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To investigate the utility of longitudinal data in genetic analyses of

symptoms of anxiety and depression, we assessed individual differ-

ences between age 7 and 18 using growth mixture models, and

investigated the genetic and non-genetic factors contributing to the

trajectories. Mothers of 7,706 girl and 7,418 boy twins from the

Netherlands Twin Register rated the anxious depression scale

(SxAnxDep) of the Child Behavior Check List (CBCL) at age 7,

10, and12years. Two thousand sevenhundred and six girl and1,856

boy twins completed the Youth Self Report (YSR) at age 14, 16, and

18. While individual trajectories varied considerably, these differ-

ences were largely idiosyncratic and could not be grouped into

separate latent classeswith class-specific average growth curves. The

intercept, which reflects the individuals’ baseline level of SxAnxDep

across time, explained 55–58%of the total phenotypic variance. The

slope factor, which captures a common average trend over time, did

not explain variance in the phenotype. This finding also underlines

the high level of idiosyncrasy of trajectories that lack a common

longitudinal structure. The analyses of twin data showed that the

random intercept factor of SxAnxDep during childhood and during

adolescence is considerablymore heritable than the observations at

any single age, namely between 60% and 84%. One explanation is

that different factors contribute to the level of symptoms of anxiety

and depression at any given time point, including temporary events

and emotions.Whenconsideringbaseline stability, these temporary

influences average out, with the result of a more reliable and more

heritable phenotype. � 2015 Wiley Periodicals, Inc.
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INTRODUCTION

It has proven to be more difficult to identify genetic variants

influencing major depressive disorder (MDD) than other psychi-
2015 Wiley Periodicals, Inc.
atric disorders. In a genome-wide association (GWA) study with a

sample size comparable to, for example, a GWA analysis of bipolar

disorder [Group, 2011], no single nucleotide polymorphism (SNP)

reached genome-wide significance [Wray et al., 2010]. Estimates of

the variance explained by all SNPs varied between 20 and 30% for

MDD [Lubke et al., 2012; Lee et al., 2013] indicating that the SNPs

analyzed in a GWA study do have an effect on MDD, that can be
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captured by increasing the sample size. One of several reasons that

sample sizes for MDD need to be larger than for other psychiatric

disorders is the often mentioned heterogeneity of the phenotype

[Wray et al., 2010; Levinson et al., 2014]. Levinson et al. [2014] sum

up several variables that could explain heterogeneity, such as sex,

age of onset, recurrence, symptom profile and longitudinal course.

Decreasing the heterogeneity, in addition to an increase in sample

size, could also lead to improved statistical power in a GWA study.

MDD is often comorbid with anxiety disorders. So far, these

disorders have been less extensively investigated than MDD in

GWA studies and no genome-wide significant hits have been

observed [Erhardt et al., 2011; Otowa et al., 2012; Walter et al.,

2013]. Genetic epidemiological analyses in both adults and chil-

dren showed that anxiety and depression share genetic risk factors

[Middeldorp et al., 2005; Kendler et al., 2011; Rhee et al., 2015].

This suggests that it could be useful to focus the search for genetic

variants on a phenotype that comprises depression as well as

anxiety. A GWA study on internalizing symptoms in children

aged around 3 years old reported that around 20% of the variance

was explained by SNPs [Benke et al., 2014]. Moreover, genetic

variants influencing later adult psychiatric disorders appeared to

jointly have an effect on internalizing symptoms at age 3.

In the current paper, we focus on the longitudinal course of

symptoms of anxiety and depression during childhood and ado-

lescence, and investigate the role of genetic factors on the develop-

mental course. The aim is to identify a more homogeneous

phenotype which would provide increased statistical power in a

genome-wide association study.

Epidemiological studies of the development of anxiety disorders

and depression during childhood and depression, were reviewed by

Merikangas et al. [2009]. Depression rates are low during child-

hood and increase during adolescence, especially in girls. For

anxiety, the picture differs for the specific anxiety disorders, but

overall there is an increase in prevalence from childhood to

adulthood. Longitudinal studies show the heterogeneity in the

developmental course of anxiety and depressive disorders during

childhood and adolescence. Some of the children with anxiety and

depression continue to have symptoms in adolescence, but some

remit [Copeland et al., 2009]. There is also heterotypic continuity,

i.e., childrenwith anxiety disorders are at risk for depression at later

ages [Beesdo-Baum and Knappe, 2012]. In addition, as expected

from the increased prevalence during adolescence, there is a group

with an onset of symptoms during adolescence without any

preceding symptoms during childhood (reviewed in Costello

et al. [2011]. These patterns are also seen when studying continu-

ous measures of anxiety and depression. In the Young Netherlands

Twin Register, which assesses anxious depression symptoms

(SxAnxDep) in twins every 3–3 years, mean scores remained at

the same level between age seven and 12 and then showed an

increase. The increase was larger in girls than in boys [Nivard et al.,

2015]. Further, the 2 years correlations for SxAnxDep were ap-

proximately 0.5 in childhood and 0.6 in adolescence indicating

stability as well as change in this age period [Nivard et al., 2015].

The heterogeneity in the developmental course in anxiety and

depression has been studied in more detail in several population

based studies by analyzing whether different characteristic de-

velopmental trajectories can be identified using Growth Mixture
Models (GMM) [Cote et al., 2002; Brendgen et al., 2005; Rodri-

guez et al., 2005; Dekker et al., 2007; Sterba et al., 2007; Duchesne

et al., 2008; Feng et al., 2008; Crocetti et al., 2009; Letcher et al.,

2009; Fanti and Henrich, 2010; Marmorstein et al., 2010; Morin

et al., 2011; Toumbourou et al., 2011 Letcher et al., 2012; Broeren

et al., 2013; Legerstee et al., 2013; Nivard et al. 2007]. However,

only four studies performed in three different cohorts, covered

the whole period from childhood and adolescence, until at least

age 15 [Dekker et al., 2007; Letcher et al., 2009; Toumbourou

et al., 2011; Nivard et al. 2007]. The results differed between the

three cohorts. All found trajectories with consistently low scoring

individuals. However, Dekker et al. [2007] identified additional

gender specific trajectories. In girls, a stable high trajectory was

identified, while in boys, decreasing trajectories were identified.

Nivard et al. (submitted) observed an increasing and decreasing

trajectory, but no stable high trajectory. In the third cohort, in

boys and in girls, high, increasing and decreasing trajectories

were found in addition to the low trajectories [Letcher et al.,

2009; Toumbourou et al., 2011]. The studies performed in either

childhood or adolescence, in general, found a low scoring and a

high scoring class. Results also varied regarding the other classes,

i.e., whether classes with increasing or decreasing scores over

time were also observed [Cote et al., 2002; Brendgen et al., 2005;

Rodriguez et al., 2005; Dekker et al., 2007; Sterba et al., 2007;

Duchesne et al., 2008; Feng et al., 2008; Crocetti et al., 2009;

Letcher et al., 2009; Fanti and Henrich, 2010; Marmorstein et al.,

2010; Morin et al., 2011; Toumbourou et al., 2011; Letcher et al.,

2012; Legerstee et al., 2013; Broeren et al., 2013]. Note that all but

three studies [Crocetti et al., 2009; Morin et al., 2011; Nivard

et al. 2000] fixed the variance of the intercept and slopes to zero

in all classes. This lack of random effects within the latent growth

curve model can lead to an over-extraction of classes because

individual variability in intercepts and slopes is captured by

additional classes (e.g., a high and low class) [Muthen and

Muthen, 2000; Lubke and Neale, 2006].

Data obtained in twins can be used to investigate how genetic

factors influence the longitudinal course of a trait. The outcomes of

the twin analyses can thereby indicate the most suitable strategy to

analyze longitudinal data in a GWA study. Earlier studies applying

general multivariate or simplex models to longitudinal twin data

have shown that stability in SxAnxDep is mostly explained by

genetic factors, but no twin study so far has investigated longitu-

dinal SxAnxDep data while attempting to take individual differ-

ences in the developmental course into account. In the current

study, growthmixturemodelswere fitted to investigate, first, which

longitudinal model provides the best description of individual

differences in the SxAnxDep course, and, second, how the growth

factors in the best fitting model are influenced by genetic and non-

genetic factors. We modeled SxAnxDep between age seven and age

18 in girls and in boys, and estimated the variances of intercepts and

slopes in the classes. From age seven to age 12, maternal ratings

were available whereas from age 14 to age 18 data self-report ratings

were available. Due to the change of rater from mother to self-

reports between ages 12 and 14, a piecewise growth model frame-

work was used. In addition to the trajectory analyses, the twin data

were used to estimate the influence of genetic and non-genetic

factors on the latent factors.
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MATERIALS AND METHODS

Sample
The data for this study were collected by the Young and Adult

Netherlands Twin Register between 1987 and 2015 [Boomsma

et al., 2006; van Beijsterveldt et al., 2013]. Children are enrolled in

the YNTR by their parents at birth. For the ANTR, adolescent and

adult twins were recruited through city-councils. The minimum

age to participate in the ANTR was age 12. Every 2–3 years lifestyle,

health and behavior are assessed by surveys in an ongoing data

collection. Previous research has established that the NTR data can

be considered as representative of the Dutch population [van

Beijsterveldt et al., 2013].

Two groups of subjects were selected to, first, estimate the

developmental trajectories and, second, to estimate the heritability

of these trajectories. For the first set of analyses, data from twins

with measures at two or more time points were included. These

data either were collected between ages 7–12 years or between ages

14–18 years. This resulted in a sample size of n¼ 15,124 (7,706 girls

and 7,418 boys) between ages 7–12, and n¼ 4,563 (2,706 girls, and

1,856 boys) between ages 14–18. The two subsamples included

1,970 female twins and 1,337male twins with data in both age bins.

The numbers of female andmale monozygotic (MZ) and dizygotic

(DZ) twins that were included in the trajectory analyses are

presented in Table I.

For the heritability analyses all data were included. Data were

available for 12,225 twin pairs between ages 7–12 (12,188 complete

twin pairs), and for 8,241 twin pairs between ages 14–18 (6,716

complete twin pairs). The number ofmale and femalemonozygotic

(MZ) and dizygotic (DZ) twin pairs is given in Table II.
Measures
Symptoms of anxiety and depression (SxAnxDep) were measured

with the anxious depression scales of the mother rated Child

Behavior Checklist (CBCL) [Achenbach and Rescorla, 2001] and

the Youth Self Report (YSR) [Verhulst et al., 1997] containing

respectively 14 and 16 items. Example items are “cries a lot”, “fears’,

“must be perfect.” The test-retest reliability of the SxAnxDepCBCL
TABLE I. Number of Individual Twins Per Age for the Mixture

Trajectory Analyses

Age

Zygosity 7 10 12 14 16 18

MZM 2258 2211 2067 366 484 450

DZM 2152 2098 1863 329 354 372

MZF 2586 2619 2373 663 778 865

DZF 2054 1989 1787 438 509 553

DZO 4282 4238 3698 776 884 861

MZM (F), monozygotic male (female) twin; DZM (F), dizygotic male (female) twin; DZO, dizygotic
opposite sex twin.
Participants with measurements on at least two occasions between age 7–12 or between age
14–18 were selected for the mixture trajectory analyses.
and YSR items are 0.82 and 0.74, respectively [Achenbach and

Rescorla, 2001]. Achenbach and Rescorla [2001] also provide

evidence for content, criterion and construct validity of the items.

Moreover, the CBCL and YSR anxious depression scales predict

DSM-IV diagnoses of both anxiety disorders and depression [van

Lang et al., 2005; Bellina et al., 2013].

In the current studywe computed an average score at each age for

each individual.Due to the skewnessof theaverage score, the average

score was categorized into four categories. This was done based on

the sample quartiles for sxAnxDepat age18whichensured that there

were observations in all cells at each age.Category endorsement rates

of this aggregate score are presented in Table III separately formales

and females at each age. Correlations between ages are given in

Table IV, showing male correlations below and female correlations

above the diagonal. As can be seen, correlations are generally higher

between successive ages, and are higher over several ages for females

than they are for males. Although there is an expected drop in

correlations when raters change (mother vs. self-ratings), correla-

tions between 12 years old rated by mothers and 14, 16, and 18 self-

ratings are similar to the correlation between 14 and 18-year-old self

ratings. This indicates that although raters change, the measured

trait remains comparable.
Analysis Plan
The overarching goal of the analyseswas to investigate the benefit of

analyzing longitudinal data in genetic studies of anxiety and

depression. The planned analyses consisted of two parts, a latent

growth mixture analysis, and a twin-based heritability analysis.

The goal of the growth mixture analysis was to investigate

whether we could identify different latent classes with characteristic

growth trajectories representing the developmental course of

SxAnxDep between age seven and 18, potentially combining

data from mother and self-ratings. The heritability analysis aimed

at investigating how longitudinal data can be optimally used to

identify genetic variants, and, in case the mixture models revealed

multiple classes, investigate potential differences in heritability

across classes.

Separate and joint piecewise growthmixturemodeling. In the

first step, we fitted separate linear growthmixturemodels formales

and females, and for mother and self-ratings. In the latent growth

model, development is modeled by an intercept (I) and a linear

slope (S), and if more than three time points are available,

curvilinear growth can be modeled. Growth mixture models

(GMM) extend the standard growth model with a latent class

variable, featuring a distinct growth model within each latent class.

Subjects with similar trajectories are grouped into classes in a data-

driven fashion, since class membership is not known beforehand.

Fixing the variances of the intercept (I) and linear slope (S) factors

to zerowithin each class results in a restrictiveGMM(also known as

latent class growth models, LCGMs), in which only average within

class trajectories are estimated (i.e., means of I and S), and all

variability within classes is considered to be occasion specific

[Nagin, 1999]. We fitted LCGM’s as well as models allowing for

within class individual differences in the intercepts and slopes, i.e.,

random intercepts and random slopes [Muthen and Muthen,

2000].



TABLE II. Number of Twin Pairs (% Complete Pairs) by Age in the Genetic Analyses

Age

Zygosity 7 10 12 14 16 18

MZM 1510 (99) 1333 (99) 1147 (98) 519 (82) 647 (81) 468 (78)

DZM 1595 (99) 1281 (99) 1043 (99) 497 (76) 512 (77) 403 (71)

MZF 1721 (99) 1556 (99) 1292 (99) 796 (85) 880 (83) 838 (78)

DZF 1461 (99) 1226 (99) 1005 (99) 642 (83) 671 (75) 552 (72)

DZO 2992 (99) 2620 (99) 2075 (99) 1196 (71) 1289 (69) 957 (65)

MZM (F), monozygotic male (female) twin; DZM (F), dizygotic male (female) twin; DZO, dizygotic opposite sex twin.
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Next, we applied piecewise growth mixture modeling to

combine child and adolescent data. This type of growth mixture

model can link two intervals that consist of several observed time

points each. Importantly, piecewise growth modeling permits a

change of slope, and, if necessary, also a change in intercept

between the two intervals. Therefore, piecewise growth modeling

can capture an expected trajectory that starts increasing at the

beginning of adolescence. Piecewise growth modeling is also

suitable to handle the fact that the two intervals reflected a

change in rater (mother vs. self-ratings). We compared piecewise

models with increasing numbers of classes that only allowed for a

change of slope to models that also allowed for a change in

intercept. The first type of model would support that rater

differences have a negligible impact on modeling continuous

trajectories over the two intervals whereas models with a separate

intercept for the second interval imply a discontinuity which can

at least in part be due to rater differences.

All models were fitted with a large number of random starts.

Models were considered as properly converged if three conditions

were met: (1) at least four sets of starting values converged to the

same maximum, (2) all parameter estimates were within their

proper range (e.g., variance estimates >0), and (3) model estima-

tion resulted in a positive definite information matrix.

In sum, the goals of the growth mixture analyses were (1) to

identify the numbers of classes that best describe the longitudinal

patterns of SxAnxDep, (2) to decide whether random intercepts

and slopes were necessary to describe the structure in the data, and

(3) to evaluate differences in developmental trajectories between

the child and adolescent intervals.
TABLE III. Endorsement Rates (%) for the Categorize

Category 7 10 1

0 33/30 31/30 37

1 36/37 34/34 33

2 24/25 24/25 21

3 08/09 11/11 09
Genetics analyses. The type of longitudinal model for the

genetic analyses was chosen based on the results of the growth

mixture analysis. We estimated additive genetic, and shared and

non-shared environmental effects on the latent growth factors

using standard twin modeling [Boomsma et al., 2002]. Twin

modeling utilizes the fact that monozygotic twins share the

same genes whereas dizygotic twins are expected to share half of

their segregating genes. Consequently, If MZ twin pairs are more

similar for a trait than DZ twin pairs, this suggests that genetic

factors influence this trait, for example when correlations in MZ

pairs are 0.6 and in DZ pairs 0.3. If the correlation in DZ pairs is

more than half the correlation in MZ twins (e.g., rMZ¼ 0.6 and

rDZ¼ 0.5), then there is additional familial resemblance which is

not explained by genetic factors. Such factors are commonly

referred to as shared or common environmental factors. The

importance of individual-specific environmental factors is indi-

cated by the differences within MZ twin pairs. Incorporating these

expectations in a latent growth model permits estimating the

percentages of variance explained by additive genetic effects,

common environmental effects shared by children growing up

in the same family, and non-shared environmental effects that

contribute to the total variance of the latent growth factors.

RESULTS

Growth Mixture Modeling for Mother and
Self-Ratings, and Males and Females
In all four groups, linear growthmodels with random intercepts for

a single class emerged as the preferredmodel. Specifically, based on
d Sum Score for Males/Females at Each Time Point

Age

2 14 16 18

/34 43/26 39/22 37/21

/35 26/23 27/23 27/21

/22 21/30 22/31 23/29

/10 10/22 12/25 12/29



TABLE IV. Polychoric Correlations Between Ages for Males (Lower)
and Females (Upper)

Age 7 10 12 14 16 18

7 0.70 0.65 0.40 0.29 0.23

10 0.79 0.74 0.36 0.29 0.19

12 0.52 0.80 0.43 0.35 0.20

14 0.08 0.27 0.19 0.70 0.54

16 0.17 0.34 0.27 0.60 0.71

18 0.00 0.15 0.35 0.26 0.50
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the BIC, models without random effects could be rejected. Likeli-

hood ratio tests comparing single class models with random

intercepts and fixed slopes to models with random intercepts

and random slopes were not significant for either male or female

mother ratings, (mother/female: P¼ 0.06, mother/male: P¼ 1),

but significant for self-ratings (self/female P¼ 1.57e-5, self/male:

P¼ 0.036). However, the random slope effect explained essentially

zero percent of the total variance in either model. Therefore, we

rejected the need for random slopes. Extending the separate growth

models to more than a single class did not result in proper
TABLE V. Latent Growt

Model # Cl # Params

Mother reports (age 7–12)

No random effects 1 4

2 7

3 10

4 13

5 Failed to

Random intercept 1 5

2 Failed to con

Random intercept and slope 1 6

2 Failed to

Self-reports (Age 14–18)

No random effects 1 4

2 7

3 10

4 13

Random intercept 1 5

2 Failed to

Random intercept and slope 1 6

2 Failed to

Piecewise models (Age 7–18)

Random intercept 1 9

2 15

Rater mean difference¼ 0
�

1 8

Latent class growth models for maternal and self-ratings separately, and jointly using a piecewise m
estimated parameters in themodel, the final log likelihood value, the Bayesian information criterion (BI
thanmodels with a single class (bold). For the piecewisemodels, we selected a single classmodel beca
within one SD of bootstrapped BIC for the single class model (BIC SD¼ 1142). Model eight tested whet
14. This was done by testing whether the mean of the second intercept could be set equal to 0. This
raters.
�
Dx2¼ 25.4, df¼ 1, P¼ 4.5E-8.
convergence in either group.Model fitting results andmore specific

information regarding failure of proper convergence are presented

in Tables V and VI for models fitted to male and female data,

respectively.

In the preferred single class linear growth models with random

intercepts, for males, mother ratings during childhood showed a

higher intercept mean compared to self-ratings during adolescence

(mean mother rating¼ 0.692, SE¼0.045 vs. mean self¼ 0.253,

SE¼ 0.100). For females, mother ratings had a lower average

baseline compared to self-ratings (mean mother rating¼ 0.850,

SE¼ 0.44 vs. mean self¼ 1.287, SE¼ 0.088). The difference in

intercept between childhood and adolescence indicates that it

might be necessary to account for a discontinuity when combining

mother and self-ratings in a single model.

The linear growth model splits the total variance in the devel-

opmental course of symptoms into common factors (i.e., intercept

and slope factors) and residual variance. The intercept factor

represents the baseline, whereas the slope factor represents the

common linear trend over time. Residual variance captures the

more idiosyncratic differences in symptom course that cannot be

described by the common intercept and slope factors.

In our analyses, the intercept variance contributed considerably

to the total variance of the phenotype, both in childhood and
h Model Fit in Males

LogLik BIC Entropy

Class

percentages

�24172 48379

�22520 45103 0.66 60, 40

�22169 44427 0.61 46, 36, 18

�22121 44359 0.63 45, 29, 22, 04

replicate likelihood

�22189 44423

verge

�22189 44431

replicate likelihood

�4502 9033

�4317 8687 0.60 67, 33

�4287 8650 0.50 43, 42, 15,

�4283 8663 0.42 35, 28, 21, 16

�4291 8619

replicate likelihood

�4288 8622

replicate likelihood

�29596 59273

�29545 59224 0.4 76, 24

�29612 59297

odel. Models were estimated with an increasing number of classes (Cl). Shown are the number of
C), Entropy, and class proportions. Models withmultiple classes did not have significantly lower BIC
use entropy was low indicating poor class assignment. Secondly, the BIC of the two classmodel fell
her the second intercept was necessary to model the discontinuity between raters at ages 12 and
model fit significantly worse than the unconstrained model, indicating a mean difference between



TABLE VI. Latent Growth Model Fit in Females

Model # Cl # Params LogLik BIC Entropy

Class

percentages

Mother reports (age 7–12)

No random effects 1 4 �25320 50675

2 7 �23645 47353 .65 58, 42

3 10 �23289 46668 .61 46, 37, 17

4 13 �23250 46616 .54 42, 27, 21, 10

5 16 �23232 46607 .54 41, 22, 19, 10, 8

6 Failed to converge

Random intercept 1 5 �23302 46648

2 Failed to replicate likelihood

Random intercept and slope 1 6 �23301 46657

2 Failed to replicate likelihood

Self-reports (age 14–18)

No random effects 1 4 �7254 14540

2 7 �6894 13843 .59 51, 49

3 10 �6823 13724 .54 48, 27, 25

4 13 �6812 13727 .52 37, 27, 25, 11

Random intercept 1 5 �6824 13688

2 15 �7600 15319 .36 59, 41

Random intercept and slope 1 6 �6819 13685

2 17 �7586 15307 .40 62, 38

Piecewise models (age 7–18)

Random intercept 1 9 �34056 68294

2 15 �34000 68136 .31 .61, .39

Rater mean difference¼ 0
�

1 8 �34190 68453

Latent class growth models for maternal and self-ratings separately, and jointly using a piecewise model. Models were estimated with an increasing number of classes (Cl). Shown are the number of
estimated parameters in themodel, the final log likelihood value, the Bayesian information criterion (BIC), Entropy, and class proportions. Models with multiple classes did not have significantly lower BIC
than models with a single class (bold). For the self-reports, a likelihood ratio test showed that the random slope (6) did not improve fit, so model (5) was chosen. For the piecewise models, we selected a
single class model because entropy was low indicating poor class assignment. Secondly, the BIC of the two class model fell within one SD of bootstrapped BIC for the single class model (BIC SD¼ 1264).
Model eight tested whether the second intercept was necessary to model the discontinuity between raters at ages 12 and 14. This was done by testing whether themean of the second intercept could be
set equal to 0. This model fit significantly worse than the unconstrained model, indicating a mean difference between raters.
�
x2¼ 216.4, df¼ 1, P< 1E-16.
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adolescence, namely about 55% inmales and about 58% in females.

This means that a large part of the variability in symptom course is

due to individual differences in baseline. The remaining variability

was essentially idiosyncratic, with the slope factor variance being

essentially zero in males and females. The slope mean was also zero

in both time intervals for males, which means that there was no

significant common average change. For females, the slope mean,

while insignificant during childhood, was mildly positive during

adolescence (mean¼ 0.087, SE¼ 0.022).

Taken together these results imply that a substantial part of the

individual trajectories in SxAnxDep are in fact idiosyncratic, and

cannot be easily disaggregated into different latent growth classes,

or described in terms of a common linear development structure.

Instead, the results point to age specific influences on the individual

trajectories possibly including temporary effects of events and

emotions.

Simultaneous Analysis of Mother and
Self-Ratings
We compared single and 2-class models fitted to mother and self-

ratings jointly. Although in the separate models we were unable to
properly identify two classes, joining the data across all ages can

help to identify multiple classes with characteristic developmental

curves. More specifically, we compared piecewise growth models

that only allow the slope to change betweenmother and self-ratings

to models that allowed for a change in intercept as well. An

intercept (or baseline) change is a discontinuity in average trajec-

tories that can at least in part accommodate differences between

mother and self-ratings. In case of a single classmodel such amodel

is equivalent to fitting linear growth models separately to mother

and self-ratings.

The results confirmed the findings of modeling child and

adolescent data separately, namely that it was necessary to include

a change in baseline when shifting frommother to self-ratings. This

was true for observations from both males and females. When

extending the single class version of this model to two classes, we

found that the BIC was in fact lower for the 2-class model in the

males and females. However, the difference in BIC with the single

class model was small (see Tables V and VI). Bootstrapping a

confidence interval for the BIC showed that the difference in BIC

was not substantial. When evaluating the parameters of the 2-class

models it was clear that for both males and females the two classes

were basically dividing individuals into groups with a slightly



TABLE VII. Factor Mean Estimates in the Piecewise Model

Model name

Class

(%)

Intercept (SE)

Age 12

Slope (SE)

Age 7–12

Intercept (SE)

Age 12–14

Slope (SE)

Age 14–18

Male

Random

intercept

1 Class 1 0.64 (0.04) 0.00 (0.01) �0.39 (0.08) 0.02 (0.03)

2 Class 76 �0.42 (.14) �0.09 (.02) 0.32 (0.18) 0.17 (0.06)

24 3.2 (0.30) 0.18 (0.04) �2.1 (0.29) �0.34 (0.15)

Female

Random

intercept

1 Class 1 0.76 (0.04) �0.01 (0.01) 0.99 (0.07) 0.10 (0.02)

2 Class 61 �0.37 (.13) �0.08 (0.02) 1.6 (0.15) 0.34 (0.10)

39 2.7 (0.37) 0.09 (0.03) 0.03 (0.27) �0.26 (0.10)

Piecewise intercept and slope estimates (standard errors, SE) for males and females for the single and two class models. The first intercept was centered at age 12, and the second intercept is themean
difference between ages 12 and 14. Estimates are on the standard normal liability scale.
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higher baseline vs. a lower baseline (see Table VII). The entropy in

these 2-class models was very low, which indicates that assigning

individuals to either class was problematic (see Tables V and VI).

We therefore concluded that the single class models were prefera-

ble. The parameter estimates of the intercept and slope factor

means in the joint single class models that permitted a separate

intercept for the self-ratings were as expected very similar to the

separate single class models fitted initially (see Table VII).

In sum, the results of the growth mixture analyses indicate that

combining mother and self-ratings of SxAnxDep does not add

much information, that our data support a single class, and that the

intercept or baseline factor explains a substantial amount of total

variance whereas the slope factor does not. Therefore, in the

following twin analyses, we fitted models for mother and self-

ratings separately, and focused on the heritability of the intercept

factor.
TABLE VIII. Latent Growth Decomposition (95% Confidence

Intervals) of Stability of Symptoms of Anxiety and Depression in

Childhood and Adolescence

Gender Age A C E

Male 7–12 71 (60–83) 23 (12–29) 6 (02–09)

Female 7–12 63 (53–75) 31 (30–41) 5 (02–06)

Male 14–18 83 (67–92) 0 (0–13) 16 (07–25)

Female 14–18 84 (63–94) 3 (0–22) 12 (06–18)

A, additive genetic; C, common environment; e, non-shared environmentþmeasurement error.
Genetic Analyses
We fitted single class linear growth models to data from monozy-

gotic (MZ) and dizygotic (DZ) twins. The variance of the intercept

factor was decomposed into variance components of additive

genetic variance, shared environmental variance, and non-

shared/error variance. We did not decompose the slope variance

since individual differences in the slope factor were small. The same

model was fitted tomother and self-reports separately based on the

longitudinal model results.

For all models we provide likelihood based confidence intervals

for the estimates of the variance components (see Table VIII). As

can be seen, narrow-sense heritability is very similar for males and

females, and is slightly higher in adolescent self-reports compared

to childhood mother reports. The percentages of variance

explained by additive genetic effects on the intercept of the

maternal ratings during childhood were 71% and 63% for males

and females, respectively. These percentages on the intercept of the

self-ratings during adolescence were 83% and 84% respectively.

Shared environment explained almost all of the remaining variance
during childhood (23% and 31%, for males and females, respec-

tively), implying that non-shared environmental effects were close

to zero. As might be expected, the non-shared variance increased

during adolescence and was estimated at 16% for males and 12%

for females. Thiswas at the cost of shared environmental effects that

had a zero effect for males during adolescence and a close to zero

effect for females. Importantly, narrow sense heritability of baseline

stability of anxious depression across age is considerably higher

than at any given age. Age specific heritabilities were 43% (7 years

old), 48% (10 years old), 46% (12 years old), 54% (14 years old),

51% (16 years old), and 47% (18 years old). We also compared the

heritability of baseline stability in a growthmodel to the heritability

of a simple average of the three ages during childhood and

adolescence, respectively. The heritability of the average scores

was also considerably lower, and closer to the heritabilities at each

time point, namely 55% and 46%.
DISCUSSION

GWA studies of anxiety and depression phenotypes have been

largely unsuccessful so far. Possible reasons include phenotypic

heterogeneity and the relatively moderate heritability [Levinson

et al., 2014]. These two factors are interrelated, however, and the
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results of our study show that the heritability of the phenotype can

be substantially increased by reducing phenotypic heterogeneity.

The latent growth curve model separates individual variability

into variance due to common factors (intercept and slope) and age

specific residual variance such as temporary fluctuations and

measurement error. The intercept factor captures individual vari-

ability that is common over time, and is therefore interpretable as

baseline stability. Consequently, growth curve modeling can serve

to extract a baseline measurement of SxAnxDep. Our study shows

that this latent phenotype is substantially more heritable than the

scores observed at any age, namely between 72% (childhood) and

83% (adolescence) for males and 64% (childhood) and 84%

(adolescence) for females. A measure created by simply summing

data from the different ages was also considerably less heritable.

This gives further evidence that using a latent variable modeling

approach significantly improves our ability to detect the role of

additive genetic effects over simpler approaches. The high herita-

bility of baseline stability is in line with the results of Nivard et al.

[2015] who found that stability in SxAnxDep was mostly influ-

enced by genetic factors. Since baseline stability does not contain

measurement error, it is more reliable, and likely a more informa-

tive phenotype for GWA studies.

In our study, there was considerable heterogeneity in individual

trajectories over time both in the interval measured by mother

ratings when children were 7, 10, and 12-year-old, and in the

interval measured by self-ratings when they were 14, 16, and 18-

year-old. However, these individual differences could not be clearly

grouped into a number of latent classes. Previous studies have

identified more classes (six at maximum) to describe individual

differences in the developmental course of symptoms of anxiety

and depression during childhood and adolescence [Cote et al.,

2002; Brendgen et al., 2005; Rodriguez et al., 2005; Dekker et al.,

2007; Sterba et al., 2007; Duchesne et al., 2008; Feng et al., 2008;

Crocetti et al., 2009; Letcher et al., 2009; Fanti and Henrich, 2010;

Marmorstein et al., 2010; Morin et al., 2011; Toumbourou et al.,

2011; Letcher et al., 2012; Broeren et al., 2013; Legerstee et al., 2013;

Nivard et al. 2009]. However, all, but three of these studies did not

include random effects in the models [Crocetti et al., 2009; Morin

et al., 2011; Nivard et al. 2009]. This can explain the higher number

of identified classes. In one of the studies that alsomodeled random

effects, the results were very similar to ours [Crocetti et al., 2009].

They identified two classes, which only separated individuals with

generally higher scores from the lower scoring majority. This type

of differentiation is unlikely to improve power in GWA studies

since the two classes basically reflect a categorization of the

phenotype. The other two studies did identify four or five classes,

but there were notable differences in methods that could explain

these discrepancies. Morin et al. [2011] analyzed seven time points

and also included a quadratic term.Moreover, the time between the

measurements was shorter (less than one year). Measurements in

our data were separated by 2–3 years. Shorter measurement

intervals and a larger number of observations across time might

provide a better resolution to detect specific trajectory classes with

characteristic developmental growth curves.

The way the phenotype is defined and measured can also have a

substantial impact on finding latent classes in a phenotypic analysis.

In Nivard et al. (submitted) the phenotype was constructed by
grouping individuals according to their chance of having a DSM-IV

anxiety or depressive disorder. This type of measure is based on

severity, and eliminates individual differences within each severity

category. Such an operationalization of anxiety and depression

favors the detection of latent classes compared to using a sum score

of individual items because part of the individual differences are

averaged out prior to fitting mixture models, and individuals are

alreadygroupedby severity. Furthermore, datawere available at four

ages which provides a better basis to detect average trajectories over

time. In our study, a single class linear growthmodel with a random

interceptwas thebestfittingmodel.Unfortunatelywewereunable to

integrate mother and self-ratings smoothly in a single longitudinal

trajectory model because of a discontinuity induced by rater differ-

ences, and instead modeled the two time intervals separately.

In sum, using growth curve modeling, we leveraged information

about thephenotype at several ages,which cancelsout age specific and

measurement error variance, and therefore results in a more infor-

mativeandreliablephenotype indicatingbaseline stability.Wedidnot

detect clear trajectories that group individuals into different classes,

such as stable high in SxAnxdep. This signifies that it is difficult to

predict developmental patterns during childhood and adolescence.

Our twin analyses clearly demonstrate the advantage of longi-

tudinal data for genetic studies. Although it might be of interest to

investigate age specific genetic effects on anxiety and depression, a

promising first step would be to use the baseline stability as a more

reliable and heritable phenotype in GWA studies. These results are

consistent with our recent study using a different measure, the

Hospital Anxiety and Depression Scale (HADS) [Laurin et al.,

2015]. Using latent variable methods we selected items from the

HADS that permitted a narrow and less heterogeneous phenotype

definition. The resulting higher phenotype reliability in turn

improved statistical power in Genomic Complex Trait Analyses

(GCTA) and GWA analyses [Laurin et al., 2015]. The benefit of

more narrowly defined phenotypes in gene-finding studies was also

evident in a study of borderline personality [Lubke et al., 2014]. For

genome-wide association meta-analyses, we therefore recommend

to establish more reliable phenotypes. One way to achieve this is to

leverage longitudinal data and study the effects of genetic variants

on baseline stability.
LIMITATIONS

Amain limitation of our study was that a change in rater occurred

between ages 12 and 14, and that there was an insufficient number

of participants with mother and self-ratings at age 12 to directly

model rater differences in a growth mixture model. Mother and

self-ratings each consisted of three measurements, permitting only

linear but not curvilinear growth trajectories. The combination of

two linear intervals provided a basis to investigate slope differences

between childhood and adolescence, thus theoretically permitting

non-linear growth over the entire period. However, the rater

differences in our data limited the options to smoothly combine

childhood and adolescent trajectories and detect average longitu-

dinal developmental patterns. Consequently, the growth modeling

was done separately for three ages at childhood and at adolescent

data. A quadratic term could not be included. As a result, the twin

modeling was limited to estimating the genetic contributions to
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baseline stability of SxAnxDep in each interval separately. The

analyses showed, however, that three time points are sufficient to

extract a highly heritable phenotype that is likely to provide

increased statistical power in GWAS. Although our study focused

on SxAnxDep, we expect similar benefits of leveraging longitudinal

data for other psychiatric symptom scales.
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