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Abstract Conclusions about the genetic architecture of a
phenotype relating to the contributions of genetic additiv-

ity, dominance, epistasis or genotype 9 environment

interaction, depend upon the statistical and distributional
properties of the measured trait. This dependence is fre-

quently ignored in contemporary genetic studies and can

radically change the conclusions that may be drawn from
the data. The interdependence of the conclusions about

genetic architecture and instruments used for behavioral

measurement is explored by simulated studies of the
interaction between candidate genes and measured envi-

ronment in psychiatric genetics. Trait values are simulated

(N = 100,000) under several commonly encountered sce-
narios and subjected to two simulated 20-item psycholog-

ical tests each comprising items with different patterns of

difficulty and sensitivity to variation (discriminating
power) in the latent trait. Test scores are generated for each

test by summing the binary responses across all items. The

full model for digenic additive and non-additive genetic
effects and G 9 E is fitted to the trait values and test scores

under a range of different simulated genetic architectures.
Untransformed test scores show complex patterns of epis-

tasis and G 9 E even when the underlying effects of genes

and environment are purely additive and the transformation
of symptom counts does not fully recover the simulated

underlying genetic architecture. Accordingly, failing to

allow for the theory of measurement when analyzing
details of genetic architecture may frequently lead to

replicable over-reporting of interactions and mislead
potential investigators and funding agencies.

Keywords G 9 E interaction ! Epistasis ! Candidate

genes ! Genetic architecture ! Simulation ! Item-response
theory ! Psychometrics

Introduction

It is hard to imagine that I first met John Loehlin when I
was a first-year PhD student in Birmingham. It was July

1969, while Neil Armstrong and Buzz Aldrin were walking

on the moon. The date coincided a side-trip to the Shake-
speare Memorial Theatre from a ‘‘NATO Advanced

Studies Institute for Psychogenetics’’ engineered by John

Jinks and Peter Broadhurst partly to promote their emerg-
ing application of ‘‘Biometrical Genetics’’ to human and

animal behavior. That night, on the bus to Stratford, the

conferees listened with bated breath to the final moments of
countdown as the astronauts prepared to blast off from the

moon on the start of their return to earth.
Looking back, it was an incredible opportunity for a not-

yet PhD to put faces to some of the names he had seen in

print. Among those names and faces, was a younger John
Loehlin, even then wearing his trade-mark black shoes and

white socks. The tone of John’s thought was known already

from his note modestly but concisely correcting some
conceptual errors in Raymond Cattell’s Multiple Abstract

Variance Analysis (MAVA: Loehlin 1965). I was not smart

enough to understand either but I knew their importance
from my teachers and idols, the late John Jinks and David

Fulker. I remember being a fly on the pub wall as John

Loehlin, Louis Guttman and David Fulker pored over a
notepad in the bar discussing earnestly whether putting
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heritability estimates down the diagonal of a correlation

matrix would solve the ‘‘communality problem’’ in factor
analysis. I didn’t have a clue what they were talking about.

A burning topic in those days, as it remains today, was

genotype 9 environment interaction (G 9 E). Although
still unpublished at that point, John (Jinks) and David had

shared a pre-print of their seminal 1970 paper on the

application of Biometrical Genetics to human behavior
(Jinks and Fulker 1970). Among other significant issues

they addressed was that of G 9 E and, in particular, the
possibility of examining the regression of absolute intrapair

differences for monozygotic (MZ) twins on pair means as a

key to characterizing the relationship between sensitivity to
random environmental influences (intrapair differences in

MZ twins) and average genetic liability (measured by pair

means).
Fired with enthusiasm for this insight, and challenged by

David who had thought a lot about G 9 E and risk to

psychopathology, we embarked on an exploration of
G 9 E for personality applying the ‘‘Jinks and Fulker’’

approach to some early ‘‘EPQ’’ data on twins that Hans

Eysenck had generously shared. Very soon I had generated
some pretty diagrams and David had written the first draft

of a joint paper showing significant, complex, non-linear,

G 9 E for personality test scores. Recollection is hazy, but
I think David sent an early draft to John Loehlin who

suggested that we should check whether the interaction was

‘‘really’’ G 9 E or whether it was just a function of vari-
ation in measurement error over the range of test scores.

‘‘Goodbye’’ to a good paper, part of my doctoral disserta-

tion and, for all intents and purposes, to a promising
method since very few applications of the approach have

been published in the 40 years since it first appeared.

Sadly, the fact that the approach, and John Loehlin’s
early critical insight, lie all but forgotten by the contem-

porary literature means a fundamental lesson from quan-

titative genetics appears not to have been internalized by
the new generation of behavioral researchers competing for

the prestige and funding that goes with the pursuit of

G 9 E in psychiatric genetics. The apparently forgotten
lesson from those early efforts is quite simple. You can

generate almost any interaction you want by changing the

scale of measurement. The implication is equally simple:
Don’t make a career out of your interaction until you have

excluded simpler psychometric considerations that owe

nothing to the subtleties of the underlying genetic and
environmental causes of human variation.

The seminal contribution of Fisher, Immer and Tedin

(1932) notwithstanding, geneticists have remained cautious
about the using the properties of observed phenotypic

distributions to infer subtleties of the genetic architecture

of complex traits. This caution stems from the observation
that a variety of more or less arbitrary factors, having little

or nothing to do with genetics, can affect the more subtle

features of trait distributions. Paramount among such fac-
tors are those arising from the fact that the scales used to

measure variation have an ill-defined, relationship to

underlying biological differences. Hence, changes in the
units or method of measurement can lead to drastically

different conclusions about the genetic architecture of the

underlying biological system. Mather and Jinks (1982)
offer a classical statement of the interdependence of mea-

surement and genetic inference:

‘‘The scale on which the measurements are expressed

for the purposes of genetical analysis must therefore

be reached by empirical means. Obviously it should
be one which facilitates both the analysis of the data

and the interpretation and use of the resulting statis-

tics…The scale should preferably be one on
which…the interactions among the genes and

between genotype and environment are absent, or at

any rate as small as they can reasonably be made.’’
(p. 64, our italics). Lack of careful attention to this

goal leaves in question the heuristic value of claims

to find G 9 E in psychiatric data.

With respect to behavior, measurement often boils down

to decisions about which constellations of items, combined
in which way, best characterize the salient latent behavioral

outcomes and psychosocial risk factors. The relationship

between the numbers generated by a test and the way genes
and environment work is tenuous and theory-dependent.

There is an intimate connection between the choice of

measure, and conclusions drawn about the relative impor-
tance of genes, environment and the various possible

interactions between them. Elegant pictures of the role of

G 9 E interaction may be no more robust than the items
selected to measure the hypothesized latent variable, the

rule used to combine them, or how the scores are scaled

after they have been combined.
Mather and Jinks recommend that ‘‘So far as possible

the non-allelic genes and non-heritable agents should all be

additive in action’’ but also caution that such scales may be
hard to find since ‘‘Each gene and each non-heritable agent

may be acting on its own scale’’ and the elegance of a

parsimonious additive model may be elusive. The problem
is that psychiatric geneticists seldom bother to look. We are

not blessed with decisions as simple as whether to measure

body-weight in kilograms or log-kilograms, though even
here the choice of scale will not be neutral with respect to

conclusions about the contributions of additive and non-

additive effects.
Although the point had been made on several occasions

(see e.g. Eaves and Eysenck 1977; Purcell 2002), a recent

paper (Eaves 2014) reiterated the implications of common
problems of measurement in psychiatric genetics for the
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detection of interaction between measured environmental

covariates and random genetic effects in twin studies. In
particular, it was demonstrated that the use of symptom

counts, characteristic of attempts to quantify clinical out-

comes, would almost certainly generate statistical evidence
for G 9 E when the underlying genetic and environmental

causes of variation in liability were purely additive. Fur-

thermore, because such interactions depend purely on the
units of measurement rather than biology, they are almost

certain to replicate, a sine qua non for publication.
Studies of G 9 E in humans are not confined to the

study of multifactorial liability and the structural modeling

of the patterns of covariance between relatives but extend
to the detection and analysis of interaction between can-

didate genes and environmental covariates. Such studies

enjoy a high profile and the generated enthusiasm influ-
ences the direction and funding of subsequent research in

psychiatric and behavioral genetics. With this in mind, and

knowing the inherent problems of interpreting interactions
in twin and family studies, this paper explores the extent to

which the same uncertainties attend apparent demonstra-

tions of interaction between candidate genes and covariates
in psychiatric genetics.

Approach

The problem is addressed by simulating the effects of two
candidate loci and environment on liability to a psychiatric

disorder. A general biometrical-genetic model for the

additive, dominance and epistatic effects of the two loci
(c.f. Mather and Jinks 1982) characterizes the main effects

of the genes on liability and the (linear) response of

genotypes to a continuously variable environmental
covariate (G 9 E interaction). The model has been widely

used in experimental organisms, including plants and

fruitflies and has the advantage of capturing classical pat-
terns of non-allelic interaction (epistasis) as special cases

of the general model.
Genotypes, environments and liabilities were simulated

for a large number of independent subjects (N = 100,000)

under a variety of configurations for the additive and non-
additive effects of the loci and covariate. Simulated sub-

jects were scored using simulated responses to dichoto-

mous items (k = 20) of checklists using two types of test
analogous to those frequently encountered in behavioral

measurement. The first, resembling a typical checklist of

relatively infrequent symptoms, comprises items with
equal low endorsement frequency (difficulty) and the same

discriminating power. The second, more characteristic of

tests used to assess abilities, comprises items with a wide
range of difficultly and variable discriminating power.

The general linear model for gene effects and G 9 E is

fitted to the liabilities and test scores derived from the item

responses to test the main effects and interactions of the
candidate genes and environments simulated under various

‘‘true’’ configurations of their effects on liability. Parameter

estimates and their sampling errors are recovered and t tests
compared for the various types of measurement to assess

the impact of different approaches to measurement on the

outcome of tests for non-additive effects of genes and
environment (epistasis and G 9 E) under various combi-

nations of ‘‘true’’ genetic model and mode of assessment.
For various configurations of genetic effects at the two

candidate loci it is shown how estimates and significance

levels of non-additive genetic effects and G 9 E are crit-
ically dependent on the items and rules for combining them

chosen to measure a psychiatric outcome.

Genetic model

Table 1 presents the general model for the main effects and

interactions of two diallelic loci on a continuous trait

outlined by Mather and Jinks (1982, c.f. Van der Veen
1959).

Various notations and parameterizations may be found

in the literature. The notation used here has enjoyed
widespread application for the analysis of digenic effects

on the means and variances of generations derived from

crosses between inbred lines of diploid species and for
specifying the components of genetic variance in randomly

mating populations (Mather 1974). The model specifies the

homozygous (additive effects) and heterozygous effects
(dominance effects) of the two loci, da, db, ha and hb

respectively, and the four possible types of epistatic

interaction between them: between homozygotes, iab;
between homozygotes at the A/a locus (AA versus aa) and

heterozygote at B/b, jab; between heterozygote at the A/a

locus and homozygote at B/b, jba; between both heterozy-
gous effects, lab. While the notation appears cumbersome,

it has the advantage of generality in capturing characteristic

patterns of classical epistatic segregation in Mendelian

Table 1 Contributions of two-locus homozygous, heterozygous and
epistatic effects to expected genotypic values (after Mather and Jinks
1982, p.83, Table 19)

Locus Genotype A/a

AA Aa aa

B/b BB da ? db ? iab ha ? db ? jba -da ? db - iab

Bb da ? hb ? jab ha ? hb ? lab -da ? hb - jab

bb da - db - iab ha - db – jba -da - db ? iab

See text and Table 2 for explanation of parameters
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dihybrid crosses while not being restricted by them. The

classical patterns of epistasis were described in the first
decade of the 20th century (see e.g. Miko 2008, for a recent

didactic summary of the classical ratios). Thus, the 9:7 F2

segregation characteristic of complementary gene interac-
tion is realized when, inter alia, da = db = ha = hb =

iab = jab = jba = lab in Table 1. In contrast the 15:1 F2

segregation characteristic of duplicate gene interaction
arises, for example, when da = db = ha = hb = -iab =

-jab = -jba = -lab. ‘‘Complementary’’ epistasis arises

when genes form a series in a biological pathway such that
failure of either component leads to failure of the pathway.

‘‘Duplicate’’ epistasis corresponds to systems that are

buffered by redundant parallel pathways so that failure of
both components is required for system failure and has

commonly been associated with a strong linear component

of the relationship between phenotype and fitness (see e.g.
Mather 1966).

The model for the additive, dominant and epistatic

effects of the locus pair may be extended to include their
effects on the response to an environmental covariate

(G 9 E interaction). Following the approach of, e.g. Bucio

Alanis and Hill (1966) and developed by Jinks and his
coworkers (see Mather and Jinks 1982) genotypes differ in

their regression on the environmental covariate. Just as

differences in the main effects of the gene pair may be
represented by the parameters da, db, ha, hb, iab, jab, jba and

lab, so an analogous parameterization may be used to

account for genotypic differences in the (e.g. linear)
regression of phenotype on measured environment. For

example, the regression of the AAbb genotype on envi-
ronment is bm ? bda - bdb where bm is the regression of

the mid-homozygote on the environment, bda the homo-

zygous effect of locus A/a on regression and bdb the
homozygous effect of the B/b locus on response to the

environment.

Table 2 summarizes the parameters of the full model for
the effects of a pair of diallelic loci on a quantitative

phenotype. Additional parameters specify the allele fre-

quencies, the mean and variance of the hypothesized
environmental covariate and the variance of residual

effects.

Simulations

The large number of parameters in the digenic model for

epistasis and G 9 E precludes consideration of any but a

small fraction of the set of possible genetic systems.
Arbitrariness of the units used to measure behavior intro-

duces an additional dimension to explore the impact of test

construction and scoring for the detection of epistasis and
G 9 E.

Five two-locus models were chosen for simulation:

1. The two locus model with a main effect of environ-

ment (bm) with no dominance, epistasis or G 9 E.

2. Model 1 with the addition of heterozygous effects, ha

and hb without epistasis or G 9 E.

3. Model 2 plus complementary gene interaction, without

G 9 E.
4. Model 2 plus duplicate gene interaction, without

G 9 E.

5. Model 1, with the addition of homozygous effects, bda

and bdb, on linear response to the measured environ-

ment (G 9 E).

The parameter values employed to simulate the genotypes

and individual continuous phenotypes are summarized in
Table 3. Each simulation assumed further that the origin

for the genetic main effects (m) was 10. The measured

environment was assumed to be distributed normally
(l = 5, r = 1) and residual effects of unmeasured genes

and environment to be distributed normally (l = 0,

r = 1).

Table 2 Definition of model parameters

Symbol Definition

paA, pb Frequencies of increasing alleles at candidate loci A and B

m Origin of main effects (‘‘constant’’)

da, db Homozygous (‘‘additive’’) deviations at A and B

ha, hb Heterozygous (‘‘dominance’’) effects at A and B

iab Interaction between homozygous effects at A/a and B/b
(‘‘additive 9 additive’’)

jab Interaction between additive effect at A/a and dominance
effect at B/b

jba Interaction between dominance effect at A/a and additive
effect at B/b

lab Interaction between dominance effects at A/a and B/b
(‘‘dominance 9 dominance’’)

bm Origin of (linear) response to covariate (‘‘main effect of
environment’’)

bda,
bdb

Homozygous effects of A/a and B/b on linear response to
environment (‘‘additive genetic effects on G 9 E’’)

bha,
bhb

Heterozygous effects of A/a and B/b on linear response
environment (‘‘dominant genetic effects on G 9 E’’)

biab Additive x additive epistatic genetic effects on response to
environment (G 9 E)

bjab Additive x dominant epistatic genetic effects on response to
environment (G 9 E)

biba Dominant x additive epistatic genetic effects on response to
environment (G 9 E)

blab Dominant x dominant epistatic genetic effects on response
to environment (G 9 E)

mE Mean of measured environment

rE Standard deviation of measured environment

rd Residual standard deviation

Behav Genet (2014) 44:578–590 581
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The traits simulated under each model, standardized to

zero mean and unit variance, were then ‘‘administered’’
two simulated tests comprising 20 binary items. Item

parameters were chosen to reflect two different extreme

measurement models. Raw test scores were generated by
summing the 0/1 item responses across items. Both tests

assumed normal ogive item characteristic curves for each

item. The items of the first test were assumed to have unit
thresholds (item difficulties) and sensitivities (discrimi-

nating powers). Item difficulties of the second test were
assumed to be distributed uniformly (ranging from -2 to 2)

with discrimination parameters distributed uniformly

(ranging from 0.5 to 1.5). Thus, the first test generated
symptom counts with a J-shaped distribution characteristic

of those often encountered in psychiatric assessment. The

second test, with item difficulties distributed uniformly
across most of the range of simulated trait values generated

scores more symmetrically distributed around an interme-

diate mode. Table 4 shows the specific item parameters
simulated for the second test. In addition, the raw trait

values and test scores were dichotomized to generate out-

come (‘‘disease’’ phenotypes) at thresholds giving the
closest to 20 % prevalence in the population. The raw sum

scores for the first test were also subjected to a square root

transformation to minimize the effects of heteroscedasticity
on the subsequent regression analysis of the raw symptom

counts (c.f. Bartlett 1947) and spurious non-additive

genetic effects (c.f. Eaves and Eysenck 1977). It will be

seen that simple transformation does not always have the
desired result.

100,000 independent observations were simulated under

each of the five genetic models. The sample size was
chosen to give estimates that were stable enough to allow

relatively reliable inferences about the power and biases

implicit in the detection of the main effects and interactions
of the pair of candidate loci and the environment but not so

large as to overwhelm a typical laptop computer. Simula-
tions and regression analyses were conducted in R 2.13.2.

Statistical analysis of simulated data

The full linear regression model, allowing for additive,
dominance and epistatic effects of the two loci on the

average phenotype and linear response to the covariate

(G 9 E) was fitted to the data generated under each of the
five models for genetic and environmental effects (above).

The raw trait values, sum scores for the two simulated tests

and transformed scores for the first test were all analyzed
on the assumption of normal errors. The dichotomous

disease phenotypes were analyzed by logistic regression

assuming binomial errors. In addition to the full model, the
‘‘true’’ model, assumed in generating each data set, was

Table 3 Parameter values employed in candidate gene models for epistatic and G 9 E interactions

Model Simulated parameter values

Genetic main effects (G) Environmental effects (E) and G 9 E

Homozygous Heterogygous Epistatic Homozygous Heterozyous Epistatic

da db ha ha iab jab jba lab bm bda bdb bha bhb biab bjab bjba blab

1 1 1 0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0

2 1 1 1 1 0 0 0 0 0.5 0 0 0 0 0 0 0 0

3 1 1 1 1 1 1 1 1 0.5 0 0 0 0 0 0 0 0

4 1 1 1 1 -1 -1 -1 -1 0.5 0 0 0 0 0 0 0 0

5 1 1 0 0 0 0 0 0 0.5 0.25 0.25 0 0 0 0 0 0

Table 4 Item-response parameters (a = difficulty, s = sensitivity) used in second simulated test (Test 1 has a = 1 and s = 1 for all items)

Item 1 2 3 4 5 6 7 8 9 10

Difficulty (a) 0.361 -0.564 -1.968 -0.708 -1.136 0.119 -1.005 1.200 0.287 1.146

Sensitivity (s) 0.859 1.015 0.703 1.372 0.834 0.809 1.347 0.727 1.430 0.618

Item 11 12 13 14 15 16 17 18 19 20

Difficulty (a) 1.616 0.653 -1.640 0.041 -0.520 -1.826 0.276 -1.480 1.602 1.269

Sensitivity (s) 1.296 1.476 0.837 1.182 0.550 1.288 0.603 1.203 1.193 1.388

Parameters assume normal ogive item characteristic curves with latent trait scaled to unit variance
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fitted and a variety of reduced models that were expected to

illuminate errors of inference that might attend the unwary.

Results

The results of fitting regression models for candidate genes

and environmental effects are summarized for each of the
five simulated data sets in Tables 5, 6, 7, 8, 9. Parameter

estimates and t-values are given for each model, test and
simulated data set (N = 100,000). Residual standard errors

and squared multiple correlations from regression models

are also tabulated where appropriate.
Central to the current exercise, when the full model is

estimated for the true latent parameters, with all the

parameters for the main effects and interaction of genes
and environment, the precise pattern of simulated values

for all five cases is recovered. In each case, parameter

estimates are very close to their simulated values and the
values of non-zero parameters typically yield highly sig-

nificant t-values with these very large samples. Thus, for

data simulated under the digenic additive model with no
non-additive genetic effects or G 9 E (Table 5), estimates

of da and db are 0.989 and 0.959 respectively, the regres-

sion on phenotype on environment is 0.501 and the residual
variance is 1.006 as expected. All other estimates are close

to their zero expected values. The results for the other data

sets (Tables 6, 7, 8, 9) also correspond to their expected
values as long as the true latent phenotypes are measured

directly.

In contrast with the regressions on the true latent trait,
the picture changes markedly when analysis is based on

test scores for the digenic additive model. For example,

even when data are simulated under the simplest additive
model (Table 5), regression analysis of the symptom

counts, S, derived from a test with equal item parameters

(‘‘Test 1’’) yields a much less parsimonious model, in
which not only homozygous effects of both loci are sig-

nificant (though less so) but there are also marked non-

additive genetic effects, including some dominance and
strong additive 9 additive epistasis. Furthermore, raw

symptom counts yield highly significant evidence of

homozygous effects on sensitivity to the environment: (bda,
bdb) = (0.423, 0.442) and even evidence of higher order

interactions with apparent epistatic effects contributing to

G 9 E: (biab, bjab, bjab) = (-0.164, 0.160, 0.164).
A square root transformation of the test scores improves

the fit of the additive model but, with this large sample, still

yields evidence of significant homozygote 9 homozygote
epistasis (iab = 0.483) and supports some epistatic effects

on G 9 E (biab = 0.483). Although non-additive effects

may not be statistically significant with smaller sample
sizes, estimates will be biased in the direction of detecting

spurious G 9 E leading to inflated type I errors when the

properties of measurement are ignored.
The situation is much improved when analysis is con-

ducted on scores derived from items with difficulties dis-

tributed uniformly over the range of latent trait values.
Only the homozygous main genetic effects and main effect

of the measured environment are significant. There is no

convincing evidence of dominance, epistasis or G 9 E.
Fitting the full model to the dichotomized trait values of

test scores yields the correct conclusion for data simulated
under the additive genetic model (Table 5), showing little

support for any but homozygous main effects of the two

candidate loci. However, significance levels are much
reduced under the full model, reflecting substantial loss of

information when the continuous variables are dichoto-

mized. Fitting a model that ignores all possible non-addi-
tive effects yield highly significant estimates of the additive

main effects of both loci but the gain in significance pre-

sumes prior knowledge of the genetic architecture that
might not be justified in practice (compare results for other

simulated genetic models).

Taken overall, the results of testing candidate gene
models for epistasis and G 9 E may be seriously mis-

leading even under the simplest additive genetic model

(Model 1) when investigators are forced to analyze test
scores based on items with restricted range of difficulty.

Dichotomizing scores and trait values avoids much of the

potential bias but at the cost of dramatically reduced power
in exploratory analysis. The problem is only partly resolved

by a square root transformation of test scores but difficul-

ties can be minimized if it is possible to construct a test in
which the item parameters span the range of hypothesized

trait values.

Results for other, more complex, genetic architectures
(Models 2–5, Tables 6, 7, 8, 9) only get worse. In every

case, fitting the full regression model to the simulated

latent trait values with normal errors (N) yields unbiased
estimates and most conclusions are qualitatively correct

when models are fitted to scores on the second test with

items spanning a wide range of difficulty. However,
dichotomizing the trait or test scores, even with these large

samples, leads to such marked loss of information that

recovery of the true genetic architecture may be difficult or
impossible given the range of possibilities a priori. In

virtually every case, scores based on counts of relatively

infrequent symptoms yield spurious results of remarkable
complexity. The problem is not generally resolved by

simple transformation.

When the ‘‘true’’ model involves only additive and
completely dominant effects at the two candidate loci, the

results for the untransformed symptom counts (Test with

equal item parameters, Table 6) provide strong support for
complex non-additive effects, especially epistatic
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interactions and G 9 E interaction. Transformation makes

matters worse by strengthening support for epistatic inter-
action between the candidates. Scores on a test with uni-

formly distributed difficulties (Test with variable item

parameters, Table 6) also suggest some epistasis but pro-
vide no hint of G 9 E. Dichotomizing the scale makes it

virtually impossible to say anything certain about genetic

architecture in the two-locus case.
When the true model involves complementary gene

interaction (Table 7) analysis of the sum of the raw
symptom counts shows striking evidence for all types of

G 9 E at the two loci. Indeed, statistical support for G 9 E

far outweighs that for the additive, dominant and epistatic
main effects of the candidate loci. If the effect of one

interacting candidate locus is removed from the model, the

main effects of the other are grossly overestimated.
In this example of complementary gene interaction,

transformation redresses the balance somewhat by reducing

the support for G 9 E but still yields markedly inflated
type I error rates. A test with variable item difficulties

(Table 7) recovers the right qualitative answer for the

genetic architecture. Again, dichotomizing any of the
scales makes it all but impossible to estimate any param-

eters of the full model with sufficient precision to resolve

individual components of the model (results not tabulated).
The qualitative results in the presence of duplicate gene

interaction (Table 8) resemble those for complementary

epistasis but the symptom counts show still far greater
support for G 9 E and the effects are largely untouched by

transformation. Attempts to resolve all parameters of the

full two-locus model are completely frustrated by lack of
information about the critical features of the model in the

dichotomous case (estimates not tabulated).In contrast to

the finding in the presence of complementary epistasis,
when one of the interacting loci is omitted from the models

for the trait with duplicate gene interaction, estimates of the

effect of the other locus are too small and far less signifi-
cant than expected under the correct model.

All the above datasets were generated on the assumption

of no G 9 E interaction in liability yet all provide strong
evidence of non-additive effects when subjected to the

vagaries of psychological testing. The final data set

(Table 9) explores the consequences of simple digenic
G 9 E in which the main effects of both loci are homo-

zygous (only da = db [ 0) and both loci show homozygous

differences in their linear response to the environment
(bda = bdb [ 0). If the true scores are known, the

parameter estimates of the full model, including GE and

epistasis, correspond to those of the underlying genetic
architecture. Two further ‘‘wrong’’ models were fitted to

the true scores to illustrate the possible biases that ensue

from model misspecification. Omitting the two homozy-
gous effects on G 9 E leads to grossly inflated estimates of

the main effects. Allowing one locus to affect the average

response and the other to affect G 9 E (da [ 0, db = 0,
bda = 0, bdb [ 0) leads to biased estimates of both genetic

parameters. As in other cases fitting the model to

untransformed symptom counts (test with equal item
parameters) produces substantially biased estimates and

misleading conclusions supporting much more complicated

models than necessary to account for variation in latent
trait values. Consequences include spurious support for

epistatic effects on average response and on response to the
environment (G 9 E). If anything, square root transfor-

mation only makes matters worse.

Can ‘‘Truth’’ be recovered?

The simulations presented are not intended to exhaust all

the nuances of epistasis, G 9 E and measurement that

might apply in any specific context but they certainly warn
investigators not to oversell claims to seek or find G 9 E

for measures of human behavior. Given that human

behavioral and psychiatric genetics do not have access to
true latent trait values or continuous measures of under-

lying biological processes, investigators have to rely on

scores derived from clusters of indicators such as test items
or symptoms. The simulations above confirm the intimate

connection between the statistical conclusions drawn about

the additive and non-additive contributions of candidate
loci and the measured environment to behavioral traits.

Even in the simplest case (Table 5) of a two-locus additive

model (with no dominance, epistasis or G 9 E), statistical
analysis of counts based on many relatively infrequent

symptoms biases results in the direction of detecting sub-

stantial epistatic and G 9 E effects. Indeed, in this simple
case, the effects of G 9 E and epistasis are expected to be

more significant than the main effects of genes and envi-

ronment. A square-root transformation of the skewed
symptom counts strengthens support for additive effects,

but fails to remove the apparent contribution of epistasis

and G 9 E. In large samples, such as those simulated, the
effects of G 9 E are expected to be statistically significant.

With the smaller samples currently employed in psychiatric

genetic epidemiology, significance of non-additive effects
is comparable with that of the main effects pointing to a

serious bias towards Type I Errors for the detection of

epistasis ot G 9 E even in transformed symptom counts.
Several possible solutions might be offered in the pur-

suit of unbiased truth. The symptom counts may be cate-

gorized (for example into affected and unaffected subjects)
and models fitted by logistic regression. This approach may

minimize spurious interaction in simple cases but usually

leads to such a serious loss of power that choosing between
models of different complexity will prove difficult if not
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impossible with feasible sample sizes. It was difficult to

find significant results with the large sample sizes used in
the simulations.

A second approach is to design a better test, i.e. one in

which item difficulties span a wide range of latent trait
values, resembling the second simulated test in the exam-

ples above. In this case, regression analysis of a 20-item

test recovers the ‘‘true’’ (additive) model with parameter
sampling errors close to those that would be obtained if the

true trait values were measured and little evidence for
genetic effects on linear response to the environment.

However, even a better test of this type is still affected by

issues of scale.
We are thus led to the frustrating conclusion that any-

thing we say about G 9 E in psychiatric genetics is criti-

cally dependent on the interface between biology and
psychometrics to the point that analysis symptom counts

and dichotomous outcomes is likely to be seriously mis-

leading since estimates are biased and/or the type I error
rates are higher than assumed. Patterns of main effect and

interaction change as a function of the items chosen for

measurement and the underlying truth about the genetic
architecture of liability.

The ideal approach, suggested in a parallel set of sim-

ulations of G 9 E in twin data (Eaves 2014) is to integrate
the model for genetic and environmental effects on liability

with an item-response theory (IRT) model for the rela-

tionship between latent trait and test responses. If the IRT
model is correctly specified, unbiased tests of the main

effects may be recovered and some of the problems of

misleading inference may be avoided. This approach has
still to be tested fully in the candidate-gene context (though

see Wray et al. 2008) but would seem to be a sine qua non

for the development of a credible research program in the
study of G 9 E.

The last decade has witnessed unprecedented investment

by researchers and funding agencies in the pursuit of
G 9 E across many dimensions of human variation. Many

of the models employed have been far simpler than some of

those considered here and, once statistical significance has
been achieved, publishable rationalization lurks close

behind. Unfortunately, errors of the type described in this

note are among the easiest to replicate and their uncritical
dissemination risks distracting researchers from the more

time-consuming task of ‘‘trying to get it right.’’
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