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We introduce a new algorithm, called ClusFCM, which combines techniques of cluster-
ing and fuzzy cognitive maps (FCM) for prediction of protein functions. ClusFCM takes
advantage of protein homologies and protein interaction network topology to improve
low recall predictions associated with existing prediction methods. ClusFCM exploits
the fact that proteins of known function tend to cluster together and deduce func-
tions not only through their direct interaction with other proteins, but also from other
proteins in the network. We use ClusFCM to annotate protein functions for Saccha-
romyces cerevisiae (yeast), Caenorhabditis elegans (worm), and Drosophila melanogaster

(fly) using protein–protein interaction data from the General Repository for Interaction
Datasets (GRID) database and functional labels from Gene Ontology (GO) terms. The
algorithm’s performance is compared with four state-of-the-art methods for function pre-
diction — Majority, χ2 statistics, Markov random field (MRF), and FunctionalFlow —
using measures of Matthews correlation coefficient, harmonic mean, and area under
the receiver operating characteristic (ROC) curves. The results indicate that ClusFCM
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predicts protein functions with high recall while not lowering precision. Supplementary
information is available at www.egr.vcu.edu/cs/dmb/ClusFCM/.

Keywords: Protein functions; protein–protein interactions; Markov random field; clus-
tering; fuzzy cognitive maps.

1. Introduction

One of the main goals of proteomics research is to understand and predict protein
functions. Even for a simple organism, such as the baker’s yeast (Saccharomyces
cerevisiae), functions are unknown for approximately one third of the proteins. For
more complex organisms, functional annotation is lacking for a much larger fraction
of the proteome.

A number of computational methods have been developed for protein function
prediction. A general method uses sequence similarity (e.g. BLAST) to first identify
homologous proteins in protein databases, and then assign functions to the query
protein based on known functions of the matches.1 A more limited approach, known
as Rosetta stone sequence, infers protein interactions from genomic sequences using
the observation that some pairs of interacting proteins have homologies in another
organism fused into a single protein chain. Many of such protein pairs have been
confirmed as functionally related2; however, the reliability of such methods is not
satisfactorily high. Grouping proteins by correlated evolution, correlated messen-
ger RNA expression patterns, plus patterns of domain fusion has been successfully
applied to yeast proteins.3 Troyanskaya et al.4 used Bayesian reasoning to integrate
similarly heterogeneous types of high-throughput biological data for protein func-
tion prediction. Zhou et al.5 identified correlations between genes that have similar
expression patterns and those that have similar functions. Lewis et al.6 used sup-
port vector machines to infer gene functional annotations from a combination of
protein sequence and structure data.

Information on protein–protein interactions (PPIs) has been used for func-
tion prediction. Proteins interact with each other for a common purpose, and
thus the function of an unannotated protein may be annotated by information on
the functions of its neighbors in an interaction complex. Recent high-throughput
experiments have generated large-scale protein physical interaction data for several
organisms such as Caenorhabditis elegans,7 Drosophila melanogaster,8 Helicobac-
ter pylori,9 and Saccharomyces cerevisiae.10–13 Using these datasets, a number of
protein function prediction methods have been developed, each having its unique
strengths and limitations. The Majority method infers functions for a protein using
the most frequent annotations among its nearest neighbors in a PPI network.11 In
this method, some functions may have a very high frequency in the network, but will
not be annotated for the query if they do not occur in the nearest neighbor set. Chua
et al.14 extended the Majority method to predict protein functions by exploiting
indirect neighbors and devising a topological weight to estimate functional simi-
larity. Hishigaki et al.15 predicted protein functions based on χ2 statistics. They



February 26, 2008 12:22 WSPC/185-JBCB 00333

ClusFCM: An Algorithm for Predicting Protein Functions 205

extended the Majority method by looking at all proteins within a specified radius
within the network, thus taking into account the frequency of all proteins having
a particular function; however, the χ2 statistics method does not take into account
any aspect of the underlying topology of the PPI network. Letovsky and Kasif16

and Deng et al.17 used a Markov random field (MRF) to assign functions based
on a probabilistic analysis of graph neighborhoods in a PPI network. This method
assumes that the probability distribution for the annotation of any node is condi-
tionally independent of all other nodes, given its neighbors; the method is also sen-
sitive to the neighborhood size and the parameters of the binomial distribution used
in function assignments. FunctionalFlow18 considers each protein of known function
as a source of functional flow for that function. This functional flow spreads through
the neighborhoods of the sources, and proteins receiving the highest amount of flow
of a function are assigned that function. This algorithm, however, does not consider
indirect flow of functions to other proteins after labeling of the functions.

To address the shortcomings of the abovementioned methods, we have devel-
oped a hybrid approach that takes into account both the homologies between the
proteins and the underlying topology of the PPI network. First, we assign biological
homology scores to the edges in a PPI network. Next, we use agglomerative cluster-
ing on the weighted graphs to cluster the proteins by known function and cellular
location. Then, we treat each cluster as a fuzzy cognitive map (FCM), with proteins
constituting causal nodes and edges representing cause–effect relationships. For a
protein of interest, we simulate effects of proteins having a function to the protein
in the FCM to which the protein belongs. We tested the ClusFCM algorithm on
PPI networks for yeast, worm and fly, and compared its performance with Majority,
χ2 statistics, MRF, and FunctionalFlow methods.

2. Methods

2.1. Materials

Even though there exist programs that take advantage of Gene Ontology (GO)
and homology (Blast2GO,19 GOblet,20 GOtcha,21 OntoBlast22) to prepare data
for experiments, we decided to use our own procedure as described below.

2.1.1. GO annotations

GO23 (http://www.geneontology.org) is composed of three related ontologies: the
molecular function of gene products, their associated biological processes, and their
physical structure as cellular components. Each ontology is constructed as a directed
acyclic graph. We consider functional annotation only at the third level of the GO
hierarchies. After converting protein labels through is-a ancestors of each label,
there are a total of 39 GO terms, consisting of 18 molecular functions, 10 cellular
component functions, and 11 biological process functions (for details, see Table S1
in Supplementary Information).
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2.1.2. Physical interactions

(1) Yeast interaction data
The yeast General Repository for Interaction Datasets (GRID)24 database (release
3/2006) contains 20,519 interaction pairs. Of the 4,948 proteins participating in
interactions, 4,600 proteins have been labeled with GO terms taken from the yeast
genome database at http://www.yeastgenome.org/.

(2) Worm interaction data
There are 2,780 unique proteins participating in 4,453 distinct interactions in the
worm GRID database (release 3/2006). Of these, 1,680 proteins are labeled with the
GO terms taken from the worm genome database (release WS155) at http://www.
wormbase.org/.

(3) Fly interaction data
The fly GRID database (release 3/2006) includes 28,406 distinct interactions. Of the
7,938 proteins participating in interactions, 5,098 of these are annotated with GO
terms taken from the fly genome database at http://www.flybase.org/ (for details,
see Table S2 in Supplementary Information).

2.2. ClusFCM algorithm

The ClusFCM algorithm works in two stages. In stage 1, it performs clustering;
and in stage 2, it performs function flow in a FCM. At both stages, a PPI network
is used.

2.2.1. PPI network definition

The PPI network is an undirected graph G = (V, E), where V is a set of proteins
and E is a set of edges connecting proteins u and v if the corresponding proteins
interact physically. We take advantage of homologies between two proteins for the
extraction of functions by assigning homology scores to the edges between two
interacting proteins. When a protein is more homologous with another protein
(in an interacting edge), it has a better chance to be annotated by the functions
of its partner. We use the bl2seq program25 to extract the expected values, in
the range from 0 to 10, of the strength of the biological relationship between all
interacting proteins. The lower the expected value, the higher the possibility the
two proteins share the same functions.1 We observe that, for all three datasets,
interacting proteins are more likely to be involved in the same functions if they are
more homologous (see Table 1). We use the following notation:

N = total number of proteins in the graph
Pu = protein u (u = 1, 2, . . . , N)
Nei(u) = set of proteins interacting directly with protein Pu

wu,v = weight assigned to the edges connecting proteins Pu and Pv
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Table 1. Average number of common functions
of interacting proteins.

E-value ≤ 1E-3 E-value > 1E-3

Yeast 5.28 4.27
Worm 4.02 2.38
Fly 5.75 3.78

where

wu,v =

{
the expected value, if Pu and Pv directly interact

∞, otherwise.

2.2.2. Stage 1

Based on the fact that proteins of known function and cellular location tend
to cluster together in a PPI network,11 clustering analysis is obviously a good
approach for the extraction of functions from the PPI network. Clustering means
assigning objects that share similar properties into the same groups. We use
agglomerative clustering26 on the weighted graph G because it generates many
small clusters that facilitate assignment of functions. Initially, we treat each
node in the graph as its own cluster, and then merge the two nearest clusters
into a new cluster. The distance between clusters Ci and Ch is calculated as
d(Ci, Ch) = min{wu,v with Pu ∈ Ci, Pv ∈ Ch} in a single-linkage method manner.
A cluster is excluded from the agglomeration process using the following heuristic
rules:

the cardinality of the cluster exceeds a threshold τ , and (1)

the entropy function of the cluster H =
−∑c

s=1 ps log2 ps

log2 c
< γ, (2)

where c is the number of function categories in the cluster and ps is the relative
frequency of category s in the cluster. The merging process stops if no further new
clusters are formed. The following pseudocode provides more details:

Algorithm 1: Agglomerative cluster in stage 1
Input: Matrix W = {wu,v}.

(1) Initialize distance matrix D = {du,v}, with du,v = wu,v (u = 1, 2, . . . , N , v =
1, 2, . . . , N).

(2) Initialize N clusters corresponding to N proteins.
(3) Find the smallest distance in D, and merge the corresponding clusters (say, Ci

and Ch) to get a new cluster (CiCh).
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(4) Recompute the distance between (CiCh) and any other cluster Ck in matrix
D by

d((CiCh), Ck) =

{
∞, if the cluster (CiCh) satisfies rules (1) and (2)

min{d(Ci, Ck), d(Ch, Ck)}, otherwise.

(5) If D ={∞}, then stop; otherwise, return to step 3.

Output: Cluster sets.

To determine the values of τ and γ, we initially set them to τ = N
300 and γ = 0.6,

and then gradually increase the cardinality of each cluster as follows: N
290 , N

280 , and
so on. When the number of proteins in a cluster is increased, the entropy function
of the cluster is also increased. Thus, for each increment of cluster cardinality, we
also adjust the value of γ in increments of 0.01. We select the thresholds that
generate the best results in the next stage. In our study, the values of τ and γ are
experimentally determined to be N

50 and 0.85, respectively.
Figure 1 shows clusters generated from this stage for the yeast, worm, and

fly datasets. The figure indicates that the method takes into account not only the

(a) A cluster generated by ClusFCM in yeast network.

(b) A cluster generated by ClusFCM in worm network.

(c) A cluster generated by ClusFCM in fly network.

Fig. 1. Clusters generated by the ClusFCM algorithm using (a) yeast, (b) worm, and (c) fly data.
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homologies (distances), but also the functions shared among the proteins. For exam-
ple, although the yeast proteins NAS2 and ROT1 are not homologous, they share
GO terms for the same functions [physiological process (GO: 0007582), cell (GO:
0005623), and cellular process (GO: 0009987)]; thus, they are put together in the
same cluster. Similarly, the worm proteins jkk-1 and F43G6 share binding molec-
ular function (GO: 0005488); while the fly proteins pont and Or67c share binding
(GO: 0005488), physiological process (GO: 0007582), and response to stimulus (GO:
0050896) functions.

2.2.3. Stage 2

Each cluster is now considered as a FCM.27,28 A PPI network is a dynamic system
where proteins, through interacting edges, flow their functions to other proteins.
We use the FCM to simulate how likely a protein is annotated with a function
from its neighbors and, in turn, how the newly annotated protein propagates the
function of interest through the network. In the terminology of the FCMs, the nodes
(proteins) indicate causal concepts and the edges (interactions) indicate the cause–
effect relationships (Fig. 2). For a function of interest, we denote S = (s1, s2, . . . , sN )
as an instantaneous state vector, where su = 1 (on) if the protein u is annotated
or predicted with the function and su = 0 (off) otherwise. An unannotated protein
u is switched on if rule (3) is satisfied:

f(x) =
1

1 + e−x
> θ, (3)

where x =
P

v∈Nei(u) (10−wv,u)sv
P

v∈Nei(u) (10−wv,u) and θ is an activation threshold (explained later).

Starting with an initial state vector, we iteratively use rule (3) on all unanno-
tated proteins until the equilibrium state (hidden pattern) is reached. Before the
FCM conducts its task, we make an initial labeling (using uniform distribution) of
the functions that have the highest scores for each unannotated protein u in the
network: |Nei(u)|×πa, where |Nei(u)| is the number of neighborhoods of the protein
u and πa is the fraction of a function a in the entire network. The algorithm for
prediction of a function of interest is outlined below.

Fig. 2. In this FCM, proteins shown in black are annotated. The initial state vector is (101111000).
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Algorithm 2: Finding the hidden pattern in stage 2
Input: A cluster C and an initial state vector.

(1) Set the initial state vector S0 = (s0,1, s0,2, . . . , s0,|C|) where |C| = cardinality
of cluster C, and

S0,u =

{
1, if protein u is annotated or predicted with the function of interest

0, otherwise.

(2) Apply rule (3) for each protein in cluster C.
(3) If Si = Si−1, then Si is the hidden pattern, otherwise, return to step 2.

Output: The hidden pattern of the cluster.

2.3. Description of methods used in comparisons

We perform a head-to-head comparison of performance of the ClusFCM algorithm
with four methods: Majority,11 χ2 statistics,15 MRF,16 and FunctionalFlow.18

2.3.1. Majority

For each protein in a set, we first assume that it is unannotated and then we count
the number of times each function occurs in its nearest neighbors. The functions
with the highest frequencies are assigned to the query protein.

2.3.2. χ2 statistics

First, for each function a in the 39 GO terms, we derive the fraction πa = (number
of proteins having function a/N). Then, we calculate na as the number of proteins
among the query neighbors that have the function a, and ea as the expected number
(ea = number of proteins in its nearest neighbors × πa). The query protein is
annotated with the function with the highest χ2 value among the functions of all
proteins in its nearest neighborhood, where χ2 = (na − ea)2/ea.

2.3.3. FunctionalFlow

We implemented this method based on Nabieva et al.18 using the following notation:

• Ra
t (u) is the amount of functional flow in the reservoir for function a that node

u has at time t. Initially (t = 0), Ra
0(u) = ∞ if node u is annotated with a;

otherwise, 0. At time t,

Ra
t (u) = Ra

t−1(u) +
∑

v:(u,v)∈E

(ga
t (v, u) − ga

t (u, v)).
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• ga
t (u, v) is the flow of function a at time t from protein u to protein v. Initially

(t = 0), ga
0 (u, v) = 0; otherwise, 0. At time t, ga

t (u, v) = min(1,
Ra

t (u)P
(u,y)∈E

) if

Ra
t−1(u) ≥ Ra

t−1(v).
• fa(u) is the functional score for node u and function a over d iterations, calculated

as the total amount of flow that has entered node u:

fa(u) =
d∑

t=1

∑
v:(u,v)∈E

ga
t (v, u). (4)

This algorithm is iteratively run d times, where d is set to half the diameter of the
interaction network, i.e. 6 for the yeast, 7 for the worm, and 6 for the fly physical
interaction networks. Functions which have the highest scores (Eq. 4) for a protein
are assigned to that protein.

2.3.4. MRF

This algorithm exploits the difference between two probabilities:

• pa
1 is the probability that two nodes in an interacting pair have the same func-

tion a.
• pa

0 is the probability that two nodes in an interacting pair do not share the same
function.

Using the Markov assumption, the probability distribution for the annotating func-
tion a of node u, La

u, is conditionally independent of its neighbors. To derive the
probability that protein u has function a in condition with its neighbors Nei(u) and
the number of neighbors which are annotated with function a, na

u, Bayes’ rule is
used:

P (La
u|Nei(u), na

u) =
P (na

u|La
u, Nei(u)) · P (La

u)
P (na

u|Nei(u))
, (5)

where P (La
u) = fa or the frequency of function a in the network.

The probability of having n proteins labeled with function a in the neighbors
Nei(u) in the context of protein u having function a is expected to follow a binomial
distribution:

P (na
u|La

u, Nei(u)) = B(Nei(u), na
u, pa

1), with B(N, k, p) =
(

N

k

)
(p)k(1 − p)N−k.

The probability of having n proteins labeled with function a in the neighbors
Nei(u) is

P (na
u|Nei(u)) = fa · P (na

u|La
u, Nei(u)) + fa · P (na

u|La
u, Nei(u))

= fa · B(Nei(u), na
u, pa

1) + fa · B(Nei(u), na
u, pa

0).



February 26, 2008 12:22 WSPC/185-JBCB 00333

212 C. Nguyen et al.

Thus, Eq. (5) becomes

P (La
u|Nei(u), na

u) =
fa · B(Nei(u), na

u, pa
1)

fa · B(Nei(u), na
u, pa

1) + fa · B(Nei(u), na
u, pa

0)
. (6)

Equation (6) is iteratively applied for each unannotated protein u in the network
separately for each function a. If the probability in Eq. (6) exceeds a given threshold,
the protein u is reclassified with the function a. The process stops when no further
labeling occurs.

2.4. Assessment of predictions

We use the leave-one-out cross-validation procedure to evaluate predictions result-
ing from each method. For each protein in the datasets, we assume that it is unan-
notated. Then, we use each of the above methods to predict the protein functions.
Let A be the annotated function set, P be the predicted function set, and F be
the whole 39 GO function collection set. We calculate the number of true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN) as follows:

• TP (the number of predicted functions that are actually annotated) = |A ∩ P |
• FP (the number of predicted functions that are not annotated) = |P\A|
• FN (the number of annotated functions that are not predicted) = |A\P |
• TN (the number of not-predicted functions that are actually not annotated) =
|F\{A ∪ P}|.

This calculation, used in information retrieval29 (where A, the annotated function
set, is the relevant document; and P , the predicted function set, is the retrieved
document), is illustrated in Fig. 3.

The following measures are used for assessing the performance of ClusFCM:

Precision =
TP

TP + FP
=

|A ∩ P |
P

Recall =
TP

TP + FN
=

|A ∩ P |
A

Fig. 3. TPs are represented by the white circle (intersection), FPs are shown as the gray area on

the right, FNs are shown as the gray area on the left, and TNs are the rest of the entire area.
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Matthews correlation coefficient (MCC)

=
TP × TN − FP × FN√

(TP + FN))(TP + FP)(TN + FP)(TN + FN)

Harmonic mean (HM) =
2

1/Precision + 1/Recall

Precision (a.k.a. positive predictive value) is the probability of correctly predict-
ing a function (|A ∩ P |/P ), while recall (a.k.a. sensitivity) is the probability that
a function prediction is correct (|A ∩ P |/A). HM combines precision and recall
into a single number ranging from 0 to 1. If HM is 0, then no annotated pro-
teins have been predicted; if HM is 1, then all predicted functions are correct.29

The MCC value is between −1 and +1, and measures how well the predicted
class labels agree with the actual class labels. An MCC value of −1 (when
TP = 0 and TN = 0) means complete disagreement, an MCC value of +1 (when
FP = 0 and FN = 0) means complete agreement, and an MCC value of 0
(when TP = FP and TN = FN) means that the prediction is random.30 We did
not use accuracy because it is sensitive to the distribution of functions among pro-
teins and our data is highly skewed (negative class � positive class). Thus, if we
sacrificed true positives to predict all examples as negative, we could have obtained
high accuracy (but not correct) of a classifier.31–33

3. Results and Discussion

ClusFCM and the other four methods are implemented in Java and tested on the
three datasets. Table 2 shows the performance of our algorithm. The relationship
between precision and recall is shown in Fig. 4, using different thresholds in stage 2.
To determine the values of the threshold θ in rule (3), we use the algorithm with
different values of θ in the range from 0.5 to 1, in increments of 0.01. The value of
θ for which the algorithm yields the highest MCC value is used. In this case, the
chosen thresholds are 0.64 for yeast, 0.74 for worm, and 0.64 for fly data.

The results of the four methods using leave-one-out cross-validation are shown in
Table 3(a). For the Majority, FunctionalFlow, and χ2 statistics methods, we select
the top ten functions having the highest scores and assign these functions to each
unannotated protein. For the MRF method, we use threshold values from 0 to 1, in
increments of 0.1, as used in Eq. (6), to predict the functions. For each method, we

Table 2. Performance measures of ClusFCM on
three datasets using leave-one-out validation.

Yeast Worm Fly

Precision 0.63 0.33 0.34
Recall 0.70 0.70 0.73
MCC 0.61 0.43 0.44
HM 0.66 0.45 0.47
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Fig. 4. Results of ClusFCM prediction for different thresholds in the three datasets.

choose the threshold which yields the highest MCC value. Interestingly, we found
that with the selected thresholds, the HM measure also achieves the highest value
for each method.

As shown, ClusFCM outperforms the other methods in terms of recall, MCC,
and HM measures. The results of χ2 statistics, when compared with Majority and
FunctionalFlow, are worse on the yeast data, but better on the worm and fly data;
this is because the fraction of proteins having more than one neighbor is smaller
in the fly and worm datasets, prominently showing that the underlying topology of
the PPI network plays a crucial role. FunctionalFlow performs similarly to Majority
on the three datasets; these methods, however, do not take into account indirect
effects in which a protein, after being annotated, is used to annotate other proteins.
MRF performs well on the yeast dataset, where almost all proteins are annotated;
but in the worm and fly datasets, ClusFCM performs significantly better in terms
of recall, MCC, and HM. Because the results for ClusFCM and MRF are similar,
we provide additional analysis using a bootstrap percentile test.

Several studies have addressed the correlation between molecular functions
and homologies of proteins (Altschul et al.,1 Blast2GO,19 GOblet,20 GOtcha,21

OntoBlast,22 GOFigure,34 GeneQuiz35). In addition, some studies have shown that
molecular functions are predictive of cellular components.36 On the other hand,
it is also known that protein–protein interactions are more reflective of biological
processes. There are 28 molecular function and cellular component GO terms ver-
sus 11 biological processes in our study. Statistically, in our datasets, the average
number of neighboring proteins sharing the same biological process GO term with
a protein (6.6, 1.5, and 4.2 in yeast, worm, and fly datasets, respectively) is higher
than that of proteins sharing the same molecular function or cellular component
GO term (5.3, 1.0, and 2.5 in yeast, worm, and fly datasets, respectively). Hence,
in such a context, we ask whether the ClusFCM performs well in predicting only
biological processes. To determine to what extent proteins are correctly annotated
as biological processes (as well as molecular functions and cellular components),
we use ClusFCM and the other four methods to predict those functions in yeast,
worm, and fly interaction datasets; we could not modify other methods used in the
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Table 3(a). Performance measures of ClusFCM and the other methods in yeast, worm,
and fly interaction networks using the leave-one-out cross-validation test.

ClusFCM Majority χ2 statistics FunctionalFlow MRF

Yeast network

Precision 0.63 0.63 0.27 0.64 0.72
Recall 0.70 0.45 0.53 0.44 0.57
MCC 0.61 0.47 0.24 0.47 0.59

HM 0.66 0.52 0.35 0.52 0.64

Worm network

Precision 0.33 0.21 0.21 0.28 0.29
Recall 0.70 0.37 0.71 0.34 0.63
MCC 0.43 0.22 0.32 0.26 0.38
HM 0.45 0.27 0.32 0.31 0.40

Fly network

Precision 0.34 0.28 0.20 0.34 0.34
Recall 0.73 0.32 0.63 0.28 0.55
MCC 0.44 0.24 0.25 0.25 0.37
HM 0.47 0.30 0.30 0.31 0.42

Table 3(b). Prediction of biological process GO termsa by ClusFCM and the other methods
in yeast, worm, and fly interaction networks using a leave-one-out cross-validation test.

ClusFCM Majority χ2 statistics FunctionalFlow MRF

Yeast network

Precision 0.66 (0.61) 0.66 (0.60) 0.28 (0.25) 0.66 (0.62) 0.72 (0.71)
Recall 0.75 (0.66) 0.54 (0.39) 0.56 (0.51) 0.53 (0.38) 0.68 (0.50)
MCC 0.64 (0.59) 0.52 (0.43) 0.20 (0.25) 0.51 (0.44) 0.64 (0.56)
HM 0.71 (0.63) 0.59 (0.47) 0.38 (0.34) 0.59 (0.47) 0.70 (0.59)

Worm network

Precision 0.39 (0.28) 0.34 (0.15) 0.25 (0.19) 0.34 (0.23) 0.37 (0.24)
Recall 0.82 (0.61) 0.44 (0.32) 0.72 (0.71) 0.44 (0.26) 0.75 (0.55)
MCC 0.51 (0.38) 0.32 (0.16) 0.33 (0.30) 0.32 (0.21) 0.47 (0.31)
HM 0.53 (0.39) 0.38 (0.21) 0.37 (0.30) 0.38 (0.25) 0.50 (0.33)

Fly network

Precision 0.47 (0.27) 0.44 (0.17) 0.23 (0.18) 0.43 (0.20) 0.46 (0.25)
Recall 0.77 (0.69) 0.46 (0.21) 0.64 (0.62) 0.47 (0.12) 0.70 (0.41)
MCC 0.53 (0.38) 0.37 (0.13) 0.22 (0.25) 0.36 (0.12) 0.48 (0.28)
HM 0.58 (0.39) 0.45 (0.19) 0.33 (0.27) 0.45 (0.15) 0.55 (0.31)

aPredicted performance measures of molecular functions and cellular components are shown
in parentheses.

comparison to work with our weighted graphs because these methods are not able
to use this information. The results, shown in Table 3(b), indicate that even in the
case of prediction of biological processes, which are less influenced by homologies
in the PPI networks than other GO categories, the performance of ClusFCM is
significantly better.
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We note that functional annotations for the proteins are incomplete at present.
In the yeast database, there are 348 (7%) unannotated proteins out of 4,948 pro-
teins that participate in interactions; this fraction is approximately 40% for worm
proteins and 35% for fly proteins. Therefore, a protein may have a function that has
not yet been experimentally verified. We wish to decrease the number of annotated
functions that are not predicted, and increase the number of predicted functions
that are actually annotated. The fact that recall values are always higher than pre-
cision values in all datasets increases confidence in our methods. Table 4 shows the
number of TPs and FNs predicted by each method. ClusFCM identifies more TPs
and fewer FNs than any other method over the three datasets, except for the worm
network where χ2 statistics has higher TPs and lower FNs than ClusFCM.

To visualize the performance of ClusFCM, we use receiver operating character-
istic (ROC) curves, which plot the TP rate [TP/(TP + FN)] against the FP rate
[FP/(FP + TN)] for different thresholds.37 For comparison, we also show the ROC
curves for the Majority, χ2 statistics, FunctionalFlow, and MRF methods by dif-
ferent top-scoring functions (from 1 to 10) and different thresholds (from 0 to 1,
in increments of 0.1), as shown in Fig. 5. The closer the curve follows the top left-
hand area of the ROC space, the more accurate the classifier. A random classifier
would have its ROC curve lying along the diagonal line connecting points (0, 0) and
(1, 1). We see that the performance of ClusFCM is better than those of Majority,
χ2 statistics, and FunctionalFlow. The values of areas under the ROC curve (AUC)
for all classifiers are shown in Table 5.

Next, we analyze the predictive power of ClusFCM and the other four methods
by using leave-one-out cross-validation on proteins having at least two neighbors, at

Table 4. The number of TPs, FPs, TNs, and FNs of ClusFCM and the other methods on
the yeast, worm, and fly physical interaction networks using a leave-one-out test on the
39 protein functions.

ClusFCM Majority χ2 statistics FunctionalFlow MRF

Yeast network (4948 × 39 data points)

TP 17,411 11,213 13,178 11,035 14,302
FP 10,195 6,658 36,302 6,316 5,671
TN 157,792 161,329 131,685 161,671 162,316
FN 7,574 13,772 11,807 13,950 10,683

Worm network (2780 × 39 data points)

TP 4,539 2,409 4,603 2,190 4,104
FP 9,311 9,108 17,567 5,656 9,992
TN 92,629 92,832 84,373 96,284 91,948
FN 1,941 4,071 1,877 4,290 2,376

Fly network (7938 × 39 data points)

TP 18,072 8,099 1,5776 7,032 1,3608
FP 34,555 20,516 64,736 13,780 26,040
TN 250,104 264,143 219,923 270,879 258,619
FN 6,851 16,824 9,147 17,891 11,315
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Fig. 5. Comparison of ClusFCM results with four other methods on three datasets.

Table 5. The AUC values of ClusFCM and the other methods in yeast,
worm, and fly interaction networks.

ClusFCM Majority χ2 statistics FunctionalFlow MRF

Yeast 0.89 0.62 0.63 0.62 0.87
Worm 0.86 0.61 0.72 0.60 0.86
Fly 0.86 0.61 0.67 0.59 0.82

Fig. 6. Performance of ClusFCM and the other methods on the yeast, worm, and fly interac-
tion networks using the leave-one-out procedure for proteins having at least one neighbor, two
neighbors, etc.

least three neighbors, and so on. The results show that the performance of ClusFCM
improves as the number of neighbors increases (Fig. 6). Moreover, all performance
measures for ClusFCM increase monotonically over all datasets. This important
characteristic is absent in the other four methods.

To gauge the uncertainty of the algorithms’ performance, we next use the
bootstrap percentile test38–40 to calculate confidence intervals. Bootstrapping is
a nonparametric technique involving a large number of repetitive computations:
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Table 6. 95% confidence intervals for the difference in MCC, HM, and AUC values between Clus-
FCM and the four methods over 1,000 bootstrap datasets.

Majority χ2 statistics FunctionalFlow MRF

low up low up low up low up

MCC 0.136041 0.136465 0.370374 0.370917 0.135682 0.136096 0.016199 0.016530
Yeast HM 0.139726 0.139119 0.308030 0.308444 0.140698 0.141098 0.025778 0.026078

AUC 0.259770 0.259997 0.256976 0.257223 0.262113 0.262330 0.016500 0.016841

MCC 0.215037 0.215894 0.116154 0.116763 0.173820 0.174690 0.055099 0.055582
Worm HM 0.178593 0.179347 0.124988 0.125462 0.140512 0.141335 0.047477 0.047882

AUC 0.244011 0.244480 0.141463 0.141948 0.260912 0.261352 −0.002379 −0.001815

MCC 0.199280 0.199709 0.185497 0.185852 0.182837 0.183273 0.066934 0.067247
Fly HM 0.163064 0.163491 0.166621 0.166905 0.158066 0.158527 0.044335 0.044620

AUC 0.251137 0.251342 0.191224 0.191451 0.267226 0.267428 0.039924 0.040251

from each protein dataset of size N , we sample n = 50/α datasets of size N

(with replacement), where α is the confidence level of the test. With a confidence
level of 95%, we have 1,000 datasets for each of three organisms: yeast, worm,
and fly. For each dataset i, we compute the difference in the performance mea-
sures dMCC,i, dHM,i, and dAUC,i between our method and the other four meth-
ods. These 1,000 values represent the nonparametric distribution of the random
variables dMCC, dHM, and dAUC. We consider a confidence interval [lowms, upms]
such that p(lowms < dms < upms) = 1 − α centered around the mean of p(dms),
where ms is the MCC, HM, or AUC measure. Formally, with a confidence level
of 95%, the lower bound lowms = Φ

(
z0 + z0+z0.025

1−a(z0+z0.025)

)
and the upper bound

upms = Φ
(
z0 + z0+z0.975

1−a(z0+z0.0975)

)
, where Φ is the standard normal cumulative dis-

tribution function, zα is the αth quantile of standard normal distribution, z0 is the
bias correction, and a is the acceleration. The null hypothesis, that both algorithms
perform equally well, can be rejected if 0 lies outside the interval. Table 6 shows con-
fidence intervals for ClusFCM and the other methods over 1,000 bootstrap datasets
for yeast, worm, and fly. The intervals show that ClusFCM performs significantly
better in terms of the MCC, HM, and AUC (except for the similarity of the AUC
measure in the worm dataset for MRF).

4. Conclusions

We have developed and extensively tested the ClusFCM algorithm for protein func-
tion predictions based on protein interaction networks. The algorithm uses several
characteristics of interaction networks: direct and indirect interactions, underlying
topology networks, clusters, and edges weighted by homology measures between the
interacting proteins. It takes into consideration both the protein–protein interaction
network and homologies between interacting proteins. We have shown ClusFCM’s
robustness by testing it on the curated interaction data from the GRID database
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using the leave-one-out cross-validation method. In addition, we used the bootstrap
percentile test for establishing statistical significance of the results. The results show
that ClusFCM outperforms the Majority, χ2 statistics, FunctionalFlow, and MRF
methods. In the future, we plan to modify and extend the association-rule algo-
rithm to discover relationships between functions of a protein and its neighborhood
in order to assign possibly new functions to the protein.
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