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Abstract: Correct identification of proteins from peptide fragments is 
important for proteomic analyses. Peptides are initially separated by  
Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) before 
Mass Spectrometry (MS) identification. At the present time, peptide fragment 
retention (separation) time is not used as a useful scoring filter for identification 
of the peptide fragments and their parent proteins. In the present paper,  
we present a new web-based tool for the prediction of peptide fragment 
retention times and its use in compiling a database of ~133,000 peptide 
fragments computationally obtained by digestion with trypsin of 4,265  
E. coli – K12 proteins. The retention calculation is based on the described 
formulae and the fragments/protein identification was carried out using a 
simple search-scoring algorithm. 
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1 Introduction 

Complex peptide samples (such as a tryptic digest of proteins) are typically separated by 
RP-HPLC based on subtle differences in the overall hydrophobicity of the peptides.  
By applying a mobile phase with an increasing organic co-solvent (typically a linear AB 
gradient where Eluent A is aqueous trifluoroacetic acid (0.1–0.2% TFA) and Eluent B  
is 0.1–0.2% TFA in acetonitrile) and a C8 or C18 silica based matrix for the stationary 
phase, the peptides can selectively partition between the stationary and mobile phase at 
different rates depending on their overall hydrophobicity. The peptides are detected as 
they elute from the column by Mass Spectrometry (MS) in the case of LC/MS or 
LC/MS/MS. Mass spectrometers are used for accurate mass measurements based on 
elemental compositions for a given peptide. ‘Retention time’ (defined as the time taken 
by an individual component to move through the column, from the point of injection to 
the detector) is a specific and unique parameter of each peptide fragment. 

At the present time, although the retention time is recorded during the LC/MS  
or LC/MS/MS run, the retention time of each fragment is not used in determining or 
verifying the correct identification of the peptide fragment. This is because prediction of 
the retention time of many peptide fragments has not been close enough to the observed 
retention times. Many research groups are now actively investigating methods to predict 
retention time behaviour for proteomic applications (Palmbald et al., 2002, 2004;  
Petritis et al., 2003; Krokhin et al., 2004). The basic premise for prediction of peptide 
retention time is the assumption that unless a peptide is subject to conformational 
restraints, its chromatographic behaviour in RP-HPLC can be correlated with its amino 
acid composition. Thus, the first requirement for prediction of peptide retention time is  
to have a set of hydrophilicity/hydrophobicity coefficients for the 20 amino acids found 
in proteins. The most systematic study for determining the contribution of individual 
amino acid residues to RP-HPLC retention behaviour was carried out by Guo and 
coworkers where amino acid substitutions were made in a model synthetic peptide,  
Ac-Gly-X-X-(Leu)3-(Lys)2-amide (Guo et al., 1986a, 1986b). The advantage of this 
approach is that the frequency of occurrence of each amino acid in the 20 synthetic 
peptides is the same. This is not the case when a random collection of peptides are used 
to calculate amino acid retention time coefficients. Amino acid coefficients generated 
from observed RP-HPLC retention times of these peptides were used to show good 
predictive accuracy (correlation coefficient of 0.98 and an average error of 1.29 min 
using a linear gradient of 1% acetonitrile per min.) for a wide range of peptides  
varying in size from 2–16 residues and composition (Guo et al., 1986b). Recently 
Krokhin et al. (2004) introduced a predictive algorithm using the coefficients of  
Guo et al. (1986a, 1986b) to predict retention times of 346 tryptic peptides in the 560 to 
4,000 dalton mass range from a mixture of 17 protein digests. These authors noted that 
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their predictions could be improved further if adjustments were made to the N-terminal 
coefficients (containing a free N-terminal amino group). Their results suggested that  
we should investigate the hydrophilicity/hydrophobicity of side-chains at the N and  
C-termini of peptides while varying the functional end-groups at the termini. Thus,  
we substituted all 20 naturally occurring amino acids at the termini (position X ) where 
the functional end-groups at the N-terminus were Nα-acetyl-X- and Nα-amino-X and at 
the C-terminus, -X-Cα-carboxyl and -X-Cα-amide. These coefficients were compared to 
internal coefficients determined in the centre of the polypeptide chain. These results 
clearly showed that if you are going to predict retention times of peptides the sum of the 
retention coefficients (∑Rc) must include internal coefficients and terminal coefficients 
(Tripet et al., 2007). In this paper we present a new prediction method and a searchable 
database to evaluate whether this unused parameter (retention time) can be successfully 
used to improve the assignment of peptides in LC/MS or LC/MS/MS. 

2 Methods 

2.1 Graphical user interface 

A web page was set up at the following http address: http://isl.cudenver.edu/ 
RetenMassPrediction/. The web page displays four tabbed windows. The ‘Main’ window 
describes the purpose of the site for new users. The ‘Calculator’ window (Figure 1(A)) 
allows the user to calculate the predicted retention time of any entered sequence.  
The ‘Fragment’ and ‘Protein’ windows (Figure 1(B) and (C)) allow the user to search the  
E. coli database (described below) using a number of search query variables. 

Figure 1 Retention time calculator, fragments search and the protein identifier 
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Figure 1 Retention time calculator, fragments search and the protein identifier (continued) 

 
(B) 

 
(C) 

2.2 Retention time calculation 

Retention time predictions can be calculated for individual proteins or peptides entered 
and defined by a user in the ‘Calculator’ window. Previously, investigators have been 
using one set of side-chain coefficients for all positions in the peptide sequences.  
To compare and contrast the predicted retention times of this older method with that of 
our newer method, three different retention time predictions are output from the program. 
The first of these ‘Internal Coefficients Only’ uses side-chain coefficients for all  
20 amino acids derived experimentally from an internal region of a synthetic peptide. 
These coefficients are used for all positions of a peptide sequence to predict the retention 
time independent of amino acid position in sequence. The second type of prediction of 
retention time, labelled “N-Term + Internal Coefficients”, predicts retention time using 
two sets of experimentally derived coefficients, one set for the N-terminal amino acid 
residue containing a Nα-amino group and another set for the internal coefficients which 
are used for all the remaining amino acid residues in the sequence. The third type of 
prediction of retention time, labelled “N-Term + C-Term + internal coefficients” predicts 
retention time using three sets of experimentally derived coefficients, one set for the  
N-terminal amino acid residue containing the Nα-amino group, one set for the C-terminal 
amino acid residue containing the Cα-carboxyl group and the other for the internal 
coefficients which are used for all the remaining amino acid residues in the sequence.  
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We have shown that the terminal amino acid side-chain coefficients with varying  
end-groups (Nα-acetyl vs. amino or Cα-carboxyl vs. amide) vary dramatically from each 
other. For example, terminal coefficients when compared to internal coefficients can vary 
as much as a factor of two (Tripet et al., 2007). 

User input determines which retention time values to apply to each amino acid  
in a given peptide. A user enters a peptide/protein sequence and selects the type of  
processing – ‘No Cutting’ and ‘Trypsin’. An alteration is made to this if the user selects 
‘Yes’ for the ‘Acetylated N-Terminal’ question. In this case, acetylated retention  
time coefficients are used instead of the NH2 retention time coefficients. Similarly, the  
C-terminal amino acid is processed according to fragment position and whether the user 
indicates the C-terminal amino acid contains a carboxyl or -amide group. The user can 
make the appropriate selection to increase the accuracy of the prediction when cysteine is 
treated with iodoacetamide or iodoacetic acid. We plan to incorporate a time correction 
when the peptide chain contains more than ten residues since chain length affects 
retention time predictions (Mant et al., 1989). 

Table 1 shows the three sets of coefficients used principally in this study to  
predict peptide retention time of tryptic peptides, which contain Nα-amino groups and  
Cα-carboxyl groups. 

Table 1 Retention time coefficients used in this study 

Amino acid 
C-terminala (-G-X-OH) 

∆tR Gly (min) 
N-terminala (NH2-X-G-) 

∆tR Gly (min) 
Internala (-G-X-G-) 

∆tR Gly (min) 
Trp 40.0 27.9 22.9 
Phe 37.0 22.3 20.6 
Leu 32.2 15.8 16.8 
Ile 30.5 14.2 15.3 
Met 21.2 11.8 11.2 
Tyr 18.9 12.8 8.2 
Val 20.0 8.1 8.6 
Pro 12.2 4.5 3.6 
Cys 10.8 4.3 6.0 
Ala 5.0 1.5 2.8 
Glu 2.1 1.4 2.3 

Thr 3.6 1.9 1.5 
Arg 2.5 3.0 –1.1 
Asp 1.4 1.4 1.5 
Gln 0.0 1.4 0.8 
Gly 0.0 0.0 0.0 
His 0.0 1.4 –2.4 
Ser –0.8 0.0 0.6 
Lys –1.0 1.3 –2.3 
Asn –2.3 0.0 –0.5 

aThe peptides used to generate these coefficients and their design are discussed in detail 
in reference (Tripet et al., 2007). 
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In addition to the above user-entered values, the retention time prediction algorithm is 
based on three HPLC variables that allow the user to select settings specific to their 
instrumentation. The ‘Gradient Rate’ (GR) which is the rate of acetonitrile/minute during 
a linear gradient, the ‘Gradient Correction Factor’ (tc), which includes the elapsed time 
from when the HPLC pump starts to deliver the gradient, for the gradient to travel 
through the instrument to the top of the column (instrument dependent), through the 
column (column dependent) and the beginning of gradient linearity at the detector  
(tc is also dependent on the specific flow rate used) and the “Peptide Standard Correction 
time” (ts) which allows the researcher to use any HPLC instrumentation, reversed-phase 
columns of any length and diameter, reversed-phase packing of any n-alkyl chain length 
and ligand density, and counter ion concentration differences from those which the 
retention time coefficients were derived. The predicted retention time (τ) for any linear 
gradient rate using retention time coefficients determined at a gradient rate of 0.25% 
acetonitrile/min is given by the equation: 

GR (0.25 / GR)c c sR t tτ = + +∑  

where ∑Rc is the sum of the amino acid coefficients in the peptide. The peptide standard 
used in this study has the sequence G A G A G V G L G G with an Nα-amino group and a  
Cα-carboxyl group. 

stdobs
std (0.25 / GR)s c ct t R t= − −∑  

where obs
stdt  is the observed retention time of the standard peptide and ∑Rc

std is the sum of 
the retention time coefficients for the peptide standard. 

2.3 Database 

The database created for testing was populated with the protein sequences from  
E. coli-K12. The E. coli-K12 proteome was chosen since it is one of the most studied 
proteomes and the genome is well mapped. 4,265 protein sequences were gathered  
from the University of Wisconsin at Madison ASAP database. Trypsin, a proteolytic 
enzyme was considered. Computationally a tryptic digest cleaves after lysine and 
arginine residues giving 138,291 total fragments of different sizes. Protein sequences are 
input in text file format to the digest engine. Any number of proteins can be digested with 
the prescribed format, where each protein is stored in a dynamic array. The name and 
sequence of the protein are stored in ‘protein’ object (objects are represented within 
single quotes throughout the paper). Once the complete text is read into memory, a tryptic 
digest is carried out. Only a tryptic digest was used at the time of writing this paper. 
Other proteolytic enzymes with different cleavage specificity may be considered for 
future enhancement of the project. 

For efficient use of calculation time, during the digest process the data about each 
fragment is also calculated. Each ‘fragment’ object contains sequence, mass, predicted 
retention time, net charge, chain length, fragment position and protein name. To obtain 
the calculation time, the number of individual amino acids from the data set (n) is used 
rather than the number of fragments formed by the digest. This is simply due to fragment 
numbers being variable on the digest method and protein/peptide composition, whereas 
the amino acid count is fixed. Since we read each amino acid residue in the protein 
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sequence, cleave the sequence as we read, and sum up the fragment retention time up to 
each cleavage site, the calculation time is O(n). 

Since mass spectrometers used routinely for LC/MS or LC/MS/MS analysis are only 
able to mass peptide fragments within the mass range 150–4000 Da. and peptide masses 
in the range 200–500 Da were considered of little informational value, only peptide 
fragments within the mass range 500–4000 Da were retained in the database. 

2.4 Database queries 

Database queries are carried out in the ‘Fragment’ window (Figure 1(C)). The database 
stores all the fragment information gathered from E. coli-K12 proteome trypsin digest.  
By storing information about each fragment like mass, predicted retention time and  
the protein it belongs to, complex queries can be constructed for different analysis.  
For example, one can query by mass, predicted retention time, mass/retention time and 
protein prediction. Upon querying, fragment information from the entire proteome is 
listed in table format along with the parent chain (original protein sequence). 

Since the database, calculator and protein identifier are on the same site, it is easy 
enough for the user to copy the protein into the calculator and digest it with settings for 
his/her instrument. Giving the set of masses and retention times with or without error 
corrections (∆m, ∆rt, see description below), protein prediction for the fragments can be 
carried out easily (Figure 1). 

2.5 Data mining of  fragments 

Data mining of fragments is carried out in the ‘Protein’ window, and is based on mass 
±∆m and retention time ±∆rt (see below for a description of ∆m and ∆rt). If no value is 
entered for ∆rt and ∆m then they are set to default values of 4 and 0.4, respectively.  
The default ∆ values have been determined at the Hodges Laboratory. Peptide/Fragment 
hits help in identifying their respective Proteins, which are stored in a dynamic array of 
‘Protein Identified’ object. It stores Protein ID, Sequence, Hit score, Fragments hit, the 
Observed and Predicted masses and retention time, when the prediction is run. Each mass 
and retention time is seen to have number of peptide hits. The protein to which  
the peptide belongs is given a score as it is identified. The scoring algorithm assigns  
the identified protein a score of one for every hit when mass and retention time match.  
The algorithm adds a score of bonus one when the protein identified is already present in 
the identified list, as it was seen to have occurred a number of times. Ambiguity of the 
peptides is further reduced by considering the protein only once and giving the bonus 
points. For example, a peptide maybe repeatedly found in a protein; in such case the 
protein is considered only once. The input is given an option to enter manually all  
the LC/MS masses and retention with charges for each or upload a file. Mascot Generic 
Format (MGF) having all the input data. The actual mass and retention time is calculated 
based on the formula including the charges. The actual mass calculated by the formula 
with charge into consideration will be displayed and the prediction is run with the  
∆m, mass correction and ∆rt, retention time correction. This predicts the protein for  
the given set of values. 
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2.6 ∆m and ∆rt 

Since it is well known that different mass spectrometers will have different levels  
of accuracy for obtaining the mass of peptide fragments, and different HPLC 
chromatography units will have run to run retention time variation, it was important to 
also include into the program variance values (error values) for the mass and the retention 
time values (denoted ±∆m and ±∆rt, respectively). This then allows one to search for  
a mass range for the fragment mass to match to and a corresponding retention time range. 

2.7 Protein identification 

Protein identification is carried out by matching different masses and respective retention 
times of different peptide/fragments in the database. ‘Peptide’ object is created for the 
initial given mass and retention time. For each mass and retention time the protein hits 
are compared with the existing proteins in the ‘Protein Identified’ object and the scoring 
algorithm scores on the number of times a protein was identified. This process is 
continued for all the given masses and retention time (with ±∆m and ±∆rt, if mentioned 
otherwise with the default values) that the LC/MS specifies when a sample is run.  
The highest scored proteins are displayed as the predicted proteins along with  
their ‘Hit scores’, ‘Hit fragments’ for the protein, ‘Observed and Predicted masses’, 
‘Retention times’ and ‘Protein sequence’. 

3 Analysis 

3.1 Predicted retention time vs. observed retention time 

To validate the program we randomly selected four tryptic peptides from one  
E. coli protein varying in length from 7–11 residues as shown below: 

P1 L S D E E L K 
P2 S E L V S N E L T K 
P3 Y E V I S T L S K 
P4 I L A Q S I E V Y Q R. 

The retention times of these four peptides were predicted at three different gradient rates 
(0.25%, 0.50% and 1.0% acetonitrile/min on two columns containing different n-alkyl 
chain length packings (C8 and C18) and compared to the observed retention times  
(Table 2). This limited analysis does show that the error in prediction is linearly related to 
the gradient rate. At 0.25% acetonitrile/min the errors in prediction are proportional but 
greater than at 1% acetonitrile/min. The only reason for using shallow gradients is to 
enhance peak capacity and resolution for digests containing large numbers of peptides. 
Nevertheless, this limited study suggests errors of ±6 min, ±4 min and ±2 min for 
gradient rates 0.25%, 0.5% and 1%, respectively. 
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Table 2 Predicted and observed retention times of four peptides 

Gradient rate  

0.25% 0.5% 1% 

Column Peptide Pred. Obs. ∆ Pred. Obs. ∆ Pred. Obs. ∆ 

 P1 31.8 30.7 +1.1 21.6 21.1 +0.5 14.9 14.6 +0.3 

C8 P2 40.9 47.6 –6.7 26.1 29.5 –3.4 17.2 18.8 –1.6 

 P3 51.0 56.6 –5.6 31.2 34.1 –2.9 19.7 21.2 –1.5 

 P4 66.1 67.3 –1.2 38.7 39.2 –0.5 23.4 23.6 –0.2 

    Ava = 3.7   Ava = 1.8   Ava = 0.9 

 P1 46.8 44.8 +2.0 29.0 27.7 +1.3 18.6 17.7 +0.9 

C18 P2 55.9 60.7 –4.8 33.5 35.6 –2.1 20.8 21.6 –0.8 

 P3 66.0 69.0 –3.0 38.6 39.8 –1.2 23.4 23.8 –0.4 

 P4 81.1 75.9 +5.2 46.1 43.0 +3.1 27.2 25.2 +2.0 

    Ava = 3.8   Ava = 1.9   Ava = 1.0 
aAv is the absolute average error in min. 

Analysis of the predicted retention time vs. observed retention time of 108 tryptic peptide 
fragments from ten proteins shows that there is a strong correlation (0.94) between 
predicted and observed times (Figure 2(A)). Further, plotting of the differences between 
predicted and observed retention times (about the mean) shows that approximately  
80% of the peptides are within the range of ±10 min (at this very shallow gradient of 
0.25% acetonitrile/min) and 50% are within the range of ±6 (Figure 2(B)). This suggests 
that there are other variables such as chain length, clustering of hydrophobes and 
conformational effects, which still need to be included in the retention time equation. 
Current experimentation is focusing on determining and/or accounting for these 
variables. Once the predicted retention times are within the targeted error range, the 
database will be re-calculated with these corrected values/changes. 

Figure 2 (A) A correlation between the observed and predicted retention time values in minutes 
of 108 tryptic peptide fragments and (B) the differences between predicted and 
observed values in minutes at a gradient rate of 0.25% acetonitrile/min 
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Figure 2 (A) A correlation between the observed and predicted retention time values in minutes 
of 108 tryptic peptide fragments and (B) the differences between predicted and 
observed values in minutes at a gradient rate of 0.25% acetonitrile/min (continued) 

 
(B) 

3.2 Database analysis 

Plotting the frequency of peptide fragments in the database showed that the greatest 
numbers of fragments were observed at the lower mass range (Figure 3). Further, the 
number of fragments at a given fragment size decreases rapidly with increasing  
fragment size. For example, there are 9,393 fragments at five residues, 2,777 fragments at  
15 residues and 655 fragments at 30 residues. 

Figure 3 Number of fragments at each mass in the 500–4000 range. The chart shows ambiguous 
peptides with mass range 700–705 

 

The number of fragments per mass unit was also analysed. The number of fragments 
within one mass unit is within the range of 80–160 Da between masses 500–1000 Da. 
(Figure 4) indicating a large number of possibilities for a single mass. 
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Figure 4 Number of fragments for each peptide length. The chart shows the retention times  
of sequences and the ambiguity information for the peptide fragments of the same  
mass and composition but different sequence (shaded) 

 

Additionally, since the peptide retention time search variable will depend on the  
amino acid composition of the peptide fragments, we also examined the frequency  
of peptides with the same compositions. Interestingly, in the entire genome there were 
only 371 specific cases of peptide fragment sequences having the same amino acid 
composition (mass 500 or greater). The total sum of peptides was 1016 (only 0.74%  
of the proteome studied). Thus, peptide retention times if predicted accurately  
enough can indeed be useful search criteria for peptide fragment identification.  
In another analysis, it was noted that this ambiguity decreased as the number of residues 
in the peptide increased. Specifically, the ratios of the number of residues to the number 
of cases with the same amino acid composition were found to be: 5/197, 6/96, 7/44, 8/22, 
9/8, 11/2, 17/1 and 23/1, fragment length/number of cases. Thus, the longer the sequence 
the lower the number of cases of peptide fragments having the same amino acid 
composition. At peptide lengths of seven residues or greater the number of cases  
is only 78 and the total sum of peptides reduces dramatically to 164 (only 0.12% of the 
proteome). 

3.3 Added value of retention time data 

To evaluate the degree to which the retention time data can reduce the complexity  
of proteins identified (No. of hits), we randomly selected a single mass (e.g., 2001 Da)  
and a retention time (110 min) and varied the ∆rt window size from ±20 min to ±1 min.  
The number of proteins identified from a single fragment mass and retention time 
decreased from 30 to 1 as the ∆rt window size was reduced (Table 3). At a ∆rt size  
of ±6 min (our observed retention time variance) the number of proteins identified was 
reduced 66% (e.g., 30–12 possibilities). Thus, retention time data can indeed be useful in 
reducing the possibilities in identifying a given protein. 
 
 
 
 
 



 

 

   

 

   

    Proteomic data mining 443    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 3 Effect of ∆Rt on the number of proteins identified from a single mass fragment 

∆ mass ∆ Rta 

Mass 2001 Rt 
110 min no. 
proteins ID 

Mass 1001 Rt 
70 min no. 
proteins ID 

Mass 1001 Rt 
60 min no. 
proteins ID 

Mass 501 Rt 
30 min no. 
proteins ID 

1 20 30 62 86 42 
1 10 17 28 51 30 
1 8 14 22 46 28 
1 6b 12 13 37 25 
1 4 10 7 26 13 
1 2 3 4 14 7 
1 1 1 2 5 2 

aGradient rate 0.25% acetonitrile/min. 
bWith a ∆Rt of ±6 min the average reduction in proteins identified was 66% of the total 
found at ±20 min. 

3.4 Mining with peptide fragments P1–P4 

To test whether the scoring algorithm can accurately identify the correct protein from  
the E. coli database, we mined the database using the four peptide fragments P1–P4 
(Figure 5). Using the four peptides and ∆rt = 6 min, the correct protein was identified 
with the highest hit score of seven. Increasing the ∆rt value to 20 min (largely excluding 
retention time selection) also showed the correct protein identified with a hit score of 
seven. Thus, a large number of peptide fragment masses (>4) alone are sufficient to 
identify the correct protein largely independent of retention time. However, when the 
sample size is reduced to two peptide fragment masses (e.g., P1 and P3), the value of the 
added retention time data is observed. For example, as the retention time error is reduced 
from ±20 min, ±10 min, ±8 min, to ±6 min at a gradient rate of 0.25% acetonitrile/min 
the number of proteins identified having a hit score of three was 4, 3, 2 and 1 protein, 
respectively. 

Further, sampling of different ∆rt sizes indicates that a useful working  
value appears to be between 6 min and 8 min at this very shallow gradient rate  
of 0.25% acetonitrile/min. In some cases this may exclude some data from scoring but the 
added score given to scoring more reliable data will more than offset the loss in data. 

4 Discussion 

The work presented in this paper demonstrates that protein identification from peptide 
fragments can be enhanced by utilising both mass and retention time data. Despite the 
seemingly large retention time delta value (±6 min) presently used the addition of this 
data is still sufficient to reduce the total number of protein possibilities by at least 50% 
based on two fragment identification. 

With a larger number of fragments, the mass values alone are sufficient to discern  
the correct protein and thus the added retention time data does not appear to aid in the 
prediction. 
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Figure 5 Display of the proteins identified and fragment hits identified when searching peptides 
fragments P1–P4 

 

Finally, in order to fully asses the benefits of protein identification based on mass and 
retention time values, we will need to create more complicated E. coli proteome samples 
which are presently in progress. 
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5 Conclusions 

A database of tryptic fragments of the E. coli proteome with masses in the range of  
500–4000 was generated. We have shown that with a minimum of two observed masses 
(±1 mass unit) and retention time (±6 min at a gradient rate of 0.25% acetonotrile/min)  
a single protein can be identified with high probability. 
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