1. Log in to your Sage Cloud account.

 (a) Start Firefox or Chrome browser.
 (b) Go to http://cloud.sagemath.com
 (c) Click “Sign In”.
 (d) Click project Classroom Worksheets.
 (e) Click “New”, call it c32, then click “Sage Worksheet”.

Now we will define a new graph function for computing the hard-to-compute stability number of a graph. We could also add it to the existing Graph class as a method—and extend the Graph class by pre-computing the stability number of any graph object we initialize. This can make some computations more efficient. Stability number of a graph is a number we never want to compute more than once.

The stability number of a graph is the largest number of vertices in the graph that have no edges between them. So if \(g = \text{graphs.PetersenGraph()} \), its stability number is 4.

2. Find the stability number of \(c5 = \text{graphs.CycleGraph(5)} \) by hand. What is the largest stable set of vertices that you can find?

3. The first thing we did was to define a test to check whether the vertices \(S \) from a graph \(g \) are stable. This means there are no edges between the vertices in \(S \). So we need to search through the edges of \(g \).

 Here we tested every pair \(i \) and \(j \) from \(S \). If \(S \) is stable then the test for \((i,j)\) will be false for each possible pair.

   ```python
   def is_stable(g, S):
       E=g.edges(labels=False)
       for i in S:
           for j in S:
               if (i,j) in E:
                   return False
       return True
   
   The naive (and inefficient) way to find a largest stable set in a graph is to test every subset of vertices, check if it is stable, and then keep track of the largest one you’ve seen up to that point.

4. Here is a first function to find a maximum stable set of a graph.
def naive_maximum_stable_set(g):
    stable = []
    L = subsets(g.vertices())
    for S in L:
        if is_stable(g, S) == True:
            if len(S) > len(stable):
                stable = S
    return stable

5. Use this function to find a maximum stable set of the Petersen graph. (You should get 4).

The next big idea for finding a maximum stable set was due to Tarjan and Trojanowski in the 1970s: they noted that each vertex \( v \) of a graph is either in a maximum stable set or it is not. And, if \( v \) is in a maximum stable set then none of the vertices it is touching (that it is adjacent to is), called the neighbors of \( v \), can be in that set.

Finding the neighbors of a vertex \( v \) in a graph \( g \) is a built-in graph method: \( g . n e i g h b o r s ( v ) \)

6. Let \( g = \text{graphs.PetersenGraph()} \). Find the neighbors of vertex 0 in \( g \). Use \( g . s h o w () \) to check.

7. Find the neighbors of vertex 9 in the Petersen graph.

8. So our problem of finding a maximum stable set in a graph can be reduced to the problem of finding a maximum stable set in two smaller subgraphs: (1) the graph formed by removing vertex \( v \) and (2) the graph formed by removing \( v \) and its neighbors. In this case, we assume that \( v \) is in the maximum stable set.

9. So we need to be able to form these graphs. Let \( g \) be a graph with vertex set \( V \). Let \( S \) be any subset of \( V \). Then you can find the graph formed by \( S \) together with all the edges that are between vertices of \( S \) in the original graph \( g \) with the command \( g . s u b g r a p h ( S ) \). This is a new graph. We can give it a name, say \( h \) by \( h = g . s u b g r a p h ( S ) \).

10. Let \( S = [ 0, 1, 2 ] \). Now try \( h = g . s u b g r a p h ( S ) \) and then \( h . s h o w () \).

11. Let \( S = [ 5, 6, 7, 8, 9 ] \). Now try \( h = g . s u b g r a p h ( S ) \) and then \( h . s h o w () \).

12. Let \( S = [ 2, 3, 5, 7, 8 ] \). Now try \( h = g . s u b g r a p h ( S ) \) and then \( h . s h o w () \).

13. (Ramanujan) 2, 9, 16, etc. can be written (uniquely) as the sum of 2 cubes (\( 1^3 + 1^3, 1^3 + 2^3, 2^3 + 2^3 \), etc.). Find the smallest integer which can be written as the sum of 2 cubes in 2 different ways.