Organizational Notes

1. A Zoom recording link and class notes will be sent out after each Zoom class.

2. Remember to send your answers to the classroom worksheets. Title your email with enough to help me record your “participation”.

Review

1. (Euler’s \( \phi \) is Multiplicative). Show: If \( \gcd(m, n) = 1 \) then \( \phi(mn) = \phi(m) \cdot \phi(n) \).

2. To solve the congruence \( 14x \equiv 1 \pmod{5} \) we need to find the multiplicative inverse of \( 14 \pmod{5} \). How can we find that?

Solving Quadratic Congruences (Note)

1. Claim: The congruence \( 3x^2 + 11x + 7 \equiv 0 \pmod{5} \) can be rewritten in the form \( y^2 \equiv d \pmod{5} \) \((d \in \mathbb{Z})\).

2. Claim: Any congruence \( ax^2 + bx + c \equiv 0 \pmod{p} \) \((p \text{ is prime})\) can be rewritten in the form \( y^2 \equiv d \pmod{p} \).

Calculating Powers of a Unit

3. Write 147 in binary.

4. Find \( 3^{147} \pmod{5} \) by writing 147 in binary, and finding successive powers of 3 \((\pmod{5})\).
Primitive Roots! (Section 2.5)

5. Is there a number \( a \pmod{5} \) so that the order of \( a \) is \( \phi(5) \)?

6. Is there a number \( a \pmod{6} \) so that the order of \( a \) is \( \phi(6) \)?

**Major Theory Plan:**

(a) Existence of units.
(b) Chinese Remainder Theorem.
(c) \( \phi \) is multiplicative.
(d) Existence of primitive roots.
(e) Quadratic Residues & Legendre Symbol (Chp.4)
(f) Euler’s Criterion.
(g) Gauss Lemma
(h) Quadratic Reciprocity.