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Abstract Conclusions about the genetic architecture of a
phenotype relating to the contributions of genetic additiv-
ity, dominance, epistasis or genotype X environment
interaction, depend upon the statistical and distributional
properties of the measured trait. This dependence is fre-
quently ignored in contemporary genetic studies and can
radically change the conclusions that may be drawn from
the data. The interdependence of the conclusions about
genetic architecture and instruments used for behavioral
measurement is explored by simulated studies of the
interaction between candidate genes and measured envi-
ronment in psychiatric genetics. Trait values are simulated
(N = 100,000) under several commonly encountered sce-
narios and subjected to two simulated 20-item psycholog-
ical tests each comprising items with different patterns of
difficulty and sensitivity to variation (discriminating
power) in the latent trait. Test scores are generated for each
test by summing the binary responses across all items. The
full model for digenic additive and non-additive genetic
effects and G x E is fitted to the trait values and test scores
under a range of different simulated genetic architectures.
Untransformed test scores show complex patterns of epis-
tasis and G x E even when the underlying effects of genes
and environment are purely additive and the transformation
of symptom counts does not fully recover the simulated
underlying genetic architecture. Accordingly, failing to
allow for the theory of measurement when analyzing
details of genetic architecture may frequently lead to
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replicable over-reporting of interactions and mislead
potential investigators and funding agencies.

Keywords G x E interaction - Epistasis - Candidate
genes - Genetic architecture - Simulation - Item-response
theory - Psychometrics

Introduction

It is hard to imagine that I first met John Loehlin when I
was a first-year PhD student in Birmingham. It was July
1969, while Neil Armstrong and Buzz Aldrin were walking
on the moon. The date coincided a side-trip to the Shake-
speare Memorial Theatre from a “NATO Advanced
Studies Institute for Psychogenetics” engineered by John
Jinks and Peter Broadhurst partly to promote their emerg-
ing application of “Biometrical Genetics” to human and
animal behavior. That night, on the bus to Stratford, the
conferees listened with bated breath to the final moments of
countdown as the astronauts prepared to blast off from the
moon on the start of their return to earth.

Looking back, it was an incredible opportunity for a not-
yet PhD to put faces to some of the names he had seen in
print. Among those names and faces, was a younger John
Loehlin, even then wearing his trade-mark black shoes and
white socks. The tone of John’s thought was known already
from his note modestly but concisely correcting some
conceptual errors in Raymond Cattell’s Multiple Abstract
Variance Analysis (MAVA: Loehlin 1965). I was not smart
enough to understand either but I knew their importance
from my teachers and idols, the late John Jinks and David
Fulker. T remember being a fly on the pub wall as John
Loehlin, Louis Guttman and David Fulker pored over a
notepad in the bar discussing earnestly whether putting
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heritability estimates down the diagonal of a correlation
matrix would solve the “communality problem” in factor
analysis. I didn’t have a clue what they were talking about.

A burning topic in those days, as it remains today, was
genotype x environment interaction (G x E). Although
still unpublished at that point, John (Jinks) and David had
shared a pre-print of their seminal 1970 paper on the
application of Biometrical Genetics to human behavior
(Jinks and Fulker 1970). Among other significant issues
they addressed was that of G x E and, in particular, the
possibility of examining the regression of absolute intrapair
differences for monozygotic (MZ) twins on pair means as a
key to characterizing the relationship between sensitivity to
random environmental influences (intrapair differences in
MZ twins) and average genetic liability (measured by pair
means).

Fired with enthusiasm for this insight, and challenged by
David who had thought a lot about G x E and risk to
psychopathology, we embarked on an exploration of
G x E for personality applying the “Jinks and Fulker”
approach to some early “EPQ” data on twins that Hans
Eysenck had generously shared. Very soon I had generated
some pretty diagrams and David had written the first draft
of a joint paper showing significant, complex, non-linear,
G x E for personality test scores. Recollection is hazy, but
I think David sent an early draft to John Loehlin who
suggested that we should check whether the interaction was
“really” G x E or whether it was just a function of vari-
ation in measurement error over the range of test scores.
“Goodbye” to a good paper, part of my doctoral disserta-
tion and, for all intents and purposes, to a promising
method since very few applications of the approach have
been published in the 40 years since it first appeared.

Sadly, the fact that the approach, and John Loehlin’s
early critical insight, lie all but forgotten by the contem-
porary literature means a fundamental lesson from quan-
titative genetics appears not to have been internalized by
the new generation of behavioral researchers competing for
the prestige and funding that goes with the pursuit of
G x E in psychiatric genetics. The apparently forgotten
lesson from those early efforts is quite simple. You can
generate almost any interaction you want by changing the
scale of measurement. The implication is equally simple:
Don’t make a career out of your interaction until you have
excluded simpler psychometric considerations that owe
nothing to the subtleties of the underlying genetic and
environmental causes of human variation.

The seminal contribution of Fisher, Immer and Tedin
(1932) notwithstanding, geneticists have remained cautious
about the using the properties of observed phenotypic
distributions to infer subtleties of the genetic architecture
of complex traits. This caution stems from the observation
that a variety of more or less arbitrary factors, having little

or nothing to do with genetics, can affect the more subtle
features of trait distributions. Paramount among such fac-
tors are those arising from the fact that the scales used to
measure variation have an ill-defined, relationship to
underlying biological differences. Hence, changes in the
units or method of measurement can lead to drastically
different conclusions about the genetic architecture of the
underlying biological system. Mather and Jinks (1982)
offer a classical statement of the interdependence of mea-
surement and genetic inference:

“The scale on which the measurements are expressed
for the purposes of genetical analysis must therefore
be reached by empirical means. Obviously it should
be one which facilitates both the analysis of the data
and the interpretation and use of the resulting statis-
tics...The scale should preferably be one on
which...the interactions among the genes and
between genotype and environment are absent, or at
any rate as small as they can reasonably be made.”
(p. 64, our italics). Lack of careful attention to this
goal leaves in question the heuristic value of claims
to find G x E in psychiatric data.

With respect to behavior, measurement often boils down
to decisions about which constellations of items, combined
in which way, best characterize the salient latent behavioral
outcomes and psychosocial risk factors. The relationship
between the numbers generated by a test and the way genes
and environment work is tenuous and theory-dependent.
There is an intimate connection between the choice of
measure, and conclusions drawn about the relative impor-
tance of genes, environment and the various possible
interactions between them. Elegant pictures of the role of
G x E interaction may be no more robust than the items
selected to measure the hypothesized latent variable, the
rule used to combine them, or how the scores are scaled
after they have been combined.

Mather and Jinks recommend that “So far as possible
the non-allelic genes and non-heritable agents should all be
additive in action” but also caution that such scales may be
hard to find since “Each gene and each non-heritable agent
may be acting on its own scale” and the elegance of a
parsimonious additive model may be elusive. The problem
is that psychiatric geneticists seldom bother to look. We are
not blessed with decisions as simple as whether to measure
body-weight in kilograms or log-kilograms, though even
here the choice of scale will not be neutral with respect to
conclusions about the contributions of additive and non-
additive effects.

Although the point had been made on several occasions
(see e.g. Eaves and Eysenck 1977; Purcell 2002), a recent
paper (Eaves 2014) reiterated the implications of common
problems of measurement in psychiatric genetics for the
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detection of interaction between measured environmental
covariates and random genetic effects in twin studies. In
particular, it was demonstrated that the use of symptom
counts, characteristic of attempts to quantify clinical out-
comes, would almost certainly generate statistical evidence
for G x E when the underlying genetic and environmental
causes of variation in liability were purely additive. Fur-
thermore, because such interactions depend purely on the
units of measurement rather than biology, they are almost
certain to replicate, a sine qua non for publication.

Studies of G x E in humans are not confined to the
study of multifactorial liability and the structural modeling
of the patterns of covariance between relatives but extend
to the detection and analysis of interaction between can-
didate genes and environmental covariates. Such studies
enjoy a high profile and the generated enthusiasm influ-
ences the direction and funding of subsequent research in
psychiatric and behavioral genetics. With this in mind, and
knowing the inherent problems of interpreting interactions
in twin and family studies, this paper explores the extent to
which the same uncertainties attend apparent demonstra-
tions of interaction between candidate genes and covariates
in psychiatric genetics.

Approach

The problem is addressed by simulating the effects of two
candidate loci and environment on liability to a psychiatric
disorder. A general biometrical-genetic model for the
additive, dominance and epistatic effects of the two loci
(c.f. Mather and Jinks 1982) characterizes the main effects
of the genes on liability and the (linear) response of
genotypes to a continuously variable environmental
covariate (G x E interaction). The model has been widely
used in experimental organisms, including plants and
fruitflies and has the advantage of capturing classical pat-
terns of non-allelic interaction (epistasis) as special cases
of the general model.

Genotypes, environments and liabilities were simulated
for a large number of independent subjects (N = 100,000)
under a variety of configurations for the additive and non-
additive effects of the loci and covariate. Simulated sub-
jects were scored using simulated responses to dichoto-
mous items (k = 20) of checklists using two types of test
analogous to those frequently encountered in behavioral
measurement. The first, resembling a typical checklist of
relatively infrequent symptoms, comprises items with
equal low endorsement frequency (difficulty) and the same
discriminating power. The second, more characteristic of
tests used to assess abilities, comprises items with a wide
range of difficultly and variable discriminating power.

@ Springer

Table 1 Contributions of two-locus homozygous, heterozygous and
epistatic effects to expected genotypic values (after Mather and Jinks
1982, p.83, Table 19)

Locus Genotype Ala
AA Aa aa
B/b BB da + dh + iab ha + db + jba —d, + db - iab
Bb du + hb + jab ha + hb + lab _da + hb - jub
bb da - db - iab ha - db _jba _da - db + iab

See text and Table 2 for explanation of parameters

The general linear model for gene effects and G x E is
fitted to the liabilities and test scores derived from the item
responses to test the main effects and interactions of the
candidate genes and environments simulated under various
“true” configurations of their effects on liability. Parameter
estimates and their sampling errors are recovered and ¢ tests
compared for the various types of measurement to assess
the impact of different approaches to measurement on the
outcome of tests for non-additive effects of genes and
environment (epistasis and G x E) under various combi-
nations of “true” genetic model and mode of assessment.

For various configurations of genetic effects at the two
candidate loci it is shown how estimates and significance
levels of non-additive genetic effects and G x E are crit-
ically dependent on the items and rules for combining them
chosen to measure a psychiatric outcome.

Genetic model

Table 1 presents the general model for the main effects and
interactions of two diallelic loci on a continuous trait
outlined by Mather and Jinks (1982, c.f. Van der Veen
1959).

Various notations and parameterizations may be found
in the literature. The notation used here has enjoyed
widespread application for the analysis of digenic effects
on the means and variances of generations derived from
crosses between inbred lines of diploid species and for
specifying the components of genetic variance in randomly
mating populations (Mather 1974). The model specifies the
homozygous (additive effects) and heterozygous effects
(dominance effects) of the two loci, d,, dy, h, and hy
respectively, and the four possible types of epistatic
interaction between them: between homozygotes, iup;
between homozygotes at the A/a locus (AA versus aa) and
heterozygote at B/b, j.,; between heterozygote at the A/a
locus and homozygote at B/b, j,,; between both heterozy-
gous effects, 1,,. While the notation appears cumbersome,
it has the advantage of generality in capturing characteristic
patterns of classical epistatic segregation in Mendelian
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Table 2 Definition of model parameters

Symbol Definition

Paa, Pb  Frequencies of increasing alleles at candidate loci A and B

m Origin of main effects (“constant™)

d,, dy Homozygous (“additive”) deviations at A and B

h,, hy Heterozygous (“dominance”) effects at A and B

iap Interaction between homozygous effects at A/a and B/b
(“additive x additive™)

Jab Interaction between additive effect at A/a and dominance
effect at B/b

Jba Interaction between dominance effect at A/a and additive
effect at B/b

Ly Interaction between dominance effects at A/a and B/b
(“dominance x dominance”)

Bm Origin of (linear) response to covariate (“main effect of
environment”)

Bda, Homozygous effects of A/a and B/b on linear response to

Bdy environment (“additive genetic effects on G x E”)
Bh,, Heterozygous effects of A/a and B/b on linear response
Bhy, environment (“dominant genetic effects on G x E”)

Biap Additive x additive epistatic genetic effects on response to
environment (G x E)

Biab Additive x dominant epistatic genetic effects on response to
environment (G x E)

Bipa Dominant x additive epistatic genetic effects on response to
environment (G x E)

Blap Dominant x dominant epistatic genetic effects on response
to environment (G x E)

mg Mean of measured environment

O Standard deviation of measured environment

O Residual standard deviation

dihybrid crosses while not being restricted by them. The
classical patterns of epistasis were described in the first
decade of the 20™ century (see e.g. Miko 2008, for a recent
didactic summary of the classical ratios). Thus, the 9:7 F,
segregation characteristic of complementary gene interac-
tion is realized when, inter alia, d, = d, = h, = hy, =
ab = Jab = Joa = lap in Table 1. In contrast the 15:1 F,
segregation characteristic of duplicate gene interaction
arises, for example, when d, = d, = h, = h, = —iy, =
—jab = —Jba = —lap. “Complementary” epistasis arises
when genes form a series in a biological pathway such that
failure of either component leads to failure of the pathway.
“Duplicate” epistasis corresponds to systems that are
buffered by redundant parallel pathways so that failure of
both components is required for system failure and has
commonly been associated with a strong linear component
of the relationship between phenotype and fitness (see e.g.
Mather 1966).

The model for the additive, dominant and epistatic
effects of the locus pair may be extended to include their
effects on the response to an environmental covariate

(G x E interaction). Following the approach of, e.g. Bucio
Alanis and Hill (1966) and developed by Jinks and his
coworkers (see Mather and Jinks 1982) genotypes differ in
their regression on the environmental covariate. Just as
differences in the main effects of the gene pair may be
represented by the parameters d,, dp, hy, hy, iap, jabs jba and
l.b, SO an analogous parameterization may be used to
account for genotypic differences in the (e.g. linear)
regression of phenotype on measured environment. For
example, the regression of the AAbb genotype on envi-
ronment is By, + Pga — Pap Where B, is the regression of
the mid-homozygote on the environment, By, the homo-
zygous effect of locus A/a on regression and Pg, the
homozygous effect of the B/b locus on response to the
environment.

Table 2 summarizes the parameters of the full model for
the effects of a pair of diallelic loci on a quantitative
phenotype. Additional parameters specify the allele fre-
quencies, the mean and variance of the hypothesized
environmental covariate and the variance of residual
effects.

Simulations

The large number of parameters in the digenic model for
epistasis and G x E precludes consideration of any but a
small fraction of the set of possible genetic systems.
Arbitrariness of the units used to measure behavior intro-
duces an additional dimension to explore the impact of test
construction and scoring for the detection of epistasis and
G x E.
Five two-locus models were chosen for simulation:

1. The two locus model with a main effect of environ-
ment (B,,) with no dominance, epistasis or G x E.

2. Model 1 with the addition of heterozygous effects, h,
and hy, without epistasis or G x E.

3. Model 2 plus complementary gene interaction, without
G x E.

4. Model 2 plus duplicate gene interaction, without
G x E.

5. Model 1, with the addition of homozygous effects, B4,
and PBgp, on linear response to the measured environ-
ment (G x E).

The parameter values employed to simulate the genotypes
and individual continuous phenotypes are summarized in
Table 3. Each simulation assumed further that the origin
for the genetic main effects (m) was 10. The measured
environment was assumed to be distributed normally
(L =15, o = 1) and residual effects of unmeasured genes
and environment to be distributed normally (1 = 0,
c=1).
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Table 3 Parameter values employed in candidate gene models for epistatic and G x E interactions

Model  Simulated parameter values
Genetic main effects (G) Environmental effects (E) and G x E
Homozygous Heterogygous Epistatic Homozygous Heterozyous Epistatic
da db ha ha iab jab jba lab Bm Bda Bdb Bha Bhb Biab Bjab ija Blab
1 1 1 0 0 0 0 0 0 05 O 0 0 0 0 0 0 0
2 1 1 1 1 0 0 0 0 05 O 0 0 0 0 0 0 0
3 1 1 1 1 1 1 05 O 0 0 0 0 0 0 0
4 1 1 1 1 -1 -1 -1 -1 05 0 0 0 0 0 0 0 0
5 1 1 0 0 0 0 0 0 05 025 0.25 0 0 0 0 0 0

Table 4 Item-response parameters (a = difficulty, s = sensitivity) used in second simulated test (Test 1 has a = 1 and s = 1 for all items)

Item 1 2 3 4 5 6 7 8 9 10
Difficulty (a) 0.361 —0.564 —1.968 —0.708 —-1.136 0.119 —1.005 1.200 0.287 1.146
Sensitivity (s) 0.859 1.015 0.703 1.372 0.834 0.809 1.347 0.727 1.430 0.618
Item 11 12 13 14 15 16 17 18 19 20
Difficulty (a) 1.616 0.653 —1.640 0.041 —0.520 —1.826 0.276 —1.480 1.602 1.269
Sensitivity (s) 1.296 1.476 0.837 1.182 0.550 1.288 0.603 1.203 1.193 1.388

Parameters assume normal ogive item characteristic curves with latent trait scaled to unit variance

The traits simulated under each model, standardized to
zero mean and unit variance, were then “administered”
two simulated tests comprising 20 binary items. Item
parameters were chosen to reflect two different extreme
measurement models. Raw test scores were generated by
summing the 0/1 item responses across items. Both tests
assumed normal ogive item characteristic curves for each
item. The items of the first test were assumed to have unit
thresholds (item difficulties) and sensitivities (discrimi-
nating powers). Item difficulties of the second test were
assumed to be distributed uniformly (ranging from —2 to 2)
with discrimination parameters distributed uniformly
(ranging from 0.5 to 1.5). Thus, the first test generated
symptom counts with a J-shaped distribution characteristic
of those often encountered in psychiatric assessment. The
second test, with item difficulties distributed uniformly
across most of the range of simulated trait values generated
scores more symmetrically distributed around an interme-
diate mode. Table 4 shows the specific item parameters
simulated for the second test. In addition, the raw trait
values and test scores were dichotomized to generate out-
come (“disease” phenotypes) at thresholds giving the
closest to 20 % prevalence in the population. The raw sum
scores for the first test were also subjected to a square root
transformation to minimize the effects of heteroscedasticity
on the subsequent regression analysis of the raw symptom
counts (c.f. Bartlett 1947) and spurious non-additive
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genetic effects (c.f. Eaves and Eysenck 1977). It will be
seen that simple transformation does not always have the
desired result.

100,000 independent observations were simulated under
each of the five genetic models. The sample size was
chosen to give estimates that were stable enough to allow
relatively reliable inferences about the power and biases
implicit in the detection of the main effects and interactions
of the pair of candidate loci and the environment but not so
large as to overwhelm a typical laptop computer. Simula-
tions and regression analyses were conducted in R 2.13.2.

Statistical analysis of simulated data

The full linear regression model, allowing for additive,
dominance and epistatic effects of the two loci on the
average phenotype and linear response to the covariate
(G x E) was fitted to the data generated under each of the
five models for genetic and environmental effects (above).
The raw trait values, sum scores for the two simulated tests
and transformed scores for the first test were all analyzed
on the assumption of normal errors. The dichotomous
disease phenotypes were analyzed by logistic regression
assuming binomial errors. In addition to the full model, the
“true” model, assumed in generating each data set, was



583

578-590

Behav Genet (2014) 44

SIOIIO [ULIOU (JIM 9JOOS WINS POULIOJSUET} J00I-o1enbs Jo uorssaISar oy SI , UONBULIOJSULIL], 100y-0Ienbg,, pue IO [EULIOU [JIM 9JOJS WINS JO UOISSAITAI oY) oIe ,S9J0JS WING,, ‘SIOLIO [BIUUOUIq [)IM
QWI0INO PAZIWOJOYDIP JO UOISSAISAI ONSISO[ ST, UOISSAUTOY ONSISOT,, “SIOLID [BULIOU Y)IM UOISSAITOI JIe) JUS)B[ 9N} ATk  SIOL [BULION],, “POYIAW [BINA[BUR 3y} 10 'SUONEAISqO Judpuadapur 00000 SI [opow Yoea 10y ozis d[dures o
! yorp J ! nstsof st uot Y ONsIso,, I i ! ! [ « I N, "POU: [BONAT 3 104 ! q put [ St [epour 4 )} 9ZIS 9 UL

- 90 870 SI0— SO'1 6v'0— £8°0— 0T LT'C— 8T 9¢0— 70— 000— LT°0— 69°0 €01 8I'S  6C¢ 1 uorsso1gor
- - 670°0 L200  vI00— 1600 9%0°0— 8L00— €LI'0— S8I'0— %960 O¥CO— +9C0— <¢000— 9¥6'0— 8I¥'0 TC90 LS8T 616C 0 onsISo]
- - oro €0 900 €re— 80°0— LEO0  ¥S0I—  6C0I— 9919 o~ 600— oro - 80°0— ¢l LO9E €6'SE } yonewojsuen
0LY'0 19570 1000 2000 0000 110°0—  000°0— 000 8¢00— L£O'0— 0€TO 8000— TO00— €000  0T0'0—  0000— €00 SS90 €590 O j001 21enbg
- - LT0 180  90°0— £9'8— Lyl 00C S6'0— €6°0— LEV9 00— LT0 00°1 91’8 €ro— 69— 869C 0L9CT 1 soroweied
¥8¥°0  90T’€ 1100 €200 T00'0—  SLI'0— w00 LS00 6100— T100— 60¢T TB00— 0r0°0 LY1°0 L¥8°0 S61°0— 9vT0— 108°C [ILLT O 2103s wing W)l S[qelrep
- - LY'0 8C0— 00— 8T'1 LT'T— L0~ LLT— oL T— 11'SI 0€0— LT°0 81°0 81— 8¢'1 0 LI'9 919 1 uorssa1gor
- - 6¢£0'0  020'0— 6200— ¢80°0  +¥800— ¥SO0— CIT'0O— CIT'0O— 1960 [ISI'0— 9LT'0 6L00 I¥L0— S19'0 ILE0  99%'C TOv'C O onsI807]
- - 88°0 90°0 960 €LEl— ss'e o€ 269 STS  6£°6S S 144 8¢'1 L6°ST 0CTy— €5e—  09°LT  Ig6l V' voneuuojsuen
0LY'0  £€£6°0 7100 100°0 8000 180°0— 0€0°0 §200 1700 1€0°0 TS0 L800— 160°0 6500 €870 6L1°0— O0SI'0— TES0 €850 O 1001 arenbg
- - 90 £€0°¢ L8V SO'L— [ el LO'61 T8l 6£°09 S 79€— 9¢e— YLST 98¢~ 89'¢— 9¢'¢ 919 1 s1orowered
Y970 8S9°¢ 120°0 ¥91°0 0910 v91°0— 6¥0°0 £v0°0 (4240 eer’o 10V T S9¢°0—  9090—  €95°0— Y981 9¥9'0— T190— +€90 0¢€L0 6 21035 wng war [enbg
- - 65°0— 80— 01— 6T0 €ro w0 - vLO0— 98 00°1 96'0 0¢'1 §S°0— Y€0— €vr'0— ev'e sre 3 uoIssaISol
- - 6600— 8II'0— SSI'0— LEO0 6100 0900 OvI'0— #600— 8901 80°1 968°0 ISTT  6v0— 6TE€0— €0¥0— S8LT 8SST O onsISoT
- - - - - - - - - - €961 - - - - - - 8TCc 0¢tc 3
$SS°0 900°1 - - - - - - - - 96¥'0 - - - - - — 100T 900T 6 SIOLI9 [BULION
- - - - - - - LY'0 - Il 8168 - - - - - ST0— - 8’68 }
cee’0 0eTl - - - - - +00°0 - 9000 610 - - - - - 0100— - 1860 6 SIOLIS TeULION
- - 81'0— 6C°0— 8C0— SS0— L9°0— €'0— 'l 9¢'0  €9'8L €r'o wo €50 0 19°0 0S°0 LY'6C 6£0¢ } en
$S€°0 9001  C00'0— €000— €000— +¥000— 9000— ¥000— 800°0 2000 1050 600°0 6100 200 L10°0 8200 €200 6560 6860 O SIOLIS TeULION Juadje| aniy,
POYIN eleq
0 0 0 0 0 0 0 0 S 0 0 0 0 0 0 I I
g valg vl g g Vug “pg g " ™ vaf ™1 Rt fy Yo oood o Yp
oneisidg SN0AZoI10)oH snogAzowoy q oneysidg snogA3o1010  sno3Azowoy
H X D pue (4) $199JJ2 [RIUSWUOIIAUY (D) $199JJ2 ureW dIjoUN)
s1ajouwrered
A o sonjea Jojowered poyewnsg pare[nwig

(SuonoeIduI ou) | [OPOJA JOpUN SI[QELIEA POALIOP PUEB SIN[BA JIEI) PIJB[NUWIS 0) S[OPOW JUAT JepIpued SumIy PoIdA0dAI SABWNSH § d[qe],

pringer

A



=)
=N
S
0
o~
‘N
<
<~
3
=
a
5]
=
3)
O
> . . . . . . . . . . . . . . . . .
S - - 68°0 61°0 8¢0  TI'0— LLT— ort— €eC— L'T— TO'L 8L0— Iro— §To— 010 yoe Ly'e 0L'c e 2 uorssa1gor
npm - - Sy1°0 0€0°0 $€0°0  8100— LLTO— S9I'0— 6I€0— +9T0— 98I'l ¥68°0— 601'0— 09T0— 6600 I6e°¢ 886°¢ 069°C v0Ee 0 onsI807]
- I O S9'I— 86'1— Ly'v— L8'S— LY'S— LS9~ 0S9— 69'IL 6v'0— LS0— 600— 9Tl L8'8C 89°6C 86'1¢ ILYE 3 uonewsojsuen
8960 0TS0 LOOO— 8000— 6000— SI00— LTO0O— SCO0— CC00— 1200— 9¢T0 9100— €I00— <T000— 1200 8190 L09°0 685°0 G860 6 1001 a1enbg stoawered
- - SECT— 16°¢— Y6'€— ol'L— L0T 8C'¢ €L'T S6'y  S6'C9 61°¢ 681 IS 888 cLsl L6'61 8TSI v1oc 3 wa
666’0 LL6'C 8800— €600— SOI'0O— SEI'0— 950°0 0100 °L00 600 8811 119°0 199°0 LELO  SS80 1v1e §T6'l L90C wve'r 0 21035 wng Q[qeLIEA
09°0— 90— £8'0— 08'0— €r'o— cro 00 Se0 Ise LEO Y0 790 650 oSl or'l 6C'1 LO'T 1 uorssaIsar
SSI'0—  991I'0— 0IT0— <20TO0— Ce0'0— 1€0°0 [410X0] 6800 ¢STO 9v¢°0 0590 6’0 ¢S80 [ 6981 00°C (4% ] onsIso]
- - 90— PE9— 6¢°6— wL— LT'6 '8 148! 9Tyl LSTS $6'9 8L°01 01r’or I8¢l 909 1L 0€'9 SI'L 3 yoneuwoysuen
0€S'0 8980 ¥¥0'0— 6¥0°0— THO0— THO0— 1L0°0 §90°0 £80°0 8L0°0  68C0 88¢°0 Sero 1070 88¢°0 1vT0 18C°0 LLTO 10C0 6 j001 21enbg
- - 06'1 £€9°C I¥'C 9LV el 8L'TI 8C°0C 10T 951y 0r'e 9L'E 907 98¢ 11— 00'T— 0Ty— 244 ] s1orowered
9¥'0  0£S€E ¥80°0 ¥80°0 9L0°0 L01°0 91¥°0 10¥°0 12940 0S¥'0  0£6°0 8L¥°0 2090 6690 Trr0 O0¥T0— 091°0— I8¥0— 80SO0— 6 9100s wng woyt [enby
- - 680~ 68'0— Y0’ I— 88°0— 143\ ¥T0 Y0 P€0 9L £€8°0 80 660 LLO 9Tl 9I'l €Tl Il 1 uorssa1gor
- - 1€T0— 6CT0— 99C0— 1CC0— 9¢0°0 0900 0900 800 8760 8¢€T'1 161°1 6vy'1  C0I'l o8l 9691 9Ll 0091 O onsI807]
- - - - - - - - - - €961 - - - - L'9G1 9'LSI 8'CCT 0ece
7€9°0  900°1 - - - - - - - - 9610 - - - - L66°0 €001 100°1 900'T 6 SIOLIS TeULION
- - - - - - - cro - ¥S0  19°C8 - - - - - Ev'eT - 18ce 1
€680 LTe'l - - - - - 100°0 - €000  26v°0 - - - - - 100°T - L660 6 SIOLIS TeULION
- - 8I'0— 0€0— 8C0— §S0— L9°0— ev'0— (44! 9¢'0  €9'8L €ro wo €60 ¢SO0 e LY'6T 6£°CC 60} en
$€9°0 9001 200'0— €000— €000— +000— S000— ¥000— 800°0 000 1050 6000 610 200 LI00 8201 €20l 6560 6860 6 SIOLIS TeULION judye] dniy,
POWN ereq
0 0 0 0 0 0 0 0 S0 0 0 0 0 I 1 1 I
g valg g vy g Vug g vrd g ™ vef A oy Yy p vp
oneysidg SN0AZ0Ia1oH sno§Azowoy q oneysidg sno§ASo1a0H sno§Azowoy
q X D pue () $109JJ9 [BIUSWUOIAU (D) $1991J0 UIBW J1JAUAD)
s1oyowrered
A o sanjea 1ojowered pajewnsg parernuis
(4 X D 1o siseisido ou) g [9pOJA Jopun SI[GeLIEA PIALISP PUB SINBA JIBI) PAJR[NWIS 0) S[OPOW U3 JepIpued Sumy PAIdA0IAI SAIBWISH 9 IR,
<
0
e}

pringer

A's



585

578-590

Behav Genet (2014) 44

[opowr STy} 10J PAUAsAId 10U PuB JANBULIOUIUN T8 $II0DS WINS PIZIWOIOYIIP 0] UOISSAIFI ONSISO] Sumy woiy soyewnsy

- - 8¢ge— 8I'y—  OV'S—  ¥PL—  99%—  PpLE—  OV9— €I'S— S¥F¥9 90°ST  9L0C vLIT €T0E€ €80T 0T0CT LS6C ¢€£8C 3 uoTRULIOJSUET)
€0L0 6CF0 8I00— 9100— 1200— 0200— 8I00— +I00— LIOO— +I00— SLI'O 9I¥0 SOF0 L0 0TFO 60¥0 ¥6£0 TI¥0 +6£€0 6 1001 21enbg
- - 900— LEO0  LLO— €6'0— €60~ 18°0 81°0 660 8995 €¥Cl LELT SI'8T STST 6S°LT 1891 [1I'¥C 6SLe€C 3 s1ojowrered
STL0  8I¥'T  TO0'0— 8000 LIOO— ¥100— LOOO— L10°0 €000 S100 0060 ¥e6'l 806'T 100C LL6'T 9v6'l L¥P8'T 1161 0981 6 91058 Wng W SqeLIeA
- - 98°C ¥6'¢ 90°¢ 9¢'9 L9¢ 10°¢ L 6CL 8I'6V  SL6 €9vI 0¢€Sl 9I'6l THYI LTSI €081 1081 ) uoneULIOJsULI)
9€L'0  $89°0 §20°0 $20°0 6100 8200 €200 8100 1€0°0 €00 vITO 0¢k'0 9SO 0840 STHO  TSY'O0  9LY'O  00¥'0 000 6 1001 21enbg
- - LT'8 AN [SA0 SY'LI YyLL 08°LI Py LI 08°LL  09%€  8L'I 09°¢ ISy 00¢€ 0Cv 8Ty S8CT 65T 3 s1ojowered
690 106C 66C°0 S6T°0 69C°0 12€°0 SLTO YLT0 12€0 8CE€0 L£90 I€€0 SLY'O L6S0 I8TO LSS0 +¥9S0 L9TO €¥TO 6 Q1098 wng woy [enbg
- - 100 100 000 000  000—  000— 100— 100 200 €00 00 0 €00 000 000 000 COO 2
- - 1190 S09°0 0L0°0 010 100 90T0— 681°0— °EE0 €790 0¥8'9 $E6'9 L8YY L8TY L7990 8ESO 8TKO ¥96T 6 UOISSAIZAI dNSIZ0]
- - - - - - - - - - €9ST  ¥8L O6TIT TTIT §9ST 90IT LTIT €9ST 9961 )
9080 9001 - - - - - - - - 96¥'0 L66'0 9001 CIOT 6660 8660 00T 8660 1001 6 SIOLIS [eUWION
- - - - - - - LTO— - 0Y0— L6009 - - - - - S6'ST - 169¢ 1}
TLEO  LOB'T - - - - - 2000— - €000— ¥6¥°0 - - - - - 6051 - 9tST 6 SIOIIS EWION
- - 80— 0¢€0— 8C0— SS0— L9°0— €r'0— wl 9¢’0  €9'8L 8SSI 0€TC 9TTC VTIE ¥ETT 6£TC Ly 6£0€ I
9080 900'T C000— €000— €000— ¥000— 9000— ¥000— 8000 2000 T10S0 6001 6I0T +2O'T LIOT 80T €TOT 6560 6860 6 SIOLIS [EULION Jen juoje] anif,
PORIIN ured
0 0 0 0 0 0 0 0 S0 I I [ [ I I I I
g ovalg g Ty fug Vugd “pd g v vpoovarowvbooavw sy vy " Yp
oneysidg SN0AzoI10)oH sno§Azowoy q oneysidg  snoSASo10)oy  snoSAzowoy
g X D pue (F) $199JJ0 [BIUSWUOIIAUY (D) $199JJ0 UTEW OTIOUID)
1 o sonfea 1ojowered pajewunsg s1ojowered pajernuwig

(3 x D ou ‘siseysido Lreyuowedwo)) ¢ [OPOJAl JopUN SI[QELIEA PIALIOP PUE SON[BA JIEI) PAJR[NWIS 0) [OPOW [[NJ SUMIY PAISA0IAI SAJBWNST [ AqEL

pringer

A



578-590

Behav Genet (2014) 44

586

[opou STy} 10§ pAUSAId J0U puL ANBULIOJUIUN JIE SIIOJS WNS PIZIWOIOYDIP 0) UOISSAITT oNsISo] Sumy wolj sajewnsy

- - 981 89T 11 81T 9T €T~ PET— €81— LI'89 OFLI— SOV¥C— 9I'€C— €5Te— 69¥C 1Lv¢C 99°C¢ Cree 1 yonewojsuen
€60 SSS°0 1100 8000 9000 ¥000  €10°0— T100— S00'0— 9000— O¥C0 1C90— 9090— 88S0— ¥850— €290 €290 9860 S6S0 0 1001 arenbg T
- - 9I'v— $6'9— 0S'L— SOTI— 8¢°¢S €6°S 6L°01 6v'01  LI'T9 €L~ 0T'6— 18— 0STI— 1701 (40! ILT1 SO'TT 1 won
YO¥'0 LLTE TLT'0— €0T0— 1CC0— 0€T0— ¥91°0 €LT°0 o 81C0 ILTT ¥CST— SSE€TI— CTCCl— 01— [43! €eel we'l 89TT 0 9100s Wing Slqerre A
- - 6V'8— TSTI— 681I— LLSI— IT11 SY0T1 6081 12791 86'%S £€9°0 69'1 €Tl wo  €e0— $9°0 ILC=  6L0— 3 yoneuuoysuen
°6C°0 986'0 90I'0— OIT'0— SOI'0—  6600— 6600 600 €110 101°0  +¥€0 0v0°0 9L0°0 9S1°0 100 S10°0— 6200 9800— ST00— O j001 21enbg
- - SL'8— 9¢TI— 99TI— 9L9I— S AN L8°01 €181 OI'LT  9S°¢S 6v'¢ LTS 69°S LY'9  LTY— 6v'€— LL'L— 69— 1 s1ojowered
8IT0 8lI6c €ev'0— Iev'0— SIY0— 9IY0— woro 6LE0 0St°0 S0 1¢¢°1 0880 0260 120°1 7800 S9L0— 1T90— S860— 9.80— 0 2103s wng woy [enbg
- - 100— 00— 00— 00— 100 w00 w00 200 SO0  SO0— §00—  +¥00— 00— S0°0 S0°0 S0°0 SOV uorsso1gor
- - 9S1'0— €0T0— 9¢T0— 9¥T0— 9LT'0 €81°0 01T0 8IC0 V.90 09C¢— O9l0¢— L8LT— SLLT— 6v1'¢e 901°¢ 886'C 6T 6 onsI807]
- - - - - - - - - - €96T  ¥88L— 90IT— &60I— L9ST— 9011 LTIT €961 L9681 1
I#S°0  900'T - - - - - - - - 96¥'0 TO0T— +66'0— 886'0— 100°T— 8660 00'T 8660 1000 6 SIOLIS [eULION
- - - - - LY'0 - €91 TTT8 - - - - - €SI - 6es 2
661'0  8TE'T - - - - - ¥00°0 - 0100 06¥°0 - - - - - (440 - L9%0 6 SIOLIS [eUWION
- - 810~ 0€'0— 8C0— SS0— L9°0— €r0— w1 9¢'0  €9'8L TESI— L¥IT— 0TIT—  61'0c— €T 6£'CC LY'6T 6£0e 1} en
I¥S'0  900'T  T00'0— €000— €000— ¥000— 9000— +000— 8000 2000 1080 1660— 1860— 9L60— €860— 8201 €201 6560 6860 0 SIOLIS [BULION Juaje aniy,
PO vleq
0 0 0 0 0 0 0 0 S0 | | | | I I I I
g veg Wy vy fug Vugd g vrd g ™ vat e o~ oy Yy p vp
oneysidg SN0AZ0Ia10 sno§Azowoy q oneysidg sno§ASo1a10H sno§Azowoy
d X D pue (g) $199JJ9 [BIUQUUOIAUL (D) $199JJ0 UTEW 01U
s1ojourered
A o sonfea 1ojowered pajewmsy parernuig

(3 x D ou ‘siseysido ouad ojeordn() f [OPOJA JopuUn SI[qELIBA PIALIOP PUE SINBA JIBI) PIAJB[NWIS O} [9POU [N SUINY PAISA0IAI SAJewnsy § Iqe],

pringer

A's



587

578-590

Behav Genet (2014) 44

[opour s1y) I0j @U.—EOwuhQ jou pue dANBULIOJUTUN T8 SAIOJS WINS PIZIWOIoYdIp 0} EOmwmmumo\— Uﬂm_wa; wﬂﬁu@ woIy sajewnsy

- - 9L0— LET 60T V91— LY'S 99'¢  TSEl  09€l vy or 950 19°0— LE0— €S 9S°0— 71— 0L€€  €9¢€ 1 yoneuuojsuen
91L'0 80¥'0 ¥000— S00°0 000  THO'0— L10°0 1200 S€00 S€00  SOI'0 G100  T100— LOO0— 6900 0I00— 9200— Sv¥0 ¥¥P0 6 1001 arenbg
- - €S0~ €9 s 06— 1ee ¢Sy TL'8T 8881 VLLY LTO0  6ST—  0I'CT— Wl LLT—  TLE— €T6C 806 1} s1orowered
9€L'0 66TCT €100— 6C1°0 811°0  €0T0— 8900 7600 €LTO0 SLTO STLO 0700  0LTO0— 1TT0— ¥26'0  16T0— 68¢0— SLI'T 91T O 2100s wng W S[qeLIe A
- - 00°¢ 9801 €I S9CI— or'e 08°C 8981 <TOLI TO66F €LCT—  ¥9CT—  9T'e— 6C1C  TSS—  ¥8Y— 0SYC S€9C 3 yoneuuojsuen
8TL0  SL90 920'0 $90°0 8900  L900— 1200 LT00 0800 €L00 ¥ITO 6IT°0— 1800— 8600— SO¥'0  OLT'0— 8PI'0— SE€S0 9.0 0 j001 21enbg
- - 9¢6— IS4 G881 86€°¢ WY S6'v  99°¢E  9¢'ee  L9T9 8¢ YOVI— ITYI— o LS6— €6°6— €TTl 69Tl 1 siojowrered
LYL'O0  €¥ST  00€0— (] (1340} $90°0 [48%0) CIT0  €vS0 8¢SO T10°1 0€9°0 TO91—  +S91— 9¢9'l  ¥IT'I— <TOI'T— LOO'T SvO'T O Q1008 wing woy [enbg
- - 100 000 000 000~ 100— 100— 100  TO0 1€00 100 10°0 10°0 10°0— 100— 100— <2200 0200 1} UOTSSAISAI
- - 988°0 861°0 €01°0  T1600— €E€¥'0— L6€0— SOFO SOS0 T+v0'1 606'Y 168°C 96€'€  6CCI—  6091— ¥8LI— 9¢L'€ L¥PE 6O onsI807]
- - - - - - - - Cley - 0¢sT - - - - - - - 188y 3
Ge80  0€0'T - - - - - - W0 - Lev0 - - - - - - - 9STT 6 SIOLIS [eULION
- - - - - - - - - - VST - - - - - - P98y T1S8y 1
€80  LEO'T - - - - - - - - Sev0 - - - - - - ¥STT 8STT 0 SIOLIS [eUWION
- - - - - - - - TELS S9SS  t¥9ST - - - - - - ey ey 3
w80 9001 - - - - - - 9ST0 ISTO 96¥°0 - - - - - - 6960 T100T 6 SIOLIS [eUWION
- - 80— 0¢0— 8C0— SS0— L90— €¥00— THO¥ 9T'SE 698L €ro wo €50 0 19°0 0s'0  L¥'9T 6c£0¢ 3
w80 900'T <T000— €000— €000— ¥000— 9000— ¥000— 8STO TSTO 1050 6000 6100 200 L10°0 8200 €200 6560 6860 0 SIOLIS [EUWLION  JTed} Juoje| oni],
POWIN ereqg
0 0 0 0 0 0 ST0 STOo S0 0 0 0 0 0 0 I [
g valg g Ty fug Vud  %d Yd M ™1 vat e i y g%
oneysidg SnoAzo10)o  SnoSAzowoH q oneysidg snogA3o1010  sno3Azowoy
d X D pue (g) $109JJ0 [BIUQUWUOIAUL (D) $199JJ0 UTEW 01U
s1ojourered
- o sonfeA 1ojowered pajewnsyg palenuiIg

(4 X D sno§Azowoy ‘eouruUIIOpP OU) G [OPOJAl JOPUN SI[QELIEA PIALIOP PUE SON[EBA JIEI) PAJR[NWIS 0) [OPOW [[NJ SUMIY PAIGA0IAI SAJBWNST ¢ AL

pringer

A



588

Behav Genet (2014) 44:578-590

fitted and a variety of reduced models that were expected to
illuminate errors of inference that might attend the unwary.

Results

The results of fitting regression models for candidate genes
and environmental effects are summarized for each of the
five simulated data sets in Tables 5, 6, 7, 8, 9. Parameter
estimates and t-values are given for each model, test and
simulated data set (N = 100,000). Residual standard errors
and squared multiple correlations from regression models
are also tabulated where appropriate.

Central to the current exercise, when the full model is
estimated for the true latent parameters, with all the
parameters for the main effects and interaction of genes
and environment, the precise pattern of simulated values
for all five cases is recovered. In each case, parameter
estimates are very close to their simulated values and the
values of non-zero parameters typically yield highly sig-
nificant t-values with these very large samples. Thus, for
data simulated under the digenic additive model with no
non-additive genetic effects or G x E (Table 5), estimates
of d, and dy, are 0.989 and 0.959 respectively, the regres-
sion on phenotype on environment is 0.501 and the residual
variance is 1.006 as expected. All other estimates are close
to their zero expected values. The results for the other data
sets (Tables 6, 7, 8, 9) also correspond to their expected
values as long as the true latent phenotypes are measured
directly.

In contrast with the regressions on the true latent trait,
the picture changes markedly when analysis is based on
test scores for the digenic additive model. For example,
even when data are simulated under the simplest additive
model (Table 5), regression analysis of the symptom
counts, S, derived from a test with equal item parameters
(“Test 17) yields a much less parsimonious model, in
which not only homozygous effects of both loci are sig-
nificant (though less so) but there are also marked non-
additive genetic effects, including some dominance and
strong additive x additive epistasis. Furthermore, raw
symptom counts yield highly significant evidence of
homozygous effects on sensitivity to the environment: (Bg,,
Bap) = (0.423, 0.442) and even evidence of higher order
interactions with apparent epistatic effects contributing to
G x E: (Biab» Bjavs Bjan) = (—0.164, 0.160, 0.164).

A square root transformation of the test scores improves
the fit of the additive model but, with this large sample, still
yields evidence of significant homozygote x homozygote
epistasis (iy, = 0.483) and supports some epistatic effects
on G x E (Bjap = 0.483). Although non-additive effects
may not be statistically significant with smaller sample
sizes, estimates will be biased in the direction of detecting

@ Springer

spurious G x E leading to inflated type I errors when the
properties of measurement are ignored.

The situation is much improved when analysis is con-
ducted on scores derived from items with difficulties dis-
tributed uniformly over the range of latent trait values.
Only the homozygous main genetic effects and main effect
of the measured environment are significant. There is no
convincing evidence of dominance, epistasis or G x E.

Fitting the full model to the dichotomized trait values of
test scores yields the correct conclusion for data simulated
under the additive genetic model (Table 5), showing little
support for any but homozygous main effects of the two
candidate loci. However, significance levels are much
reduced under the full model, reflecting substantial loss of
information when the continuous variables are dichoto-
mized. Fitting a model that ignores all possible non-addi-
tive effects yield highly significant estimates of the additive
main effects of both loci but the gain in significance pre-
sumes prior knowledge of the genetic architecture that
might not be justified in practice (compare results for other
simulated genetic models).

Taken overall, the results of testing candidate gene
models for epistasis and G x E may be seriously mis-
leading even under the simplest additive genetic model
(Model 1) when investigators are forced to analyze test
scores based on items with restricted range of difficulty.
Dichotomizing scores and trait values avoids much of the
potential bias but at the cost of dramatically reduced power
in exploratory analysis. The problem is only partly resolved
by a square root transformation of test scores but difficul-
ties can be minimized if it is possible to construct a test in
which the item parameters span the range of hypothesized
trait values.

Results for other, more complex, genetic architectures
(Models 2-5, Tables 6, 7, 8, 9) only get worse. In every
case, fitting the full regression model to the simulated
latent trait values with normal errors (N) yields unbiased
estimates and most conclusions are qualitatively correct
when models are fitted to scores on the second test with
items spanning a wide range of difficulty. However,
dichotomizing the trait or test scores, even with these large
samples, leads to such marked loss of information that
recovery of the true genetic architecture may be difficult or
impossible given the range of possibilities a priori. In
virtually every case, scores based on counts of relatively
infrequent symptoms yield spurious results of remarkable
complexity. The problem is not generally resolved by
simple transformation.

When the “true” model involves only additive and
completely dominant effects at the two candidate loci, the
results for the untransformed symptom counts (Test with
equal item parameters, Table 6) provide strong support for
complex non-additive effects, especially epistatic
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interactions and G x E interaction. Transformation makes
matters worse by strengthening support for epistatic inter-
action between the candidates. Scores on a test with uni-
formly distributed difficulties (Test with variable item
parameters, Table 6) also suggest some epistasis but pro-
vide no hint of G x E. Dichotomizing the scale makes it
virtually impossible to say anything certain about genetic
architecture in the two-locus case.

When the true model involves complementary gene
interaction (Table 7) analysis of the sum of the raw
symptom counts shows striking evidence for all types of
G x E at the two loci. Indeed, statistical support for G x E
far outweighs that for the additive, dominant and epistatic
main effects of the candidate loci. If the effect of one
interacting candidate locus is removed from the model, the
main effects of the other are grossly overestimated.

In this example of complementary gene interaction,
transformation redresses the balance somewhat by reducing
the support for G x E but still yields markedly inflated
type I error rates. A test with variable item difficulties
(Table 7) recovers the right qualitative answer for the
genetic architecture. Again, dichotomizing any of the
scales makes it all but impossible to estimate any param-
eters of the full model with sufficient precision to resolve
individual components of the model (results not tabulated).

The qualitative results in the presence of duplicate gene
interaction (Table 8) resemble those for complementary
epistasis but the symptom counts show still far greater
support for G x E and the effects are largely untouched by
transformation. Attempts to resolve all parameters of the
full two-locus model are completely frustrated by lack of
information about the critical features of the model in the
dichotomous case (estimates not tabulated).In contrast to
the finding in the presence of complementary epistasis,
when one of the interacting loci is omitted from the models
for the trait with duplicate gene interaction, estimates of the
effect of the other locus are too small and far less signifi-
cant than expected under the correct model.

All the above datasets were generated on the assumption
of no G x E interaction in liability yet all provide strong
evidence of non-additive effects when subjected to the
vagaries of psychological testing. The final data set
(Table 9) explores the consequences of simple digenic
G x E in which the main effects of both loci are homo-
zygous (only d, = dy, > 0) and both loci show homozygous
differences in their linear response to the environment
(Bd, = Bdy, > 0). If the true scores are known, the
parameter estimates of the full model, including GE and
epistasis, correspond to those of the underlying genetic
architecture. Two further “wrong” models were fitted to
the true scores to illustrate the possible biases that ensue
from model misspecification. Omitting the two homozy-
gous effects on G x E leads to grossly inflated estimates of

the main effects. Allowing one locus to affect the average
response and the other to affect G x E (d, > 0, d, = 0,
Bd, = 0, Bdy, > 0) leads to biased estimates of both genetic
parameters. As in other cases fitting the model to
untransformed symptom counts (test with equal item
parameters) produces substantially biased estimates and
misleading conclusions supporting much more complicated
models than necessary to account for variation in latent
trait values. Consequences include spurious support for
epistatic effects on average response and on response to the
environment (G x E). If anything, square root transfor-
mation only makes matters worse.

Can “Truth” be recovered?

The simulations presented are not intended to exhaust all
the nuances of epistasis, G x E and measurement that
might apply in any specific context but they certainly warn
investigators not to oversell claims to seek or find G x E
for measures of human behavior. Given that human
behavioral and psychiatric genetics do not have access to
true latent trait values or continuous measures of under-
lying biological processes, investigators have to rely on
scores derived from clusters of indicators such as test items
or symptoms. The simulations above confirm the intimate
connection between the statistical conclusions drawn about
the additive and non-additive contributions of candidate
loci and the measured environment to behavioral traits.
Even in the simplest case (Table 5) of a two-locus additive
model (with no dominance, epistasis or G x E), statistical
analysis of counts based on many relatively infrequent
symptoms biases results in the direction of detecting sub-
stantial epistatic and G x E effects. Indeed, in this simple
case, the effects of G x E and epistasis are expected to be
more significant than the main effects of genes and envi-
ronment. A square-root transformation of the skewed
symptom counts strengthens support for additive effects,
but fails to remove the apparent contribution of epistasis
and G x E. In large samples, such as those simulated, the
effects of G x E are expected to be statistically significant.
With the smaller samples currently employed in psychiatric
genetic epidemiology, significance of non-additive effects
is comparable with that of the main effects pointing to a
serious bias towards Type I Errors for the detection of
epistasis ot G x E even in transformed symptom counts.
Several possible solutions might be offered in the pur-
suit of unbiased truth. The symptom counts may be cate-
gorized (for example into affected and unaffected subjects)
and models fitted by logistic regression. This approach may
minimize spurious interaction in simple cases but usually
leads to such a serious loss of power that choosing between
models of different complexity will prove difficult if not
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impossible with feasible sample sizes. It was difficult to
find significant results with the large sample sizes used in
the simulations.

A second approach is to design a better test, i.e. one in
which item difficulties span a wide range of latent trait
values, resembling the second simulated test in the exam-
ples above. In this case, regression analysis of a 20-item
test recovers the “true” (additive) model with parameter
sampling errors close to those that would be obtained if the
true trait values were measured and little evidence for
genetic effects on linear response to the environment.
However, even a better test of this type is still affected by
issues of scale.

We are thus led to the frustrating conclusion that any-
thing we say about G x E in psychiatric genetics is criti-
cally dependent on the interface between biology and
psychometrics to the point that analysis symptom counts
and dichotomous outcomes is likely to be seriously mis-
leading since estimates are biased and/or the type I error
rates are higher than assumed. Patterns of main effect and
interaction change as a function of the items chosen for
measurement and the underlying truth about the genetic
architecture of liability.

The ideal approach, suggested in a parallel set of sim-
ulations of G x E in twin data (Eaves 2014) is to integrate
the model for genetic and environmental effects on liability
with an item-response theory (IRT) model for the rela-
tionship between latent trait and test responses. If the IRT
model is correctly specified, unbiased tests of the main
effects may be recovered and some of the problems of
misleading inference may be avoided. This approach has
still to be tested fully in the candidate-gene context (though
see Wray et al. 2008) but would seem to be a sine qua non
for the development of a credible research program in the
study of G x E.

The last decade has witnessed unprecedented investment
by researchers and funding agencies in the pursuit of
G X E across many dimensions of human variation. Many
of the models employed have been far simpler than some of
those considered here and, once statistical significance has
been achieved, publishable rationalization lurks close
behind. Unfortunately, errors of the type described in this
note are among the easiest to replicate and their uncritical
dissemination risks distracting researchers from the more
time-consuming task of “trying to get it right.”
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