1. Log in to your Cocalc account.
 (a) Start the Chrome browser.
 (b) Go to http://cocalc.com
 (c) You should see an existing Project for our class. Click on that.
 (d) Click “New”, then “Worksheets”, then call it c04.

2. Evaluate “pi”. Use \(n(_\) or \(n(pi) \) to find a decimal approximation for \(\pi \).

3. Draw the graphs of the following equations by hand. Find the solutions by hand. How many solutions are there?
 \[
 \begin{align*}
 x^2 + y^2 &= 4 \\
 y &= x + 1
 \end{align*}
 \]
 Now use solve() to find the intersection points of the graphs of this system of equations: Run var("y") then solve([x**2+y**2==4,y==x+1],x,y).
 What does the output mean? For more examples and information, use the Help by typing solve?.

4. Consider the following system. Sketch the graphs of these lines on the same coordinate system, then solve to get the exact point of intersection.
 \[
 \begin{align*}
 2x + y &= 20 \\
 -x + y &= 0
 \end{align*}
 \]

5. Consider the following system. Sketch the graphs of these equations on the same coordinate system, then solve to get the exact points of intersection.
 \[
 \begin{align*}
 y &= x^2 \\
 y &= x
 \end{align*}
 \]
6. Type in the following program and evaluate. (Note that there are *exactly* four spaces before the word “print”).

```python
def write_string(string_name):
    print string_name
```

Now type `write_string("hello world!")` and evaluate.

In order to do sophisticated calculations, or to allow for multiple inputs, you will need to write *programs*. Our “hello world!” program was the first example. It included a `print` statement. Other program features, in almost any language, include *conditional statements* (if..then..) and *loops*.

7. Type in the following function definition and evaluate.

```python
#This function will implement the absolute-value function
def absolute(x):
    if x>=0:
        return x
    else:
        return -x
```

8. Now test it. Try `absolute(4)`, `absolute(-4)`, etc.

9. The hashtag and what follows it is a *comment*. These are useful explanations or reminders and are ignored by the compiler. Add your own comment using “#” in the cell where you defined `absolute(x)` like “Math is fun!”’. Evaluate to check that Sage ignores it.

10. Now *use* the program you just wrote in another program. Evaluate and test the following.

```python
def abs_plus_five(x):
    return absolute(x)+5
```

11. You don’t have to add five, you can add *any* number by adding a *parameter*.

```python
def abs_plus(x,y):
    return absolute(x)+y
```

12. Now test it. Try `abs_plus(4,5)`, `abs_plus(-4,5)`, `abs_plus(-4,23)`, etc.

13. If there’s time left go to Codeacademy (codeacademy.com) and do the *Learn Python* tutorial. We’ll do all the free sections. Eventually these will be assigned as official homework assignments.