A family of sets is called *intersecting* if every pair of its sets intersect. An intersecting family is called a *star* if some element is in each of its sets. The Erdős-Ko-Rado Theorem states that if \(r \leq n/2 \) then the largest intersecting family of \(r \)-subsets of \([n]\) is a star.

A graph version considers all independent \(r \)-subsets of vertices of a graph \(G \). Then \(G \) is called \(r \)-EKR if no intersecting subfamily is larger than the largest star. In this context, the EKR theorem states that the empty graph on \(n \) vertices is \(r \)-EKR for \(r \leq n/2 \).

In 2005 Holroyd and Talbot conjectured that every graph \(G \) is \(r \)-EKR for \(r \leq \mu(G)/2 \), where \(\mu(G) \) is the *minimax independence number* (also *independent domination number*) of \(G \): the minimum size of a maximal independent set of \(G \).

In this talk we will review some historical results, present some new results, and share some open problems.

For the DM seminar schedule, see:

https://go.vcu.edu/discrete