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Abstract: Correct identification of proteins from peptide fragments is
important for proteomic analyses. Peptides are initially separated by
Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) before
Mass Spectrometry (MS) identification. At the present time, peptide fragment
retention (separation) time is not used as a useful scoring filter for identification
of the peptide fragments and their parent proteins. In the present paper,
we present a new web-based tool for the prediction of peptide fragment
retention times and its use in compiling a database of ~133,000 peptide
fragments computationally obtained by digestion with trypsin of 4,265
E. coli — K12 proteins. The retention calculation is based on the described
formulae and the fragments/protein identification was carried out using a
simple search-scoring algorithm.
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1 Introduction

Complex peptide samples (such as a tryptic digest of proteins) are typically separated by
RP-HPLC based on subtle differences in the overall hydrophobicity of the peptides.
By applying a mobile phase with an increasing organic co-solvent (typically a linear AB
gradient where Eluent A is aqueous trifluoroacetic acid (0.1-0.2% TFA) and Eluent B
is 0.1-0.2% TFA in acetonitrile) and a C8 or CI18 silica based matrix for the stationary
phase, the peptides can selectively partition between the stationary and mobile phase at
different rates depending on their overall hydrophobicity. The peptides are detected as
they elute from the column by Mass Spectrometry (MS) in the case of LC/MS or
LC/MS/MS. Mass spectrometers are used for accurate mass measurements based on
elemental compositions for a given peptide. ‘Retention time’ (defined as the time taken
by an individual component to move through the column, from the point of injection to
the detector) is a specific and unique parameter of each peptide fragment.

At the present time, although the retention time is recorded during the LC/MS
or LC/MS/MS run, the retention time of each fragment is not used in determining or
verifying the correct identification of the peptide fragment. This is because prediction of
the retention time of many peptide fragments has not been close enough to the observed
retention times. Many research groups are now actively investigating methods to predict
retention time behaviour for proteomic applications (Palmbald et al., 2002, 2004;
Petritis et al., 2003; Krokhin et al., 2004). The basic premise for prediction of peptide
retention time is the assumption that unless a peptide is subject to conformational
restraints, its chromatographic behaviour in RP-HPLC can be correlated with its amino
acid composition. Thus, the first requirement for prediction of peptide retention time is
to have a set of hydrophilicity/hydrophobicity coefficients for the 20 amino acids found
in proteins. The most systematic study for determining the contribution of individual
amino acid residues to RP-HPLC retention behaviour was carried out by Guo and
coworkers where amino acid substitutions were made in a model synthetic peptide,
Ac-Gly-X-X-(Leu);-(Lys),-amide (Guo et al., 1986a, 1986b). The advantage of this
approach is that the frequency of occurrence of each amino acid in the 20 synthetic
peptides is the same. This is not the case when a random collection of peptides are used
to calculate amino acid retention time coefficients. Amino acid coefficients generated
from observed RP-HPLC retention times of these peptides were used to show good
predictive accuracy (correlation coefficient of 0.98 and an average error of 1.29 min
using a linear gradient of 1% acetonitrile per min.) for a wide range of peptides
varying in size from 2-16 residues and composition (Guo et al., 1986b). Recently
Krokhin et al. (2004) introduced a predictive algorithm using the coefficients of
Guo et al. (1986a, 1986b) to predict retention times of 346 tryptic peptides in the 560 to
4,000 dalton mass range from a mixture of 17 protein digests. These authors noted that
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their predictions could be improved further if adjustments were made to the N-terminal
coefficients (containing a free N-terminal amino group). Their results suggested that
we should investigate the hydrophilicity/hydrophobicity of side-chains at the N and
C-termini of peptides while varying the functional end-groups at the termini. Thus,
we substituted all 20 naturally occurring amino acids at the termini (position X ) where
the functional end-groups at the N-terminus were N%acetyl-X- and N*amino-X and at
the C-terminus, -X-C*carboxyl and -X-C%amide. These coefficients were compared to
internal coefficients determined in the centre of the polypeptide chain. These results
clearly showed that if you are going to predict retention times of peptides the sum of the
retention coefficients (2.R.) must include internal coefficients and terminal coefficients
(Tripet et al., 2007). In this paper we present a new prediction method and a searchable
database to evaluate whether this unused parameter (retention time) can be successfully
used to improve the assignment of peptides in LC/MS or LC/MS/MS.

2 Methods

2.1 Graphical user interface

A web page was set up at the following http address: http://isl.cudenver.edu/
RetenMassPrediction/. The web page displays four tabbed windows. The ‘Main’ window
describes the purpose of the site for new users. The ‘Calculator’ window (Figure 1(A))
allows the user to calculate the predicted retention time of any entered sequence.
The ‘Fragment’ and ‘Protein’ windows (Figure 1(B) and (C)) allow the user to search the
E. coli database (described below) using a number of search query variables.

Figure 1 Retention time calculator, fragments search and the protein identifier

Retention Time Calculator

Clalculates the reversed-phase high performance liguid chromatography (RP-HPLC) retention times
(in minutes) for a user-entered peptide and protein sequence. The retention time calculator can also
cleave in-silico a protein sequence with the trypsin enzyme and compute the retention times of the
generated peptides. The teol also returns the theoretical masses of the generated fragments

Peptide Sequence:
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Gractient Delay Time: 0.0 Olodoacetic Acid O Tes ) Amide
Standard Time Correstion: [0.0 Olodoacetimide
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T-Intercept: 0.0
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Figure 1 Retention time calculator, fragments search and the protein identifier (continued)
Fragment DataBase
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2.2 Retention time calculation

Retention time predictions can be calculated for individual proteins or peptides entered
and defined by a user in the ‘Calculator’ window. Previously, investigators have been
using one set of side-chain coefficients for all positions in the peptide sequences.
To compare and contrast the predicted retention times of this older method with that of
our newer method, three different retention time predictions are output from the program.
The first of these ‘Internal Coefficients Only’ uses side-chain coefficients for all
20 amino acids derived experimentally from an internal region of a synthetic peptide.
These coefficients are used for all positions of a peptide sequence to predict the retention
time independent of amino acid position in sequence. The second type of prediction of
retention time, labelled “N-Term + Internal Coefficients”, predicts retention time using
two sets of experimentally derived coefficients, one set for the N-terminal amino acid
residue containing a N*-amino group and another set for the internal coefficients which
are used for all the remaining amino acid residues in the sequence. The third type of
prediction of retention time, labelled “N-Term + C-Term + internal coefficients” predicts
retention time using three sets of experimentally derived coefficients, one set for the
N-terminal amino acid residue containing the N®-amino group, one set for the C-terminal
amino acid residue containing the C%carboxyl group and the other for the internal
coefficients which are used for all the remaining amino acid residues in the sequence.
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We have shown that the terminal amino acid side-chain coefficients with varying
end-groups (N%acetyl vs. amino or C*-carboxyl vs. amide) vary dramatically from each
other. For example, terminal coefficients when compared to internal coefficients can vary
as much as a factor of two (Tripet et al., 2007).

User input determines which retention time values to apply to each amino acid
in a given peptide. A user enters a peptide/protein sequence and selects the type of
processing — ‘No Cutting” and ‘Trypsin’. An alteration is made to this if the user selects
‘Yes’ for the ‘Acetylated N-Terminal’ question. In this case, acetylated retention
time coefficients are used instead of the NH, retention time coefficients. Similarly, the
C-terminal amino acid is processed according to fragment position and whether the user
indicates the C-terminal amino acid contains a carboxyl or -amide group. The user can
make the appropriate selection to increase the accuracy of the prediction when cysteine is
treated with iodoacetamide or iodoacetic acid. We plan to incorporate a time correction
when the peptide chain contains more than ten residues since chain length affects
retention time predictions (Mant et al., 1989).

Table 1 shows the three sets of coefficients used principally in this study to
predict peptide retention time of tryptic peptides, which contain N*-amino groups and
C%carboxyl groups.

Table 1 Retention time coefficients used in this study

C-terminal* (-G-X-OH) N-terminal® (NH,-X-G-) Internal’ (-G-X-G-)

Amino acid Atr Gly (min) Atg Gly (min) Atg Gly (min)
Trp 40.0 27.9 22.9
Phe 37.0 22.3 20.6
Leu 322 15.8 16.8
Ile 30.5 14.2 15.3
Met 21.2 11.8 11.2
Tyr 18.9 12.8 8.2
Val 20.0 8.1 8.6
Pro 12.2 4.5 3.6
Cys 10.8 4.3 6.0
Ala 5.0 1.5 2.8
Glu 2.1 1.4 2.3
Thr 3.6 1.9 1.5
Arg 2.5 3.0 -1.1
Asp 1.4 1.4 1.5
Gln 0.0 1.4 0.8
Gly 0.0 0.0 0.0
His 0.0 1.4 2.4
Ser -0.8 0.0 0.6
Lys -1.0 1.3 -23
Asn -23 0.0 -0.5

*The peptides used to generate these coefficients and their design are discussed in detail
in reference (Tripet et al., 2007).
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In addition to the above user-entered values, the retention time prediction algorithm is
based on three HPLC variables that allow the user to select settings specific to their
instrumentation. The ‘Gradient Rate’ (GR) which is the rate of acetonitrile/minute during
a linear gradient, the ‘Gradient Correction Factor’ (¢.), which includes the elapsed time
from when the HPLC pump starts to deliver the gradient, for the gradient to travel
through the instrument to the top of the column (instrument dependent), through the
column (column dependent) and the beginning of gradient linearity at the detector
(¢. is also dependent on the specific flow rate used) and the “Peptide Standard Correction
time” (¢,) which allows the researcher to use any HPLC instrumentation, reversed-phase
columns of any length and diameter, reversed-phase packing of any n-alkyl chain length
and ligand density, and counter ion concentration differences from those which the
retention time coefficients were derived. The predicted retention time (7) for any linear
gradient rate using retention time coefficients determined at a gradient rate of 0.25%
acetonitrile/min is given by the equation:

7% =3 R (0.25/GR)+1, +1,

where 2R, is the sum of the amino acid coefficients in the peptide. The peptide standard
used in this study has the sequence GA G A GV G L G G with an N*-amino group and a
C*carboxyl group.

t, =t = > R™(0.25/GR) -1,

s

obs

where 27 is the observed retention time of the standard peptide and ¥R, is the sum of
the retention time coefficients for the peptide standard.

2.3 Database

The database created for testing was populated with the protein sequences from
E. coli-K12. The E. coli-K12 proteome was chosen since it is one of the most studied
proteomes and the genome is well mapped. 4,265 protein sequences were gathered
from the University of Wisconsin at Madison ASAP database. Trypsin, a proteolytic
enzyme was considered. Computationally a tryptic digest cleaves after lysine and
arginine residues giving 138,291 total fragments of different sizes. Protein sequences are
input in text file format to the digest engine. Any number of proteins can be digested with
the prescribed format, where each protein is stored in a dynamic array. The name and
sequence of the protein are stored in ‘protein’ object (objects are represented within
single quotes throughout the paper). Once the complete text is read into memory, a tryptic
digest is carried out. Only a tryptic digest was used at the time of writing this paper.
Other proteolytic enzymes with different cleavage specificity may be considered for
future enhancement of the project.

For efficient use of calculation time, during the digest process the data about each
fragment is also calculated. Each ‘fragment’ object contains sequence, mass, predicted
retention time, net charge, chain length, fragment position and protein name. To obtain
the calculation time, the number of individual amino acids from the data set (r) is used
rather than the number of fragments formed by the digest. This is simply due to fragment
numbers being variable on the digest method and protein/peptide composition, whereas
the amino acid count is fixed. Since we read each amino acid residue in the protein
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sequence, cleave the sequence as we read, and sum up the fragment retention time up to
each cleavage site, the calculation time is O(n).

Since mass spectrometers used routinely for LC/MS or LC/MS/MS analysis are only
able to mass peptide fragments within the mass range 150—4000 Da. and peptide masses
in the range 200-500 Da were considered of little informational value, only peptide
fragments within the mass range 500—4000 Da were retained in the database.

2.4 Database queries

Database queries are carried out in the ‘Fragment” window (Figure 1(C)). The database
stores all the fragment information gathered from E. coli-K12 proteome trypsin digest.
By storing information about each fragment like mass, predicted retention time and
the protein it belongs to, complex queries can be constructed for different analysis.
For example, one can query by mass, predicted retention time, mass/retention time and
protein prediction. Upon querying, fragment information from the entire proteome is
listed in table format along with the parent chain (original protein sequence).

Since the database, calculator and protein identifier are on the same site, it is easy
enough for the user to copy the protein into the calculator and digest it with settings for
his/her instrument. Giving the set of masses and retention times with or without error
corrections (Am, Art, see description below), protein prediction for the fragments can be
carried out easily (Figure 1).

2.5 Data mining of fragments

Data mining of fragments is carried out in the ‘Protein” window, and is based on mass
+Am and retention time +Art (see below for a description of Am and Art). If no value is
entered for Art and Am then they are set to default values of 4 and 0.4, respectively.
The default A values have been determined at the Hodges Laboratory. Peptide/Fragment
hits help in identifying their respective Proteins, which are stored in a dynamic array of
‘Protein Identified’ object. It stores Protein ID, Sequence, Hit score, Fragments hit, the
Observed and Predicted masses and retention time, when the prediction is run. Each mass
and retention time is seen to have number of peptide hits. The protein to which
the peptide belongs is given a score as it is identified. The scoring algorithm assigns
the identified protein a score of one for every hit when mass and retention time match.
The algorithm adds a score of bonus one when the protein identified is already present in
the identified list, as it was seen to have occurred a number of times. Ambiguity of the
peptides is further reduced by considering the protein only once and giving the bonus
points. For example, a peptide maybe repeatedly found in a protein; in such case the
protein is considered only once. The input is given an option to enter manually all
the LC/MS masses and retention with charges for each or upload a file. Mascot Generic
Format (MGF) having all the input data. The actual mass and retention time is calculated
based on the formula including the charges. The actual mass calculated by the formula
with charge into consideration will be displayed and the prediction is run with the
Am, mass correction and Art, retention time correction. This predicts the protein for
the given set of values.
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2.6 Am and Art

Since it is well known that different mass spectrometers will have different levels
of accuracy for obtaining the mass of peptide fragments, and different HPLC
chromatography units will have run to run retention time variation, it was important to
also include into the program variance values (error values) for the mass and the retention
time values (denoted +Am and *Art, respectively). This then allows one to search for
a mass range for the fragment mass to match to and a corresponding retention time range.

2.7 Protein identification

Protein identification is carried out by matching different masses and respective retention
times of different peptide/fragments in the database. ‘Peptide’ object is created for the
initial given mass and retention time. For each mass and retention time the protein hits
are compared with the existing proteins in the ‘Protein Identified’ object and the scoring
algorithm scores on the number of times a protein was identified. This process is
continued for all the given masses and retention time (with £Am and *Art, if mentioned
otherwise with the default values) that the LC/MS specifies when a sample is run.
The highest scored proteins are displayed as the predicted proteins along with
their ‘Hit scores’, ‘Hit fragments’ for the protein, ‘Observed and Predicted masses’,
‘Retention times’ and ‘Protein sequence’.

3 Analysis

3.1 Predicted retention time vs. observed retention time

To wvalidate the program we randomly selected four tryptic peptides from one
E. coli protein varying in length from 7-11 residues as shown below:

Pl LSDEELK

P2 SELVSNELTK
P3 YEVISTLSK

P4 ILAQSIEVYQR.

The retention times of these four peptides were predicted at three different gradient rates
(0.25%, 0.50% and 1.0% acetonitrile/min on two columns containing different n-alkyl
chain length packings (C8 and C18) and compared to the observed retention times
(Table 2). This limited analysis does show that the error in prediction is linearly related to
the gradient rate. At 0.25% acetonitrile/min the errors in prediction are proportional but
greater than at 1% acetonitrile/min. The only reason for using shallow gradients is to
enhance peak capacity and resolution for digests containing large numbers of peptides.
Nevertheless, this limited study suggests errors of +6 min, +4 min and *2 min for
gradient rates 0.25%, 0.5% and 1%, respectively.
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Table 2 Predicted and observed retention times of four peptides

Gradient rate

0.25% 0.5% 1%
Column  Peptide  Pred.  Obs. A Pred.  Obs. A Pred.  Obs. A
P1 31.8 307 +1.1 21.6  21.1 +0.5 149 14.6 +0.3
C8 P2 409 47.6 6.7 26.1 295 34 172 188 -1.6
P3 51.0 56.6 -5.6 312 341 -2.9 19.7 212 -1.5
P4 66.1 673 -1.2 387 392 0.5 234 236 0.2
A =37 =18 A =09
P1 46.8 4438 +2.0 29.0 277 +1.3 186 177 +0.9
C18 P2 559  60.7 —4.8 335 356 2.1 208  21.6 0.8
P3 66.0  69.0 -3.0 38.6 3938 -1.2 234 238 —0.4
P4 81.1 759 +5.2 46.1  43.0 +3.1 272 252 +2.0
A =38 A =19 A =1.0

?Av is the absolute average error in min.

Analysis of the predicted retention time vs. observed retention time of 108 tryptic peptide
fragments from ten proteins shows that there is a strong correlation (0.94) between
predicted and observed times (Figure 2(A)). Further, plotting of the differences between
predicted and observed retention times (about the mean) shows that approximately
80% of the peptides are within the range of £10 min (at this very shallow gradient of
0.25% acetonitrile/min) and 50% are within the range of 6 (Figure 2(B)). This suggests
that there are other variables such as chain length, clustering of hydrophobes and
conformational effects, which still need to be included in the retention time equation.
Current experimentation is focusing on determining and/or accounting for these
variables. Once the predicted retention times are within the targeted error range, the
database will be re-calculated with these corrected values/changes.

Figure 2 (A) A correlation between the observed and predicted retention time values in minutes
of 108 tryptic peptide fragments and (B) the differences between predicted and
observed values in minutes at a gradient rate of 0.25% acetonitrile/min
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Figure 2 (A) A correlation between the observed and predicted retention time values in minutes
of 108 tryptic peptide fragments and (B) the differences between predicted and
observed values in minutes at a gradient rate of 0.25% acetonitrile/min (continued)
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3.2 Database analysis

Plotting the frequency of peptide fragments in the database showed that the greatest
numbers of fragments were observed at the lower mass range (Figure 3). Further, the
number of fragments at a given fragment size decreases rapidly with increasing
fragment size. For example, there are 9,393 fragments at five residues, 2,777 fragments at
15 residues and 655 fragments at 30 residues.

Figure 3 Number of fragments at each mass in the 5004000 range. The chart shows ambiguous
peptides with mass range 700—705

Mass Frequency Mass Chainl Name Chainl Chain2 Name ChainZ

700 MG1635 m36 10.24 PETAQR | MGL655 m56 347827 | QPEATR
200 700 | MG1635_mS6_1062.21 | AAEAAIR | MG1635 m56 1138527 | AAIEAAR
180 701 MG1655 m36 583 | NAGALTR | MG1635 m56 11729.34 | NTLAGAR

7m MG1655_m36 3708 | AELLTR | MGI1635_m36 7003111 | LETALR
701 MG1655_m36 3708 | AELLTR | MG1635 mi6 826348 | LAETLR
702 MG1655_m36 10.27 | LDTAGAR | MG1655_m36 338095 | LAATGDR
702 MG1655_mi6 6087 | ASELQR | DMGIE5S m56 10002 | SALQER
702 M1655_m36 6087 | ASELQR | MG1655 m56 161339 | ALQSER
702 MO1635_m36 6087 | ASELQR | MCI635 m36 279317 | LAQESR
02z MG1655_m36 608.7 | ASELQR | MG1635 m56 1136220 | SEQLAR
703 MG1655_m56 91.41 | DELTAR | MGIASS m56 9061.3 | LTDAER
704 | MGI653 m36 19894 | NEADEE | MGI655 m56 230620 | ENADEK
705 | MG1655_m36 78948 | TWDER | MG1635 m56 124042 | DWETR
703 | MO1655_m36 78948 | TWDER | MO1655 mi6 1326225 | DTWER
705 | MG1655 m56 3451.16 [ EIAAFR | MGL655 m56 903829 | AFEIAR

160
140

Number of Fragments
=
=

500
G&0
860
040
270
400
580
760
a40
2120
2300
2480
2660
2840
3020
3200
3380
3560
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3920

Mass

The number of fragments per mass unit was also analysed. The number of fragments
within one mass unit is within the range of 80—160 Da between masses 500—1000 Da.
(Figure 4) indicating a large number of possibilities for a single mass.
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Figure 4 Number of fragments for each peptide length. The chart shows the retention times
of sequences and the ambiguity information for the peptide fragments of the same
mass and composition but different sequence (shaded)

R TimeRange Sequence Nelchwge  RetentionTime | Sequence Length Mass
Fragment Size Frequency 10 to 0 NNNGR 1 -1 5 57326192
-10to 0 NSSNSNR 1 - 7 777.33635
1010 0 GSNNR 1 035 5 546,15102
0.1_te_10 DNEEDR E 9.2 6 776.20366
01 te 10 | SDDDSDK 3 907 7 780.27734
0.1_to 10 DDEER 3 98 5 662.25073
0.1_to_10 EEDDR 3 98 5 662.25073
0.1_to_10 EGDNGQ -2 47 6 612.22452
01_to_10 DDDGSR a 57 6 66324592
0.1_to_10 SDADGG 2 65 I3 5201763
0.1_to_10 NDDER 2 64 5 647.25107
0.1_to_10 DGDNER 2 64 I3 0427253
0.1_to_10 ESDNDR E] 64 6 7342831
0.1_to_10 DDEGR 2 69 3 90,2296
0.1_to_10 GDEDR 2 6.9 5 90,2296
0.1_to_10 DSDER 2 69 3 62024017
_ 01to 10 | GDNEENR El 7 7 3233111
0.1_to_10 DDDNK 2 7.4 B 60322027
18 15 22 29 36 43 A0 57 B4 71 78 85 92 99| 0t 10 QDEDR 2 7.5 3 66126672
Fragment Size 01 to 10 | SGQAQDD 2 75 7 7192722
0.1 to 10 EDENR 2 16 5 66126672

Additionally, since the peptide retention time search variable will depend on the
amino acid composition of the peptide fragments, we also examined the frequency
of peptides with the same compositions. Interestingly, in the entire genome there were
only 371 specific cases of peptide fragment sequences having the same amino acid
composition (mass 500 or greater). The total sum of peptides was 1016 (only 0.74%
of the proteome studied). Thus, peptide retention times if predicted accurately
enough can indeed be useful search criteria for peptide fragment identification.
In another analysis, it was noted that this ambiguity decreased as the number of residues
in the peptide increased. Specifically, the ratios of the number of residues to the number
of cases with the same amino acid composition were found to be: 5/197, 6/96, 7/44, 8/22,
9/8, 11/2, 17/1 and 23/1, fragment length/number of cases. Thus, the longer the sequence
the lower the number of cases of peptide fragments having the same amino acid
composition. At peptide lengths of seven residues or greater the number of cases
is only 78 and the total sum of peptides reduces dramatically to 164 (only 0.12% of the
proteome).

3.3 Added value of retention time data

To evaluate the degree to which the retention time data can reduce the complexity
of proteins identified (No. of hits), we randomly selected a single mass (e.g., 2001 Da)
and a retention time (110 min) and varied the Ar¢t window size from +20 min to +1 min.
The number of proteins identified from a single fragment mass and retention time
decreased from 30 to 1 as the Art window size was reduced (Table 3). At a Art size
of £6 min (our observed retention time variance) the number of proteins identified was
reduced 66% (e.g., 30—12 possibilities). Thus, retention time data can indeed be useful in
reducing the possibilities in identifying a given protein.
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Table 3 Effect of ARt on the number of proteins identified from a single mass fragment

Mass 2001 Rt Mass 1001 Rt Mass 1001 Rt Mass 501 Rt

110 min no. 70 min no. 60 min no. 30 min no.
A mass A R proteins ID proteins ID proteins ID proteins ID
1 20 30 62 86 42
1 10 17 28 51 30
1 8 14 22 46 28
1 6 12 13 37 25
1 10 7 26 13
1 2 3 4 14
1 1 1 2 5

*Gradient rate 0.25% acetonitrile/min.

°With a AR? of £6 min the average reduction in proteins identified was 66% of the total
found at +20 min.

3.4 Mining with peptide fragments P1—P4

To test whether the scoring algorithm can accurately identify the correct protein from
the E. coli database, we mined the database using the four peptide fragments P1-P4
(Figure 5). Using the four peptides and Arz= 6 min, the correct protein was identified
with the highest hit score of seven. Increasing the Arz value to 20 min (largely excluding
retention time selection) also showed the correct protein identified with a hit score of
seven. Thus, a large number of peptide fragment masses (>4) alone are sufficient to
identify the correct protein largely independent of retention time. However, when the
sample size is reduced to two peptide fragment masses (e.g., P1 and P3), the value of the
added retention time data is observed. For example, as the retention time error is reduced
from 20 min, £10 min, 8 min, to £6 min at a gradient rate of 0.25% acetonitrile/min
the number of proteins identified having a hit score of three was 4, 3, 2 and 1 protein,
respectively.

Further, sampling of different Art sizes indicates that a useful working
value appears to be between 6 min and 8 min at this very shallow gradient rate
of 0.25% acetonitrile/min. In some cases this may exclude some data from scoring but the
added score given to scoring more reliable data will more than offset the loss in data.

4 Discussion

The work presented in this paper demonstrates that protein identification from peptide
fragments can be enhanced by utilising both mass and retention time data. Despite the
seemingly large retention time delta value (£6 min) presently used the addition of this
data is still sufficient to reduce the total number of protein possibilities by at least 50%
based on two fragment identification.

With a larger number of fragments, the mass values alone are sufficient to discern
the correct protein and thus the added retention time data does not appear to aid in the
prediction.
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Figure 5 Display of the proteins identified and fragment hits identified when searching peptides
fragments P1-P4

Mdass Delta 1
Retention Time Delta 5
Gradient Delay Time 9.5
Mass Rt (minutes)
Standard Time Correction|-1 9323 363
® Manual Input O File Input 11184 522
1038.4 605
MSn Rt (minutes) Charge 13187 614
8333 44.8 1 Edit Delete
1119.4 60.7 1 Edit Delete
103894 69.0 1 Edit Delete
13197 7538 1 Edit Delete
Add
Total fragments considered =4
Protein ID 5h Sequence
Score

MG1655_m36_343. |7 MLIELLTEVEFGSRNDRTLREMRE VVINIITAMEPEMEK LSDEELE GE TAEFR ARLEK GEVLENLIPEAF AVVE]
MG1655_m36_3800. (3 MDKLLERFLNYVSLDTQSE AGVRQVPSTEGOWKLLHLLKEQLEEMGLINVTLEEK GTLMATLP ANVPGDIP.
MG1655_m56_10087. (1 MSSHPTVTQONTPLADDTTLMSTIDLQSYITHANDTEV QVSGYTLQELQGQPHNIMVEHPDIMPE A AF ADM
MG1655 m56_10261.(1 MMTRQASME GFPTAHIFHPSIPPMHAVVININHNENID YWTVERKF AETWVSTHNDWVNEITY SISNELRRVLEATTA]
MG1655_m36_10363. (1 METLIATSEWLAK QHVVIWCVQQEGELWCANAFYLFDAQEVAFYIL TEEKTRHAQMSGPQAAVAGTVNG
MG1655_m56_10547. (1 MSQNVYQFIDLQRVDPPEEPLKIRKIEFVEIYEPFSEGQAR AQADRCLSCGNP Y CEWE CPVHNYIPNWLEL
MG1655_m56_1076. |1 MPELGMOQSIERREQLIDATLEATNEVGMHD ATIAQIARR AGVSTGISHYFRDENGLLEATMEDITSQLRDAVL]
MG1655_m56_10964. |1 MQARVEWVEGLTFLGES ASGHQILMD GNSGDE APSPMEMVIMA AGGCSATDVVSILOE GRQDVVDCEVE

R R VEAATTITUTTT ATAT 4 T ATUATITAT TEAT WTA L AT ATNT AT A TTAT AT 4T 6T T b AT A TP T 8 RTATTTT AT 0T

Observed Calculated Ol REDyed

Protein ID Hit Fragment ID Ret. Fragment Chain

Score Mass Mass

Time

MG1655_m56_343. |7 MG1655_m56_343.10 8323 832417790000 |36.3 38300000000 [LEDEELK
MMG1655_m56_343. |7 MG1655_m56_343.55 1118.4 1118.581200000(52.2 47.400000000| SELVSNELTE
MG1655_m56 343 |7 MG1655_m56 343106 |1038.4 1038.559710000(60.5 57500000000 | YEVISTLSE
MG1655_m56_343. |7 MG1655_m56_343.54 1318.7 1218.724480000|67.4 72.600000000 (ILAQSIEVYCOR
MG1655_m56_3800. |3 MG1655_m56_3800.11 |8323 831433770000 |36.3 40.000000000 |TLLGADDE
MG1655_m56_3800. |3 MG1655_m56_3800.33 [1318.7 1318.622710000|67.4 65.800000000 | HEFVILEGMEK
MG1655_m56_10087.|1 MG1655_m56_10087.43 |8323 831433770000 |363 38700000000 (LIDASADE
MG1655_m56_10261.|1 MG1655_m56_10261.4 |1038.4 1037.518180000|60.5 57.000000000 (NIDYWTVE
MG1655_m56_10363. |1 MG1655_m56_10363.11 [1118.4 1117.525100000|52.2 46 600000000 | LEGEESDLAR
MG1655_m56_10547. |1 MMG1655_m56_10547.32 [1038.4 1037.436400000 | 60.5 56.300000000 | QLMGFGETE.

Finally, in order to fully asses the benefits of protein identification based on mass and
retention time values, we will need to create more complicated E. coli proteome samples
which are presently in progress.
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5 Conclusions

A database of tryptic fragments of the E. coli proteome with masses in the range of
500—4000 was generated. We have shown that with a minimum of two observed masses
(£1 mass unit) and retention time (£6 min at a gradient rate of 0.25% acetonotrile/min)
a single protein can be identified with high probability.
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