1. Log in to your Sage/Cocalc account.

 (a) Start the Chrome browser.
 (b) Go to http://cocalc.com and sign in.
 (c) You should see an existing Project for our class. Click on that.
 (d) Click “New”, call it c13, then click “Sage Worksheet”.

2. Try \texttt{plot_step_function([\((x,x) \text{ for } x \in [3..9]\)])}

3. Try \texttt{plot_step_function([\((i,\sin(i)) \text{ for } i \in [5..20]\)])}

4. Try \texttt{plot_step_function([\((i*2,\sin(i*2)) \text{ for } i \in [5..100]\)])}

 Given a list L of pairs (x,y) you can plot the step function that holds y constant from one x to the next with \texttt{plot_step_function(L)}.

5. Try \texttt{scatter_plot([\((0,1),(2,4),(3.2,6)\)])}

6. Try \texttt{scatter_plot([\((x,x) \text{ for } x \in [5..20]\)])}

7. Try \texttt{scatter_plot([\((x,x**2) \text{ for } x \in [-5..5]\)])}

8. Try \texttt{scatter_plot([\((i*2,\sin(i*2)) \text{ for } i \in [5..100]\)])}

9. Define a function $\texttt{points(x)}$ that plots all the points $(1,2), (2,3), \ldots (x,x+1)$. Use \texttt{scatter_plot()}.

Step Functions and Scatter Plots

Given a list L of pairs (x,y) you can plot the scatter plot that consists just of those points with \texttt{scatter_plot(L)}.
Recursion

A recursive function is a function that calls itself. It must always have a base case so that the recursion eventually stops.

10. Here is an example of a recursive definition of the factorial function. The base case here is the case where the input is 0 or 1.

```python
def factorial(n):
    if n==0 or n==1:
        return 1
    else:
        return n*factorial(n-1)
```

Now try `factorial(0)`, `factorial(1)`, `factorial(2)`, `factorial(3)`, and `factorial(10)`.

11. It is often intuitive to define a function recursively, but usually the same function can be defined without recursion. Here is a function `factorial2(n)` that does the same thing as `factorial(x)` but is not recursive. Test it to make sure it gives the same results.

```python
def factorial2(n):
    result=1
    if n==0:
        return result
    for i in [1..n]:
        result=result*i
    return result
```

12. The gcd of 2 non-negative integers is their greatest common divisor. The following recursive function calculates the gcd of integers a and b using the fact (which can be proved) that, if $a \geq b$ then $\text{gcd}(a,b) = \text{gcd}(a - b, b)$. It uses the fact that $\text{gcd}(0,a) = \text{gcd}(a,0) = a$, for any non-negative integer a, as the base case.

```python
def gcd(a,b):
    if a==0 or b==0:
        return max(a,b)
    else:
        return gcd(max(a,b)-min(a,b),min(a,b))
```

Try `gcd(0,5)`, `gcd(2,5)`, `gcd(5,5)`, `gcd(10,5)`, `gcd(50,51)`, `gcd(50,55)`, and `gcd(1234,5678)`.