Craig Larson

Associate Professor
Department of Mathematics and Applied Mathematics
Virginia Commonwealth University



My office is 4106 Harris Hall. In Spring 2015 I will be teaching Mathematical Computing (Math 255) and Introduction to Algebraic Geometry (Math 591).

Papers & Notes


20. C. E. Larson and N. Van Cleemput, Forcing Independence, Croatica Chemica Acta, Vol.86, No.4, Dec. 2013, 469-475.

19. G. Brinkmann, C. E. Larson, J. Souffriaua, N. Van Cleemput, Construction of Planar 4-connected Triangulations, Ars Mathematica Contemporanea, Vol 9, No 2 (2015).

18. C. E. Larson, L. Mitchell, B. Lins, Graphs of Unitary Matrices and Positive Definite Zero Forcing, Reports on Mathematical Physics (ROMP), 72 (3), December 2013, 311--320.

17. R. Gera, C. E. Larson, C. Rasmussen, and R. Pepper, Independence in Function Graphs, to appear in Journal of Combinatorial Mathematics and Combinatorial Computing (JCMCC).

16. D. J. Klein and C. E. Larson, Eigenvalues of Saturated Hydrocarbons, Journal of Mathematical Chemistry 51(6) 2013, 1608--1618.

15. C. E. Larson and R. Pepper, Three Bounds for the Independence Number of a Graph, Bulletin of the Institute of Combinatorics and its Applications 70, 2014, 86--96.

14. E. DeLaVina and C. E. Larson, A Parallel Algorithm for Computing the Critical Independence Number and Related Sets, Ars Mathematica Contemporanea 6(2) 2013, 237--245.

13. L. Eroh, R. Gera, C. Kang, C. E. Larson, and E. Yi, Domination in Functigraphs, Discussiones Mathematicae Graph Theory 32 (2012).

12. C. E. Larson and R. Pepper, Graphs with Equal Independence and Annihilation Numbers, Electronic Journal of Combinatorics, 18(1) 2011.

11. E. DeLaVina, C. E. Larson, R. Pepper, and B. Waller, A Characterization of Graphs where the Independence Number Equals the Radius, Graphs and Combinatorics 28 (2012) 315-332.

10. C. E. Larson, The Critical Independence Number and an Independence Decomposition, European Journal of Combinatorics 32(2), 2011, 294--300.

9. G. Abay-Asmeron, R. Hammack, C. E. Larson, D. T. Taylor, Notes on the independence number in the Cartesian product of graphs, Discussiotnes Mathematica Graph Theory 31(1), 2011, 25--35.

8. E. DeLaVina, C. Larson, R. Pepper and B. Waller, On total domination and support vertices of a tree, AKCE International Journal of Graphs and Combinatorics, 7 (1), 2010, 85--95.

7. E. DeLaVina, C. E. Larson, R. Pepper, and B. Waller, Graffiti.pc on the 2-domination number of a graph, Congressus Numerantium 203, 2010, 15--32.

6. G. Abay-Asmerom, R. Hammack, C. E. Larson, and D. Taylor, Direct Product Factorization of Bipartite Graphs with Bipartite-Switching Involutions, SIAM Journal on Discrete Mathematics 20(4), 2010, 2042--2052.

5. E. DeLaVina, C. E. Larson, R. Pepper, and B. Waller, Graffiti.pc on the total domination number of a tree, Congressus Numerantium 195, 2009, 5--18.

4. C. E. Larson, A Note on Critical Independence Reductions, Bulletin of the Institute of Combinatorics and its Applications 5, 2007, 34--46.

3. C. E. Larson, A Survey of Research in Automated Mathematical Conjecture-making, in Graphs and Discovery, ed. by S. Fajtlowicz, P. W. Fowler, P. Hansen, M. F. Janowitz and F. S. Roberts, DIMACS, 2005, 297--318.

2. S. Fajtlowicz and C. E. Larson, Graph-theoretic Independence as a Predictor of Fullerene Stability, Chemical-Physics Letters, 377/5-6, 2003, 485--490.

1. C. E. Larson, Intelligent Machinery and Mathematical Discovery, Graph Theory Notes of the New York Academy of Science XLII, 2002, 8--17.


1. C. E. Larson, Technology, Education and the Single-Salary Schedule, Notices of the American Mathematical Society, May 2006, 525.


comments to: