1. Log in to your Sage/Cocalc account.

 (a) Start the Chrome browser.
 (b) Go to http://cocalc.com and sign in.
 (c) You should see an existing Project for our class. Click on that.
 (d) Click “New”, call it c29, then click “Sage Worksheet”.

 A graph is a mathematical object consisting of dots and lines (also called vertices and edges). A tree is a graph that contains no cycles.

 Sage includes the graphs class which contains a number of methods. Some of these include constructors for making well-known graphs.

 The order of a graph is the number of vertices it has. The size of a graph is the number of edges it has. We can create our own graph using the Graph() constructor, and the add_vertex() and add_edge() methods.

2. Make the following graph, called “the house”. Start by letting house=Graph(5). When you are done you can view it with house.show().

 Another way to represent a graph with order n is with an $n \times n$ adjacency matrix A. If the vertices of the graph are $\{v_0, v_1, \ldots, v_{n-1}\}$ (or $\{1,2,\ldots,n-1\}$ for short) then the $A_{i,j}$ is 1 if there is an edge from vertex i to vertex j, and 0 if there is not.

3. Try:

 g=graphs.PetersenGraph()
 g.show()
 g.adjacency_matrix()

 Make sure you understand the pattern of 0’s and 1’s.
house.show()
house.adjacency_matrix()

Make sure you understand the pattern of 0's and 1's.

5. One way to make a graph is to start with a number of vertices and then for each pair of vertices \(n \) and \(m \), flip a coin to decide whether to put an edge between those vertices. Try this:

```python
import random

g = Graph(10)
for i in range(10):
    for j in range(10):
        if i < j and random() < 0.5:
            g.add_edge(i, j)
g.size()
g.show()
```

6. The study of random graphs is huge and important and was initiated in a 1959 paper of Erdős and Renyi. Sage has a built in function to do this: \texttt{graphs.RandomGNP(n,p)}
where \(n \) is the number of vertices you want, and \(p \) is the probability of an edge \((0 \leq p \leq 1)\). To simulate a coin flip, use \(p = 0.5 \). Run the following code a few times.

```python
import random
g = graphs.RandomGNP(10, 0.5)
g.size()
g.show()
```

You can change the probability depending on what you are trying to model. Make a Sage Interact to play with the possibilities.

```python
@interact
def i_random(order=slider(2,100,1,10), edge_probability=(0.5,(0,1))):
    g = graphs.RandomGNP(order, edge_probability)
    print "The number of edges of graph g is {}".format(g.size())
g.show()
```

7. Try the problem at \url{http://projecteuler.net/problem=8}. How will you get that number into your program??? Do not type it in by hand.