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Protein–protein interactions play a defining role in protein function. Identifying the sites
of interaction in a protein is a critical problem for understanding its functional mecha-
nisms, as well as for drug design. To predict sites within a protein chain that participate
in protein complexes, we have developed a novel method based on the Hidden Markov
Model, which combines several biological characteristics of the sequences neighboring a
target residue: structural information, accessible surface area, and transition probabil-
ity among amino acids. We have evaluated the method using 5-fold cross-validation on
139 unique proteins and demonstrated precision of 66% and recall of 61% in identify-
ing interfaces. These results are better than those achieved by other methods used for
identification of interfaces.

Keywords: Protein–protein interaction; protein interface; support vector machine; hid-
den Markov model; protein function; sequence profile.
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1. Introduction

The goal of proteomics research is to understand protein functions. Critical to
reaching this goal is information regarding protein–protein interactions. Protein
interactions are essential for biological processes that range from the formation of
macromolecular structures and enzymatic complexes to the regulation of signal
transduction pathways. Protein interfaces are defined as domains for selective
recognition between molecules and for the formation of complexes. Identification of
these interfaces is important, not only for understanding protein function but also
for understanding the effects of mutations and for efficient drug design. Currently,
the only reliable method for predicting interfaces requires knowledge of tertiary
structures of protein complexes. However, because such information requires sophis-
ticated and expensive NMR and X-ray diffraction studies, only a small fraction of
known protein sequences have tertiary structures determined. Thus, there is a need
to develop predictive methods for identifying interfaces.1

A number of researchers have analyzed features of protein interface sites.
Chothia and Janin2 determined that such sites are more hydrophobic, flat or
protruding than other surfaces. Jones and Thornton3 studied properties of pro-
tein surfaces surrounding interacting residues and concluded that several physi-
cal characteristics, such as Accessible Surface Area (ASA), were very influential.
Sheinerman and Honig4 looked at the contribution of electrostatic interactions, the
presence of a significant population of charged and polar residues, on interfaces.
Ofran and Rost5 found that amino acid composition and preferences for residue-
residue interactions could be used to differentiate six types of protein interfaces,
each corresponding to a different functional association between residues.

Based on the features of known protein interfaces, several computational meth-
ods have been reported for their prediction. One approach was based on physical
and chemical characteristics of protein interfaces. Jones and Thornton6 predicted
interface patches using the sum of values of solvation, residue interface propensity,
hydrophobicity, flatness, protrusion index and ASA. The algorithm by Kini and
Evans7 used the fact that proline residues occurred near interfaces at a frequency
2.5 times higher than expected by chance. Pazos et al.8 used multiple sequence
alignments and correlated mutations based on the hypothesis that residues partic-
ipating in functionally required interactions tend to show compensatory mutations
during evolution. Gallet et al.9 reported that interfaces can be predicted by using
the hydrophobic moment and averaged hydrophobicity.

Another approach to predict interfaces is to use machine learning methods,
such as neural networks, Bayesian statistics and support vector machines (SVM),
with sequence profiles and/or ASA as input data. Zhou and Shan10 and Fariselli
et al.11 used a neural network to learn whether or not exposed residues at the
protein surface were in a contact patch. Koike and Takagi12 applied SVM to classify
interfaces of residues for both homo and hetero-dimers. Bradford and Westhead13

combined a support vector machine approach with the previous work of Jones
and Thornton6 to predict protein-protein binding site. Bordner and Abagyan14
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detected protein interfaces by using a SVM trained on a combination of evolutionary
conservation signals plus local surface properties. Chen and Zhou15 extended their
own previous work10 by developing a consensus method that combined two neural
networks consecutively. Yan et al.16 reported a two-stage method in which residue
clusters belonging to interfaces were detected through the SVM and then used as
input to a Bayesian network classifier to identify the most likely class, interface or
non-interface, for the target residues.

The above machine learning approaches share a common characteristic: the
input to their models is the encoded identities of n contiguous amino acid residues,
corresponding to a window of size-n containing the target residue. Each residue
in the window is represented by a 20-dimensional vector whose values are the cor-
responding frequencies in sequence profiles of the residue (e.g. in the method of
Yan et al., the 20-dimensional vector is a 20-bit vector with 1-bit for each letter-
code of the 20 amino acid alphabet). These methods are limited because a large
amount of data is needed for training, and more importantly, because the biological
relationships between sequence profiles and interfaces are not well established.

Here, we report a novel approach to the problem of predicting protein interfaces
that takes into account biological characteristics of a target residue and its near-
est neighbors. These include structural information, transition probability among
amino acids around the target residue (in both strands from the N-terminal to
C-terminal and in the opposite direction), and ASA value. We designed a Hidden
Markov Model (HMM) to combine and reflect all these characteristics. Our method
achieved accuracy of 73%, precision of 66%, recall of 61% and correlation of 0.42,
on a 139 member protein dataset using 5-fold cross-validation.

2. Methods

2.1. Material

The method of collecting protein sequence data for the purpose of training and
testing of our HMM is similar to those reported previously.10,12 We extracted
non-homologous proteins from all multiple chain protein entries in the PDB
(December 2005 release) by using the PSI-BLAST19 with the cutoff of identity
< 30% and E-value > 0.14. Also with a confidence level of > 95%, we excluded all
chains shorter than 50 residues as well as those longer than 1100 residues. After
this filtering, this dataset consists of 139 nonhomologous complex-forming protein
chains in the PDB including 68 homo-dimers and 71 hetero-dimers. The list of
proteins is available at http://isl.cudenver.edu/hmm/139pdb.htm. The set of 77
protein sequences used by Yan et al. forms the second dataset.

2.2. Definition of an interface

There are several methods to detect which residues in a protein are part of the
protein interface. One method is to identify all residues within one member of a
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Fig. 1. Example distribution of interfaces and non-interfaces according to the three categories in
the two datasets, where A is Ambivalent, I is Internal, and E is External.

complex that lie within 5 Å of a residue within a second member of the complex.10,12

In this work, we used the definition of Jones and Thornton,3 namely, we calculated
the difference in the ASA upon complex formation. Using the DSSP program of
Kabsch and Sander,20 we extracted the ASA for each residue in the subunits forming
the complex and in the complex. When the ratio of ASA of a residue to its nominal
maximum area in the subunit is at least 25%, the residue is called a surface residue.
A surface residue is defined as an interface residue when its calculated ASA value
in the complex is decreased by at least 1 Å2. By using this definition, also used in
Yan et al.,16 we obtained a total of 11 555 interfaces from a total of 33 632 residues
in the 139 protein dataset (see Fig. 1).

2.3. Architecture of the HMM

A first-order discrete HMM is a stochastic generative model for linear problems such
as sequences or time series defined by a finite set D of states, a discrete alphabet
S of symbols, a probability transition matrix T = [ti(j)] and a probability emis-
sion matrix E = [ek(b)]. Each state k emits symbol b according to E, creating an
observable sequence of symbols. The states are interconnected by state transition
probabilities T. Starting from an initial state, a sequence of states is generated by
moving from state to state according to the transition probabilities T until the end
state is reached.21

Based on structural information, a protein sequence is reduced from 20-letter
amino acid alphabet to three-letter categories of biochemical similarity22: ambiva-
lent (Ala, Cys, Gly, Pro, Ser, Thr, Trp, Tyr), external (Arg, Asn, Asp, Gln, Glu,
His, Lys), and internal (Ile, Leu, Met, Phe, Val) (see Fig. 1). We observe that, for
both datasets, the fraction of interface proteins in the external category is much
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Fig. 2. HMM architecture: there are six inter-connected states plus two fictitious start/end states
using the three categories. The state designated with a superscript “+” emits symbols located in
interface domains. The emission probability and transition probability parameters are trained by
converted protein sequences in both strands, from N-terminal to C-terminal, and in the opposite
direction.

higher than that in the internal or ambivalent categories (see Fig. 1). This group-
ing not only significantly reduces the dimensionality of the input space but it also
increases the accuracy of the HMM. For completeness we also show in Table A.1
and Fig. 7, in the Appendix, the results obtained by using different HMM models,
corresponding to four different monomer groupings based on: (a) chemical, (b) func-
tional, (c) charge, and (d) hydrophobic alphabets. In our HMM method, the states
of the class D are defined as D = {A+, E+, I+, A−, E−, I−} and the set of symbol
alphabet are defined as S = {A, E, I}, where A stands for ambivalent, E for external
and I for internal (see Fig. 2).

Given the input sequence x = x1x2 · · ·xN with xi ∈ S, we want to find the
output state sequence π = π1π2 · · ·πN with πi ∈ D such that the probability
P (x, π|θ) is maximized: π∗ = argmaxπ P (x, π|θ) with the parameters θ are E and
T matrices.

2.4. Training of the HMM and making predictions

2.4.1. Training

To train the model the 139 amino-acid letter sequences are first converted into
the three category letter sequences (A, I, E). Next, we use two operators on each
sequence. The expansion operator expands each residue in the three-category-letter
sequence into an odd k-residue window containing the residue and �k/2� neighbor-
ing residues, on both sides of the residue. It should be noted that when windows i

and i + 1 are connected the last residue of window i and the first residue of win-
dow i + 1 are put together, which results in a residue pair. Because this pair does
not exist in the original sequence it is eliminated from training data. The contrac-
tion operator cuts the expanded sequence into connected windows of size m, where
each window must have in the middle an interface residue, and �m/2� neighboring
residues on either side of the interface. In using the contraction operator the follow-
ing rule is applied. Let window i be a window formed with an interface residue in
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Fig. 3. Example of transformation from an original sequence into a training sequence that con-
stitutes input to the model. In the expansion (with k = 5), the 1st letter A is expanded to
AEI (because it has only two residues on the right flank side), the 2nd E is expanded to AEII
(because it has one residue on the left and two residues on the right flank side), and the 3rd
I is expanded to AEIIA (because it has two residues on both flank sides), and so on. The
transition between the last residue of window i and the first residue of window i + 1 (marked
as ∪) is not used in training task. The contraction operator (with m = 7) cuts: the 1st observed
interface I into a size-7 window NNNI∪NNN; the 2nd observed interface I into a size-7 window
NNNIN∪NN, merged with the previous window (marked as +) to become NNNI∪NNN+IN∪NN;
the 3rd observed interface I into N∪NNINI∪N, merged with the previous window (marked as +)
to become NNNI∪NNN+IN∪NN+INI∪N. The 4th observed interface I belongs to the previous
window, thus no window is formed for the 4th interface, and so on.

the middle, then if the next observed interface residue belongs to this window i, the
said interface residue is omitted, and as a result, no window is formed. Otherwise,
window i + 1 is formed with the said interface in the middle and merged with win-
dow i (see Fig. 3). These two operators exploit the fact that interface residues tend
to form clusters within the amino acid sequence.23 First, the expansion operator
expands residues around the target residues, and thus improves the transition prob-
ability among the amino acids around the target residues. Second, the contraction
operator cuts the expanded sequence into connected windows, where the middle
residue is an interface. Thus, we again focus on clustering of interface residues. We
empirically determined values of k = 5 for the first operator and of m = 7 for
the second. The transformed sequences are input into the model in both strands
from the N−terminal to the C−terminal, and in the reverse direction, to learn the
emission and transition probabilities, E and T.

2.4.2. Predictions

A protein sequence is converted into the three-category letter sequence before it
is used as an input to the model. In this phase, the two operators will not be used
because we do not have the knowledge of interfaces of the protein. Then we use
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the Viterbi algorithm,21 to find the most probable path of output state sequence
π = π1π2 · · ·πN . The initial state π1 is chosen according to an initial distribution
of the states. Interfaces are residues emitted by those states designated with a
superscript “+”.

2.5. Assessment of predictions

The following four measures are used to assess the performance of our HMM
method:

Precision, or positive predictive value =
TP

TP + FP
,

Recall, or sensitivity =
TP

TP + FN
,

Accuracy =
TP + TN

TP + TN + FP + FN
,

Matthews correlation coefficient

=
TP × TN − FP × FN

√
(TP + FN ))(TP + FP)(TN + FP)(TN + FN )

where

— TP = the number of residues predicted to be interfaces that actually are inter-
faces (true positives)

— TN = the number of residues predicted not to be interfaces that actually are
not interfaces (true negatives)

— FP = the number of residues predicted to be interfaces that actually are not
interfaces (false positives)

— FN = the number of residues predicted not to be interfaces that actually are
interfaces (false negatives)

The Matthews correlation coefficient (MCC) is always between −1 and +1 and
measures how well the predicted class labels agree with the actual class labels.
A value of the MCC of −1 means complete disagreement, +1, complete agreement,
and 0 is considered as a random prediction.17 Accuracy gives the overall evaluation
of the estimated probability of correct predictions. In this study, we did not use
accuracy because accuracy is sensitive to the distribution of interface proteins and
our data is skewed (the negative class � positive class). Thus if we sacrificed true
positives to predict all examples as negative we could have obtained high accuracy
of a classifier.24–26

3. Results and Discussion

3.1. HMM prediction results

We trained our HMM by using a five-fold cross-validation on the dataset of 139
proteins. Table 1 summarizes the results in terms of the following performance
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Fig. 4. Distribution of precision and recall of prediction result for 139 proteins using five-fold
cross-validation.

measures: MCC, precision, recall and accuracy. The method’s accuracy is 73% with
a correlation coefficient of 0.42. This result shows that it performs significantly
better than a random predictor.14 Of the residues predicted as interfaces, 66%
are actual interfaces (precision), and of all interfaces, 61% are identified as such
(recall). Figure 4 shows precision and recall for each predicted protein data point
in our dataset. Thus, the HMM method is a good predictor.

Work of other authors5,6,11,15 indicated that the characteristics of homo- and
hetero-dimer interfaces are different. We separately tested homo- and hetero-dimers
in our dataset and found that the performance results of homo-dimers are slightly
better than those of hetero-dimers.

3.2. Comparison with reported result

Zhou and Shan10 predicted interfaces using neural networks. The input values were
sequence profiles and ASA of the target residue and the neighbor residues. The
precision and recall for their classifier was 51% and 50%, respectively. Koike and
Takagi12 used SVM with sequential neighboring profiles, i.e. profiles of residues in
the neighborhood, and reported precision and recall of 50% and 54–56%, respec-
tively, for a homo-hetero mixed test data. However, because of differences in def-
initions, results of these methods cannot be directly compared with our results.
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For direct comparison, we therefore tested our HMM method on the 77 protein
dataset reported by Yan et al.16 We selected Yan et al.’s method for comparison
because it used open source SVM and Bayesian network implementations,18 and
thus was easy to replicate. To the best of our knowledge, the two-stage classifier
method of Yan et al. has given the best results so far. Using exactly the same defi-
nition to extract the interfaces, we evaluated the two-stage classifier method of Yan
et al. using five-fold cross-validation on our 139 protein dataset.

3.2.1. HMM comparison with the two-stage classifier on 139-protein dataset

To evaluate the method of Yan et al. on our 139 protein dataset, we follow their
procedure and use open-source SVM and Bayesian function implementations. The
input to the SVM consists of the encoded identities of nine amino acid residues
consisting of the target residue and the four residues on each side. Each residue in
the window is represented by a 20-bit vector, with 1-bit for each letter representing
the 20 amino acids. Thus, each input data point is of dimension 9 × 20 plus class
attribute (1 = interaction site, 0 = noninteraction site). The results are shown in
Table 1. They indicate that, in terms of precision, recall and MCC, the performance
measures of our HMM are slightly better than the SVM used in the first stage.

Next, we evaluate the SVM method by using a different way of encoding
residues.10,12 Each residue in the window, instead of association only with nearest
neighbor information, as in the method of Yan et al., is now coded as a 20-dimensional
vector, with its components corresponding to frequencies in the multiple sequence
alignment of the protein, taken from the HSSP file.27 When using these input vectors,
the SVM’s performance is 58% precision, 38% recall, and 0.27 MCC. These values are
worse than using only the nearest-neighbor information as input. Thus, the biological
relationships between sequence profiles and interfaces are still questionable.

In the second stage, to compare with the method of Yan et al., a Bayesian
network classifier is trained to identify an interaction site residue based on the class
labels (1 = interface, 0 = non-interface) of its neighbors. The class label outputs
of the SVM in the first stage constitute input to the Bayesian classifier in the
second stage. Table 1 shows the results of the second stage using BayesNetB from
the Weka package,18 with the input being the class labels z of the eight residues
surrounding a target residue, four on each side. The method of Yan et al. classifies
the target residue as an interface if p(1|z) > λ · p(0|z), where λ ranges from 0.01
to 1, in increments of 0.01, so as to maximize the correlation coefficient. The HMM
performed better on the original 139 proteins than the method of Yan et al. using
all measures.

3.2.2. HMM comparison with two-stage classifier on 77-protein dataset

To compare Yan et al.’s method, we use their datasets (77 proteins) and results.
The results in Table 2 shows that our HMM method achieves higher recall (53%)
than the two-stage method of Yan et al. (39%) when tested on their 77-protein
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dataset, while the other performance measures are equal. Also, the performance
measures of the HMM method are significantly better than the method of Gallet
et al.9 (we use results provided by the authors) when tested on the same dataset. All
supplementary materials, including the HMM program and datasets, are available
at our web site at http://isl.cudenver.edu/hmm.

4. Conclusions

On the dataset of 139 proteins, our six-state HMM method achieved 73% accuracy,
66% precision, 61% recall, and Matthews correlation coefficient of 0.42. Results
of other HMM variations we designed are shown in Table A.1. In Fig. 5 we illus-
trate the performance of the six-state HMM method in terms of tertiary structure
of two complexes: the PDB 1BM9 and 1EFN. In several comparisons, our method
performed better than the two-stage method of Yan et al. on their dataset of 77 pro-
teins, as well as when testing their method on our 139 proteins dataset. We have also
shown that if we use sequence profiles to encode the residues,10,12 the performance
of the SVM method substantially decreases. This suggests that the HMM method
might be used for predicting effects of point mutations on protein interactions, or
solvent accessibility, from protein sequences.

Validation with the CAPRI targets

Critical Assessment of Prediction of Interactions (CAPRI: http://capri.ebi.ac.uk)
is a community wide experiment to assess the capacity of protein docking algo-
rithms on targets based on structures of the unbound components. To evaluate our
method, we trained the HMM by using the 139 protein dataset and used the result-
ing classifier to identify the protein interfaces on the targets. The prediction of the
ligand HEMK in the target 20 (protein Methyltransferase HEMK complexed with
Release Factor 1, hetero-dimer) is shown in Fig. 6. The HMM identified 32 inter-
faces out of 59 positive class residues and 132 non-interfaces out of 217 negative
class residues.
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(a) (b)

Fig. 5. Overall view of complexes with identified interfaces. The predicted protein in each complex
is shown in space-fill coded as: Blue: interfaces classified correctly (TPs), Yellow: residues incor-
rectly classified as interfaces (FPs), Green: non-interfaces correctly identified as such (TNs), Red:
residues incorrectly identified as non-interfaces (FNs); binding proteins are shown as wire-frames:
(a) 1BM9 (replication terminator protein from Bacillus Subtilis) (homo-dimer): the predicted pro-
tein (chain A), the binding protein (chain B) (b) 1EFN (HIV-1 NEF protein in complex with R96i
mutant FYN SH3 domain) (hetero-dimer): the predicted protein (chain B), the binding protein
(chains A, C, D). The HMM identifies more interfaces in the homo-dimer. The figures were created
using RasMol (http://www.openrasmol.org).

Fig. 6. Overall view of the ligand HEMK in the target 20 (hetero-dimer) with identified inter-
faces. The residues of interest are shown in space-fill coded as: blue, TPs; yellow, FPs; green,
TNs; red, FNs; binding proteins are shown as wire-frames. The figure was created using RasMol
(http://www.openrasmol.org).
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Fig. 7. HMM architectures for monomer grouping based on: (a) Chemical alphabet: there are six-
teen inter-connected states (A+, L+, M+, R+, B+, H+, I+, S+, A−, L−,M−, R−, B−, H−, I−, S−)
plus two fictitious start/end states according to the eight categories. (b) Functional alpha-
bet: there are six inter-connected states (A+, H+, P+, A−, H−, P−) plus two fictitious start/end
states according to the three categories. (c) Charge alphabet: there are four inter-connected
states (A+, N+, A−, N−) plus two fictitious start/end states according to the two categories.
(d) Hydrophobic alphabet: there are four inter-connected states (H+, P+, H−, P−) plus two fic-
titious start/end states according to the two categories. The state designated with a superscript
“+” emits symbols located in interface domains. The emission probability and transition proba-
bility parameters are trained by converted protein sequences in both strands, from N-terminal to
C-terminal, and in the opposite direction.
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Appendix

Table A.1. Results of the HMM method when monomers are grouped by:

77 Proteins 139 Proteins

(1) Chemical alphabet : (A) acidic (Asp, Glu), (L) aliphatic (Ala, Gly, Ile, Leu, Val), (M)
amide (Asn, Gln), (R) aromatic (Phe, Trp, Tyr), (B) basic (Arg, His, Lys), (H) hydroxyl
(Ser, Thr), (I) imino (Pro), (S) sulfur (Cys, Met)

Precision 0.53 0.66
Recall 0.51 0.61
MCC 0.24 0.42

(2) Functional alphabet : (A) acidic and basic (Asp, Glu, Arg, His, Lys), (H) hydrophobic non-
polar (Ala, Ile, Leu, Met, Phe, Pro, Trp, Val), (P ) polar uncharged (Asn, Gln, Ser, Thr, Pro,
Cys, Met)

Precision 0.59 0.69
Recall 0.39 0.49
MCC 0.26 0.39

(3) Charge alphabet : (A) acidic and basic (Asp, Glu, Arg, His, Lys), (N) neutral (Ala, Ile, Leu,
Met, Phe, Pro, Trp, Val, Asn, Gln, Ser, Thr, Pro, Cys, Met)

Precision 0.59 0.69
Recall 0.39 0.49
MCC 0.26 0.39

(4) Hydrophobic alphabet : (H) hydrophobic (Ala, Ile, Leu, Met, Phe, Pro, Trp, Val), (P )
hydrophilic (Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Lys, Ser, Thr, Tyr)

Precision 0.44 0.51
Recall 0.74 0.77
MCC 0.19 0.30
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