
Suppose \(a \cdot a_i = a \cdot a_j \) (mod \(n \))
so \(n \mid a \cdot a_j \)
\[
\iff n \mid a (a_i - a_j)
\]

Since \(\gcd(n, a) = 1 \) we must have \(n \mid (a_i - a_j) \)

That is, \(a_i \equiv a_j \pmod{n} \)

and we then conclude all of \(a \cdot a_1, a \cdot a_2, \ldots, a \cdot a_n \pmod{n} \)
are different.