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The ACE and ADE models have been heavily exploited in twin studies to identify the genetic and
environmental components in phenotypes. However, the validity of the likelihood ratio test (LRT) of the
existence of a variance component, a key step in the use of such models, has been doubted because the
true values of the parameters lie on the boundary of the parameter space of the alternative model for
such tests, violating a regularity condition required for a LRT (e.g., Carey in Behav. Genet. 35:653–665,
2005; Visscher in Twin Res. Hum. Genet. 9:490–495, 2006). Dominicus, Skrondal, Gjessing, Pedersen,
and Palmgren (Behav. Genet. 36:331–340, 2006) solve the problem of testing univariate components
in ACDE models. Our current work as presented in this paper resolves the issue of LRTs in bivariate
ACDE models by exploiting the theoretical frameworks of inequality constrained LRTs based on cone
approximations. Our derivation shows that the asymptotic sampling distribution of the test statistic for
testing a single bivariate component in an ACE or ADE model is a mixture of χ2 distributions of degrees
of freedom (dfs) ranging from 0 to 3, and that for testing both the A and C (or D) components is one of
dfs ranging from 0 to 6. These correct distributions are stochastically smaller than the χ2 distributions
in traditional LRTs and therefore LRTs based on these distributions are more powerful than those used
naively. Formulas for calculating the weights are derived and the sampling distributions are confirmed
by simulation studies. Several invariance properties for normal data (at most) missing by person are also
proved. Potential generalizations of this work are also discussed.
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1. Introduction

1.1. Testing Variance Components in ACDE Models

The ACE and ADE models (see, e.g., Neale & Cardon, 1992) are widely used in twin stud-
ies to estimate variance components in phenotypes due to additive (A) and dominant (D) ge-
netic effects and environmental effects shared between the twins (C) or unique to each of the
twin (E). Because the four components usually cannot be estimated simultaneously in a model,
either the C or the D component has to be dropped, giving an ACE or an ADE model. A typical
p-variate ACE model assumes that the pair of p phenotypic measures on a twin pair follows
a 2p-variate normal distribution with mean structures µMZ = µDZ = (µ′,µ′)′ and covariance
structures ΣMZ =

( A+C+E A+C
A+C A+C+E

)
and ΣDZ =

( A+C+E wAA+wCC
wAA+wCC A+C+E

)
for monozygotic (MZ)

and dizygotic (DZ) twin pairs, where µ is the p × 1 vector of the phenotypic means, A, C and
E are p × p non-negative definite (n.n.d.) symmetric matrices giving the variance components,
and wC = 1 and wA = 0.5 are weights. In an ADE model, D replaces C with wD = 0.25. An
important issue of interest in twin studies is whether a particular variance component contributes
to phenotypic variation and correlation. In terms of the above ACE model, this corresponds to
one of the following three null hypothesis testing problems: HA

0 : A = 0, HC
0 : C = 0 and HAC

0 :
A = C = 0.
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The likelihood ratio test (LRT) is usually used to address the above null hypothesis testing
problems. Let f (x|θ) be the density function of data x with parameter vector θ in an unbounded
parameter space Θ . If the parameter spaces specified by the null and alternative hypotheses are
Θ0 ⊂ Θ1 ⊆ Θ , under some regularity conditions, the LRT statistic T has an asymptotic null
distribution of χ2

df , with the degrees of freedom (dfs) df = dimΘ1 − dimΘ0. When testing the

variance components, a naive user of the LRT would use dfs p∗ = 1
2p(p + 1) and 2p∗ for testing

a single component and two components, respectively.
Several critical regularity conditions are needed for the χ2 sampling distribution to hold in

large samples. They include: (i) that the true parameter value θ0 be an interior point of both Θ0
and Θ1; and (ii) that the Fisher information matrix (FIM) I(θ0) have full rank. Unfortunately,
for testing variance components, regularity condition (i) does not hold and the test statistic may
not have the desired χ2 distribution. The validity of the regular LRT for testing those hypotheses
has been questioned (e.g., Carey, 2005; Visscher, 2006). To see this, we note that the alternative
hypotheses are directional because the variance components A and C should both be n.n.d. by
definition. As a result, under the null hypothesis the true parameter value θ0 lies on the boundary
of Θ1. It should be noted that the boundary problem cannot be removed by the use of an alter-
native parametrization of the model. For example, if the Cholesky decomposition is used with
A = LL′, where L is lower triangular, the boundary conditions are still present as lii ≥ 0. Even
worse, the FIM under this parametrization is singular at the true value because the Jacobian of
the transformation does not have full rank at L = 0, violating the second regularity condition
above.

1.2. LRT with True Parameter on Boundary

The issue of boundary problems in LRT has long been noted in general parametric models
(Chernoff, 1954; Self & Liang, 1987; Shapiro, 1987), in psychometric models (Shapiro, 1985,
2007), in variance component models (Stram & Lee, 1994), and in ACDE models (Dominicus
et al., 2006). For the general hypothesis testing problem, Chernoff (1954) derived the distribution
of test statistic T for a boundary true parameter value using local cone approximations to the
parameter spaces of the null and alternative models. Because the sets of n.n.d. matrices are cones,
the parameter spaces Θ0 and Θ1 are identical to their approximation cones for our problems.
The details regarding the cone approximation will not be discussed in this paper. As follows
from Chernoff (1954, Theorem 2), the statistic T for testing variance components asymptotically
takes the same distribution as it would when testing Θ0 against Θ1 with a single observation
from N(θ0, I(θ0)

−1).
Self and Liang (1987) further explored the problem of boundary LRT and summarized sev-

eral typical scenarios in which θ0 lies on the boundary of either the null or the alternative models.
They noted that in most cases, the resultant asymptotic distribution of T is a mixture of χ2’s
with different dfs, though situations exist in which non-χ2 distribution components are present.
As will be discussed later, the current problems are more complicated and cannot be reduced to
any of the scenarios they discussed.

The mixture of χ2’s, or the χ̄2 distribution, was studied in detail by Shapiro (1985, 1988,
2007). Some important conclusions are summarized in Appendix A. In particular, Properties 1
and 2 guarantee that for testing variance components, the LRT statistic T has a χ̄2 distribution
as long as nuisance parameters are not involved in inequality constraints or constraints involving
the variance components.

Dominicus et al. (2006) applied the results of Self and Liang (1987) to the tests in univariate
ACDE models. When testing a single (univariate) variance component, the sampling distribution
is a 50:50 mixture of χ2

0 (a point mass on 0) and χ2
1 . This is equivalent to using half the p-value

from χ2
1 . When simultaneously testing two (univariate) components, the sampling distribution
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becomes a mixture of χ2’s with 0, 1 and 2 dfs, with w1 = 0.5 and w0 and w2 depending on the
sample size ratio between the twin types.

Beyond univariate analysis, bivariate ACDE models are also widely used to study the genetic
and environmental contributions to a pair of correlated phenotypes. In this paper, we discuss the
problem of testing a bivariate ACE model in which the variance components are of full rank
under the alternative hypothesis and give analytical formulas for the mixing probabilities. The
test of a single component is simpler and will be discussed in the next section, while the more
complicated test of A = C = 0 will be proved in Appendix D and summarized in Section D.3.
We present simulation studies and an example in Sections D.4 and D.5, and conclude the paper
in Section D.6.

2. Testing a Single Component A = 0

2.1. Formulation of the Problem

In this section we consider testing a single bivariate variance component A =
( a1 a2

a2 a3

)
. The

test for C can be obtained by switching the weights wA and wC. We define a = (a1, a2, a3)
′ =

vechA and define c and e similarly. Let θ be the parameter vector and its FIM be I(θ). Be-
cause E, C and other parameters in the model are not being tested, it follows from Property 2
in Appendix A that the weights in the χ̄2 distribution can be determined using Θ0 = {03},
Θ1 = {A ≥ 0} = {a1a3 ≥ a2

2, a1 ≥ 0, a3 ≥ 0} and I A,A, effectively removing nuisance param-
eters from consideration. We further define IA = (I A,A)−1 and have

IA = IA,A − IA,CE ICE,CE
−1 ICE,A. (1)

Following Chernoff (1954), we consider a ∼ N(03, IA(θ0)
−1) and its projection â1 onto Θ1.

The weights wk’s are defined as the probability for â1 to contribute to a χ2
k component in the

sampling distribution of T = â′
1 IAâ1. Although the nuisance parameters are not directly involved

in this formulation, it should still be noted that IA is a function of those nuisance parameters,
which need to be estimated by fitting the data to the model under the null hypothesis.

To derive the expression of wk , we first study the geometry of Θ1 = {a | a1a3 ≥ a2
2, a1 ≥ 0,

a3 ≥ 0}. Note that the quadratic inequality can be written as a′Va ≥ 0 with

V =

⎛

⎜⎝
0 0 1

2
0 −1 0
1
2 0 0

⎞

⎟⎠ . (2)

The eigenvalues of V are 1
2 , − 1

2 , and −1, with corresponding eigenvectors (1,0,1)′, (−1,0,1)′

and (0,1,0)′, so the quadratic form a′Va = 0, along with a1, a3 ≥ 0, defines an elliptic cone
with axis (1,0,1)′. The a1- and a3-axes are on this cone. Θ1 is the part of the space inside this
cone. For any a ∈ R3, if a ∈ Θ1, we have â1 = a. If a /∈ Θ1, it is projected onto the boundary
of Θ1. Especially, a part of the space (points in the polar cone Θ0

1 to be discussed later) will be
projected onto 0, the apex of the cone.

It is usually the case that the boundary of the parameter space can be expressed as a union of
several planary cones when separate inequalities are imposed on different parameters. Self and
Liang (1987) summarize several situations of this type. It should be noted that the geometry of
Θ1 does not fall into this case because n.n.d. is a nonlinear constraint involving all parameters,
and Self and Liang’s results do not apply (see correction to Stram & Lee, 1994). Kuriki and
Takemura (2000) consider the n.n.d. constraint of a p × p matrix in general, but their results
do not apply to the current situation either because they assume the non-duplicated elements in
the matrix follow a normal distribution with a special covariance matrix. Below we derive the
proportions wk of the χ̄2 distribution.
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FIGURE 1.
An elliptic cone C and its polar cone C 0. Suppose the cone C is approximated by a polyhedral cone with edges g1 = OG1,
g2 = OG2, etc. If the discretization is fine, the normal vector of the face OG1G2 can be approximated by ON1.5, which
is a generatrix on the surface of C 0 with longitude between those of g1 and g2. The projections of points inside the
pyramid O − N1.5G1G2 to the polyhedral cone lie on the face OG1G2; the projections of points inside the pyramid
O − G2N1.5N2.5 to the polyhedral cone lie on the edge OG2.

2.2. Mixture Probabilities

The elliptic cone Θ1 can be viewed as the limit of a sequence of convex polyhedral cones.
Given any convex polyhedral cone, the space R3 can be divided into four types of area, with
points in each area projecting onto different parts of the polyhedral cone and giving rise to dif-
ferent mixture components in the sampling distribution of T . The weights in χ̄2 distribution are
given by the proportions of points from N(0, I −1

A ) that lie in the four different types of region.
Especially, if IA is a scalar matrix (scalar multiple of identity matrix), the weights are the pro-
portions of the unit ball, B, that lie in the four different types of region. Below we enumerate the
four types of region and calculate the corresponding weights assuming IA is a scalar matrix. See
Figure 1 for a visual aid.

Points inside this polyhedral cone remain after projection and their squared distances to the
origin follow a χ2

3 distribution. If the area of unit sphere in this region (which is also the solid
angle) is Ω , we have w3 = Ω/4π , where 4π is the total area of the unit sphere. Points outside
the cone project onto the faces, edges or the apex. For a given face Fi between two edges, a
normal vector ni is uniquely determined, and the projections of points between ni and Fi lie
on this face. The squared distances from those projections to the origin follow a χ2

2 distribution.
If the planary angle spanning Fi is ωi , the proportion of the unit ball that project onto Fi is
ωi/4π , so w2 = ω/4π , where ω = ∑

i ωi is the sum of angles between adjacent edges of the
polyhedral cone. For a given edge, two normal vectors are determined by its adjacent faces, and
the projections of points between the edge and those two normal vectors lie on this edge, giving
rise to a χ2

1 distribution. The collection of all the normal vectors {ni} determined by the faces
{Fi} determines another polyhedral cone whose faces lie between those adjacent normal vectors.
This is the polar cone of the polyhedral cone. The projections of points inside this polar cone are
the origin 0 and they give rise to a point mass on 0 in the sampling distribution of T . Following
similar arguments in our derivation of w3 and w2, we have w0 = Ω0/4π and w1 = ω0/4π ,
where Ω0 is the area of the unit sphere inside the polar cone, and ω0 is the surface angle of the
polar cone.

The above result for a polyhedral cone generalizes naturally to an elliptic cone by argument
of limit, and the weights are related to the volumes and surface areas of the parts of Θ1 and Θ0

1
inside the unit ball. It should be noted that although an elliptic cone does not have edges, the
corresponding weight w1 is still positive and the χ2

1 component still exists.
When IA is not a scalar matrix, a can be transformed to convert to the case discussed above.

Consider any decomposition IA = LL′ and then the spectral decomposition L−1VL−1 ′ = UΛU′.
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Note the eigenvalues must be of signs (−,−,+) as homogeneous transformations do not change
the signs of eigenvalues. Let them be −λ1,−λ2 < 0 < λ3. Define ā = U′L′a and we have ā ∼
N(0, n−1I), so the problem is converted to one with a scalar IA. The quadratic form defining the
boundary of Θ1 is given by ā′Λā = 0, or λ1ā

2
1 + λ2ā

2
2 = λ3ā

2
3 . Using spherical coordinates with

latitude φ and longitude ψ , we have λ1 cos2 φ cos2 ψ +λ2 cos2 φ sin2 ψ = λ3 sin2 φ. If we define
function

ς(S,ψ) =
√

λ1(S) cos2 ψ + λ2(S) sin2 ψ

λ3(S) + λ1(S) cos2 ψ + λ2(S) sin2 ψ
, (3)

where λ3 is the positive eigenvalue of S and λ1 and λ2 are the absolute values of its two negative
eigenvalues, we have sinφ = ς(I −1

A V,ψ) and the area of the part of the unit sphere inside the
elliptic cone can be expressed as

Ω =
∫ 2π

0

∫ π
2

φ(ψ)
cosφ dφ dψ = 2π −

∫ 2π

0
ς
(

I −1
A V,ψ

)
dψ = 2π − 4

∫ π/2

0
ς
(

I −1
A V,ψ

)
dψ.

(4)

So the weight w3 is given by

w3 = Ω

4π
= 1

2
− 1

π

∫ π/2

0
ς
(

I −1
A V,ψ

)
dψ. (5)

The polar cone Θ0
1 of Θ1 is defined in Property 4 of Appendix A and can be determined

as {a|κ2a
2
1 + κ3a

2
2 = κ1a

2
3, a3 ≤ 0}, where the κ’s are the reciprocals of the λ’s. The mixing

probability w0 is therefore given by

w0 = Ω

4π
= 1

2
− 1

π

∫ π/2

0
ς
(

IAV−1,ψ
)
dψ. (6)

The remaining two weights w1 and w2 are related to the surface areas of the cones. Although
they can also be expressed as definite integrals and computed numerically, an easier way is to
invoke Property 3 of Appendix A, and we have w1 = 0.5 − w3 and w2 = 0.5 − w0.

2.3. Complete Normal Data: Invariance Property

From the above discussions we can see that the weights of the χ̄2 distribution are entirely
determined by λi ’s, or the sizes of the eigenvalues of I −1

A V. For an ACE model with complete
normal data, the FIM I has a particular structure (see Appendix B) which can be exploited to es-
tablish the following proposition (see Appendix C for proofs of the propositions and corollaries).

Proposition 1. With complete normal data, for arbitrary nonsingular 2 × 2 matrix X, the sets of
true values (C,E) and (C̃, Ẽ) = (X′CX,X′EX) give rise to the same χ̄2 distribution.

The above proposition states that the asymptotic sampling distribution is invariant under a
particular type of transformation on (C,E) and can be employed to convert a general problem
to a simpler situation which shares the same asymptotic distribution, as given by the following
corollaries.

Corollary 1. For arbitrary true values C ≥ 0 and E > 0, the χ̄2 distribution is the same as
for true values C̃ = diag{β1,β2} and Ẽ = diag{1 − β1,1 − β2}, where β1 and β2 are the two
eigenvalues of (C + E)−

1
2 C(C + E)−

1
2 . In this case, either λ1 = λ3 or λ2 = λ3 in Equation (3).
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Corollary 2. Especially, if the true values satisfy C = γ E for some scalar γ ≥ 0, the weights of
the χ̄2 distribution are given by w0 = w3 = 1

2 −
√

2
4 = 0.14645 and w1 = w2 =

√
2

4 = 0.35355
and are not dependent on the nuisance parameter E and sample size proportion nMZ/nDZ.

Corollary 1 shows that for complete normal data, the class of χ̄2 distribution is determined
by the ratio between λ1 and λ2, or the relative sizes of the radii of the base ellipse of Θ1, whose
height is always equal to one of the radii. Given our discussion of Θ1 and its polar cone Θ0

1 above
and Property 3 in Appendix A, it can easily be seen that the most conservative (stochastically
largest) member in the class of χ̄2 has weights w0 = 0, w1 = 0.25, w2 = 0.5 and w3 = 0.25
(achieved when λ1 = λ2 and λ3 → 0), which is more powerful than the widely used χ2

3 . This can
be used to obtain an upper bound of p-value given any true values of C and E and sample size
proportions.

Corollary 2 gives the weights for the special case when C and E are proportional. We note
that the weight for χ2

3 , the distribution for a naive user of LRT, is less than 15 %, and most
weights are on the χ2’s with one and two dfs. This suggests the naive use of LRT would be
too conservative because a χ2 distribution with larger df is (stochastically) larger than one with
smaller df. In fact, the 95th percentile of χ2

3 distribution (7.815) is much larger than that of the
χ̄2 distribution (5.485) and corresponds to its 98.4th percentile, so the naive use of LRT at the
level of α = 0.05 has an actual asymptotic Type I error rate of 0.016.

2.4. Testing A = 0 when C is Singular

The above discussion of the LRT for A = 0 requires C > 0 and E > 0 in the population.
When this requirement is not met, Properties 1 and 2 of Appendix A does not apply and the
resulting sampling distribution of T may not be a mixture of χ2’s. Although E cannot be singular
(because a singular E implies a singular covariance matrix for the MZ twins), a singular C is
possible, indicating that the corresponding latent factor, if present at all, is unidimensional. When
this is the case, the χ̄2 with four components as derived in Section 2.2 is no longer the correct
asymptotic distribution of T and cannot be used in practice.

In practice, a singular C can be detected by a near singular Ĉ under the full ACE model, and
its rank can be inferred from the (naive) confidence intervals of the two diagonal elements in the
Cholesky decomposition of Ĉ. One option in this case is to incorporate an appropriate restriction
on C for both the null and alternative hypotheses. If it is suspected that C = 0, we may consider
testing the E model against the AE model, or

H0: A = 0, C = 0 ↔ H1: A ≥ 0, C = 0. (7)

If it is suspected that C has rank 1, the following test can be performed:

H0: A = 0, rank C = 1 ↔ H1: A ≥ 0, rank C = 1, (8)

in which the restriction of rank C = 1 can be imposed by the parametrization c = (c2
1, c1c2, c

2
2)

′.
The results in Section 2.2 are appropriate for both the two tests above as long as the matrix IA is
calculated using only the block of the FIM corresponding to the free parameters in the alternative
model. Especially, for complete normal data, the test of E model against AE model is independent
of the nuisance parameter E, with the weights in the χ̄2 distribution given by Corollary 2.

3. Testing Both Components A = C = 0

The joint test of two bivariate variance components is more complicated. We give a brief
formulation of the geometry of Θ1, introduce necessary notations and present the result in this
section, but leave the calculation to Appendix D.
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3.1. Formulation of the Problem and Notations

Let θ = (a′, c′)′ = (a1, a2, a3, c1, c2, c3)
′ be the parameter vector being tested and Ĩ −1 be

the asymptotic covariance matrix of θ̂ , which is a 6 × 6 block of the inverse of the FIM for all
parameters in the model. From Property 2 of Appendix A, the weights can be determined using
Ĩ −1, Θ0 = 06 and Θ1 = ΘA × ΘC.

We first consider the decompositions ĨAA = LAL′
A and ĨCC = LCL′

C for the two diagonal
blocks of Ĩ and also the spectral decompositions L−1

A VL′
A

−1 = UAΛAU′
A and L−1

C VL′
C

−1 =
UCΛCU′

C. Note that the eigenvalues must be of signs (−,−,+). Now consider the transforma-
tion a = L′

A
−1UAā and c = L′

C
−1UCc̄. In the space of the transformed parameters θ̄ = (ā′, c̄′)′,

the metric becomes

Ī =
(

L′
A

−1UA 0
0 L′

C
−1UC

)′
Ĩ

(
L′

A
−1UA 0
0 L′

C
−1UC

)
=

(
I ĪAC

ĪCA I

)
, (9)

where ĪAC = U′
AL−1

A ĨACL′
C

−1UC. Let ΛA = diag{−λA
1 ,−λA

2 ,λA
3 } with λi > 0 and ΛC be

similarly defined. Also let the orientation of the third eigenvector u3 be chosen to satisfy
(1,0,1)L′u3 > 0 for both cones. If we write ā = (ā1, ā2, ā3)

′ and c̄ = (c̄1, c̄2, c̄3)
′, the sets ΘA

and ΘC are represented by λA
1 ā2

1 + λA
2 ā2

2 ≤ λA
3 ā2

3 (ā3 ≥ 0) and λC
1 c̄2

1 + λC
2 c̄2

2 ≤ λC
3 c̄2

3 (c̄3 ≥ 0).
Consider the elliptical coordinates (ra,ψa,φa, rc,ψc,φc) related to the Cartesian system

θ̄ = (ā′, c̄′)′ by

ā = ra

⎛

⎜⎜⎜⎝

√
κA

1 cosφa cosψa√
κA

2 cosφa sinψa√
κA

3 sinφa

⎞

⎟⎟⎟⎠
and c̄ = rc

⎛

⎜⎜⎜⎝

√
κC

1 cosφc cosψc√
κC

2 cosφc sinψc√
κC

3 sinφc

⎞

⎟⎟⎟⎠
,

where the κ’s are the reciprocals of the λ’s. Ranges of the new coordinates are ra, rc ≥ 0,
0 ≤ ψa,ψc < 2π and −π/2 ≤ φa,φc ≤ π/2. We have ΘA = {π/4 ≤ φa ≤ π/2} and ΘC =
{π/4 ≤ φc ≤ π/2}. The Jacobian of this transformation is given by J = diag{JA,JC}, where
JA = J̄Adiag{1, ra, ra} with J̄A = (ra, ta, r̃a) defined by

J̄A = (ra, ta, r̃a) =

⎡

⎢⎢⎢⎣

√
κA

1 cosφa cosψa

√
κA

1 sinψa cosφa −
√

κA
1 sinφa cosψa√

κA
2 cosφa sinψa −

√
κA

2 cosψa cosφa −
√

κA
2 sinφa sinψa√

κA
3 sinφa 0

√
κA

3 cosφa

⎤

⎥⎥⎥⎦
.

We further define J̃A = (ra, ta), and JC, J̄C, rc, tc, r̃c and J̃C are similarly defined. The following
notation will also be used:

α1 = r ′
ara α2 = r ′

crc α3 = r ′
a ĪACrc τ = α3√

α1α2
and t = arccos τ. (10)

The polar cone of Θ1 is the part of R6 whose projection onto Θ1 is 0. To express this polar
cone, we introduce a new coordinate system θ̄

∗ = (ā∗ ′, c̄∗ ′)′ = (ā∗
1 , ā∗

2 , ā∗
3 , c̄∗

1, c̄∗
2, c̄∗

3)′, which is
related to θ̄ through θ̄

∗ = Ī θ̄ . Appendix D gives a brief proof that the polar cone of Θ1 is given by
Θ0

1 = Θ0
A ∩Θ0

C, where Θ0
A = {θ̄∗|κA

1 ā∗2
1 + κA

2 ā∗2
2 ≤ κA

3 ā∗2
3 , ā∗

3 ≥ 0} and Θ0
C is similarly defined.

We also define I ∗
A = I − ĪAC ĪCA = (Ī AA)−1.

An elliptic coordinate system can also be used for Θ0
A and Θ0

C. If we express

ā∗ = r∗
a

⎡

⎢⎢⎢⎣

√
λA

1 cosφ∗
a cosψ∗

a√
λA

2 cosφ∗
a sinψ∗

a

−
√

λA
3 sinφ∗

a

⎤

⎥⎥⎥⎦
and c̄∗ = r∗

c

⎡

⎢⎢⎢⎣

√
λC

1 cosφ∗
c cosψ∗

c√
λC

2 cosφ∗
c sinψ∗

c

−
√

λC
3 sinφ∗

c

⎤

⎥⎥⎥⎦
,
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we have Θ0
A = {π/4 ≤ φ∗

a ≤ π/2} and Θ0
C = {π/4 ≤ φ∗

c ≤ π/2}. The Jacobian matrix J∗ can be
calculated similarly to J with notations J̄∗, J̃∗, r∗, t∗, r̃∗ similarly defined for both A and C. We
also use α∗

1 = r∗ ′
a Ī AAr∗

a , α∗
2 = r∗ ′

c Ī CCr∗
c , α∗

3 = r∗ ′
a Ī ACr∗

c , and t∗ and τ ∗ as defined similarly to
t and τ .

Following Chernoff (1954, Theorem 2), the LRT statistic T has asymptotically the same
distribution as T = θ̄

′
1 Ī θ̄1, where θ̄1 ∈ Θ1 minimizes the quadratic form (θ̄1 − θ̄)′Ī(θ̄1 − θ̄)

with θ̄ ∼ N(0, Ī −1). Note the matrix Ī serves as the metric tensor of the 6-dimensional space
and θ̄1 is the projection of θ̄ onto Θ1 (with respect to Ī ).

3.2. Mixture Probabilities

If both the elliptic cones that define the boundaries of ΘA and ΘC are approximated by
polyhedral cones, the projection of θ̄ on Θ1, θ̄1, may be located in the interior (3-face), on a
face (2-face), on an edge (1-face), or at the apex (0-face) of either of the two polyhedral cones,
leading to a partition of 16 different regions in R6 with probabilities wij (i, j = 0,1,2,3). T has
a mixture of χ2 distributions with mixture weights wij (i, j = 0,1,2,3) for df (i + j). When
passing to the limiting elliptic cone, different regions may fuse together, but their corresponding
weights need not converge to 0. Below we give the 10 of the 16 weights wij . They are derived
in the Appendix D. The remaining six weights can be obtained by symmetry. Computationally,
these weights can be calculated using numerical integration. Separate programs in R (R Devel-
opment Core Team, 2010) have been coded to calculate the weights in Sections 2.2, 3.2 and 3.3.
They are available from the first author upon request. We have
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×
∫ 2π

ψa=0

∫ 2π

ψc=0
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w13 = 1

16π3|ΛC| 1
2

∫ 2π

ψ=0
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)

where function ς was defined in Equation (3);
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8π3
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where J̃22 = diag{J̃A, J̃C} is a 6 × 4 matrix;

w12 = 1
16π2
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where J̃12 = diag{ra, J̃C} and J̃∗
12 = diag{J̃∗

A, r∗
c} are 6 × 3 matrices;

w11 = 1
8π3
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where J̃∗
11 = diag{J̃∗

A, J̃∗
C} is a 6 × 4 matrix;
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3.3. Complete Normal Data

With complete normal data, the FIM Ĩ is highly structured at C = E = 0 (see Equation (B.1)
in Appendix B). Exploiting this structure, we have the following conclusion:

Proposition 2. With complete normal data, Ī(θ) =
( 1 ρ

ρ 1

)
⊗ I and ΛA = ΛC = diag{−1,−1,1},

where ρ = (wAwCαDZ + αMZ)/
√

(w2
AαDZ + αMZ)(w2

CαDZ + αMZ), and αMZ and αDZ are sam-

ple size proportions. The asymptotic χ̄2 distribution is determined only by sample size ratio
through ρ and is not related to the nuisance parameter E.

In this case, ĪAC = ρI and we further have I ∗
A = I ∗

C = (1 − ρ2)I, α1 = α2 = 1, α∗
1 = α∗

2 =
(1 − ρ2)−1 and τ = −τ ∗ = ρ(cosφa cosφc cos0ψ + sinφa sinφc). Note the weights are related
to ψa and ψc only through 0ψ = ψa −ψc, so the number of integrals involved can all be reduced.
Especially, for wij (i, j = 1,2), τ = −τ ∗ = 1

2ρ(1+ cos0ψ) and more simplification is possible.
We have
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TABLE 1.
The weights (in percentages) of the χ̄2 distribution for testing A = C = 0 in a bivariate ACE model and for testing
A = D = 0 in a bivariate ADE model.

Model Sample size
proportions

Weights Percentiles

αMZ αDZ 0 1 2 3 4 5 6 95 99

Naive LRT 0 0 0 0 0 0 1.00 12.59 16.81

ACE 0.5 0.5 11.13 29.69 34.47 19.85 4.38 0.46 0.02 6.16 9.68
0.6 0.4 11.39 30.12 34.56 19.49 4.03 0.39 0.02 6.11 9.61
2/3 1/3 11.62 30.50 34.64 19.17 3.73 0.33 0.01 6.06 9.56
0.7 0.3 11.75 30.71 34.68 18.98 3.56 0.31 0.01 6.04 9.53
3/4 1/4 11.97 31.08 34.75 18.66 3.27 0.26 0.01 6.00 9.47
0.8 0.2 12.22 31.50 34.82 18.29 2.95 0.21 0.01 5.95 9.41

ADE 0.5 0.5 12.22 31.50 34.82 18.29 2.95 0.21 0.01 5.95 9.41
0.6 0.4 12.58 32.07 34.92 17.78 2.50 0.15 0.00 5.88 9.32
2/3 1/3 12.81 32.44 34.98 17.44 2.21 0.12 0.00 5.83 9.27
0.7 0.3 12.93 32.63 35.01 17.26 2.06 0.11 0.00 5.81 9.24
3/4 1/4 13.11 32.92 35.05 16.99 1.84 0.09 0.00 5.78 9.20
0.8 0.2 13.30 33.22 35.09 16.71 1.61 0.07 0.00 5.74 9.15
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These formulas are applied to the equal sample size case and the result is shown in Table 2.
The final weight wk for the χ̄2 distributions can be determined by wk = ∑

i+j=k wij . Table 1
displays weights for various sample size ratios in an ACE or ADE model. Note only cases with
nMZ > nDZ are shown because in practice available observations from MZ twins are in most cases
more than those from DZ twins. Along with the weights are the 95th and 99th percentiles of the
χ̄2 distribution. The χ2

6 distribution is also included for comparison. We can see the weights for
the different sample size ratios are very close to each other. There is a trend that the weights for
higher dfs increases and those for lower dfs decreases when the sample sizes become similar. This
suggests that the χ̄2 distribution for equal sample size is the most conservative. When compared
to the χ2

6 distribution, all χ̄2 distributions put more weights on lower dfs while their weights for
χ2

6 are negligible. As a result, they have much lower critical values. In fact, the 95th percentile
of χ2

6 distribution (12.6) is more than twice that of any of the χ̄2 distributions and corresponds
to the 99.7th percentile of the most conservative χ̄2 distribution in the table, so the incorrect use
of LRT at the level of α = 0.05 has an actual Type I error rate of at most 0.003. This suggests
that the incorrect use of χ2

6 would result in very conservative results. Comparing ACE and ADE
models, the distributions for the ADE models are stochastically smaller. In particular, an ADE
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TABLE 2.
The weights wij (i, j = 0,1,2,3) for equal sample sizes when testing A = C = 0 calculated from equations in Sec-
tion 3.3.

0 1 2 3

0 0.1113 0.1485 0.1265 0.0214
1 0.1485 0.0916 0.0778 0.0097
2 0.1265 0.0778 0.0245 0.0023
3 0.0214 0.0097 0.0023 0.0002

FIGURE 2.
Plots of the 1st–99th percentiles of the simulated sampling distribution of T against those of the χ̄2 distribution in Sim-
ulation Study 2. The sample sizes (nMZ, nDZ) are (from left to right) (100,100), (150,50), (500,500) and (750,250).
The true and null model is CE and the alternative model is ACE.

model with equal sample sizes has the same weights as an ACE model with nMZ = 4nDZ. This
is because they happen to share the same value of ρ in Proposition 2.

4. Simulation Studies

4.1. Study 1

In the first simulation, we examine the accuracy of the weights derived in Section 2.2 for
testing a single variance component in a bivariate ACE model. Four different sample size com-
binations are assumed: (nMZ, nDZ) = (100,100), (150,50), (500,500), (750,250). They vary
in terms of the total sample size (N = 200 or 1000) and the ratio between the two groups
(nMZ/nDZ = 1 or 3). For each sample size combination, 10,000 samples of sample covariance
matrices are drawn from the ACE model with A = 0 and C = E =

( 1 0.5
0.5 1

)
. Each sample is

fitted to both the ACE and the CE model using OpenMx (Boker, Neale, Maes, Wilde, Spiegel,
Brick, et al., 2011) and the statistic T is produced for each sample. The 1st–99th percentiles of
T are then plotted against those of the analytical asymptotic χ̄2 distribution with weights given
in Corollary 2. The four QQplots are displayed in Figure 2. The χ̄2 distribution fits the simulated
distribution very well in all four conditions.

To obtain a clearer understanding of the origin of the mixture distribution in this case, we
further examine the estimates Â in the full ACE model. According to our analysis in Section 2.2,
samples that give a full rank Â contribute to the χ2

3 component and those that yield Â = 0
contribute to the χ2

0 component, so the distribution of the rank of Â should correspond to the
weights in the mixture. The rank of Â is determined for each sample of size nMZ = nDZ = 500
and we find 14.61 % produced Â = 0, 70.84 % gave an Â of rank 1, and 14.55 % yielded an Â
of full rank. These percentages are very close to the weights w0, w1 + w2 and w3 as given in
Corollary 2, confirming our previous analysis.
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FIGURE 3.
Plots of the 1st–99th percentiles of the simulated sampling distribution of T against those of the χ̄2 distribution in
Simulation Study 2. The true model is E. The null and alternative models are (from left to right) AE vs. ACE, CE vs.
ACE, E vs. AE and E vs. CE. The sample sizes are nMZ = nDZ = 500 for the left two panels and nMZ = 150 and
nDZ = 50 for the right two panels.

FIGURE 4.
Plots of the 1st–99th percentiles of the simulated sampling distribution of T against those of the χ̄2 distribution in Sim-
ulation Study 2. The sample sizes (nMZ, nDZ) are (from left to right) (100,100), (150,50), (500,500) and (750,250).
The true and null model is E and the alternative model is ACE.

4.2. Study 2

The second simulation studies (1) the accuracy of the χ̄2 distribution in testing a single
bivariate variance component when a nuisance parameter is on the boundary, an issue raised in
Section 2.4, and (2) the accuracy of the weights given in Section 3.3 for testing both variance
components in a bivariate ACE model. In this study, the true model is an ACE model with A =
C = 0. The same sample size combinations, number of replications and true value of E are
assumed as in the first study. Each simulated sample is fitted to the E, AE, CE and ACE models,
and a test statistic T can be computed for five tests: AE vs. ACE, CE vs. ACE, E vs. AE, E vs.
CE, and E vs. ACE. The 1st–99th percentiles of T are plotted against those of a χ̄2 distribution.
For the first four tests, the χ̄2 distribution is a mixture of χ2’s with zero–three dfs with weights
given by Corollary 2. For the test of E vs. ACE, the χ̄2 distribution is a mixture of χ2’s with
zero–six dfs with weights given in Table 1.

In Figure 3, the first and second panels display the QQplots for testing the AE and CE models
against the ACE model when the true model is E. The plots show that the χ̄2 is stochastically
much larger than the empirical distribution. The use of this χ̄2 distribution would give a larger
critical value and more conservative results, though it is still less conservative than using the χ2

3
distribution. In this case, one possible solution is to constrain the boundary nuisance parameter
on the boundary and test the E model against the AE and CE models. The QQplots for these tests
are displayed in the third and fourth panels and show that the χ̄2 distribution is now appropriate.
These results confirm our discussion in Section 2.4.

Another focus of the present simulation is the test of two components. The QQplots are
displayed in Figure 4, which show that the χ̄2 distribution with weights calculated in Table 1
fits the empirical distribution very well under all four sample size combinations. Similar to but
more complex than testing a single component, these weights come from the wij ’s, which are
proportions of (Â, Ĉ) that lie on the different types of boundary of ΘA ×ΘC with different ranks
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TABLE 3.
Ranks of Â and Ĉ of the ACE model in Simulation Study 2 with nMZ = nDZ = 500. The total count is 10,000.

Rank Â 0 1 2

Rank Ĉ 0 1 2 0 1 2 0 1 2

Obs. proportions 12.27 27.41 1.77 28.00 26.20 1.20 1.92 1.23 0.00
Exp. probabilities 11.13 27.50 2.14 27.50 27.17 1.20 2.14 1.20 0.02

FIGURE 5.
Plot of 1st–99th percentiles of the simulated sample in Simulation Study 3 against those of a χ̄2 distribution based on
calculated weights.

for the two matrices. These proportions for nMZ = nDZ have been tabulated in Table 2. Note
weights with 1 and 2 in their subscripts need to be combined to give the proportions of Â or
Ĉ of rank 1, because the edges and faces of a polyhedral cone are no longer distinguishable in
its limiting circular cone. For example, the proportion of the sample with both Â and Ĉ of rank
one corresponds to the sum w11 + w12 + w21 + w22. This is again confirmed in this simulation.
Table 3 displays the observed proportions of replications for nMZ = nDZ = 500 that fall into
different rank conditions, and the proportions are close to those given by analytical results.

4.3. Study 3

The previous simulation study confirms the validity of weights given in Section 3.3 for
complete normal data. In this study, we check the validity of the analytical results in Section 3.2
for more general situations, in which the weights are determined directly from the FIM. The
FIM Ĩ is specified as follows: the two diagonal blocks ĨAA and ĨCC are correlation matrices
with equal correlations 0.7 and 0.5, respectively, and the off diagonal block ĨAC is a 3×3 matrix
with equal elements of 0.3. Clearly this matrix does not satisfy the structure for complete normal
data as given in Appendix B. The weights are calculated as 0.1129, 0.2982, 0.3203, 0.1888,
0.0656, 0.0130 and 0.0012 for dfs from 0 to 6. The sums of weights for odd and even dfs are
both 0.5000, satisfying Property 3 in Appendix A.

We now check this result against a Monte Carlo sample from χ̄2 obtained by fitting a ran-
dom sample of size 10,000 from N(0, Ī −1) to the model N(θ , Ī −1) with n.n.d. constraints on
θ = (a′, c′)′. This method of sampling from the asymptotic distribution follows directly from
Chernoff (1954, Theorem 2). The restricted optimization was carried out in R using the nlm
function. This sample is compared to a sample of size 106 generated from a χ̄2 distribution with
weights calculated above and a QQplot is displayed in Figure 5. The QQplot shows that the χ̄2

gives an accurate description of the Monte Carlo sample.
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TABLE 4.
The covariance matrices for skinfold measures on twins. BIC = bicep; SSC = subscapular.

MZ twin pairs (nMZ = 84) DZ twin pairs (nDZ = 33)

BIC1 SSC1 BIC2 SSC2 BIC1 SSC1 BIC2 SSC2

BIC1 0.1285 0.1538
SSC1 0.1270 0.1759 0.1999 0.3007
BIC2 0.0982 0.1069 0.1233 0.0435 0.0336 0.1782
SSC2 0.0999 0.1411 0.1295 0.1894 0.0646 0.0817 0.2095 0.3081

TABLE 5.
Estimates of the bivariate variance components and −2 lnL of three models when fitted to the skinfold data.

ACE model AE model E model

A 0.1062 0.1172
0.1401 0.1893 0.1359 0.1910

C 0.0116
−0.0040 0.0014

E 0.0285 0.0283 0.1371
0.0264 0.0441 0.0266 0.0439 0.1495 0.2165

−2 lnL −802.5753 −799.4005 −670.9482

5. An Example

After confirming the analytical asymptotic distributions with three simulation studies, we
apply these results to a data set from the Medical College of Virginia Twin Study (Schieken,
Eaves, Hewitt, Mosteller, Bodurtha, Moskowitz, et al., 1989) to demonstrate their use. The data
are skinfold measures made on 11 year-old male twins through standard anthropometric tech-
niques. The covariance matrices of four variables, two measures obtained for biceps (BIC) and
subscapular (SSC) skinfolds on the twins, are presented in Table 4 for both MZ and DZ twins.
The sample sizes are 84 and 33 for the MZ and DZ twins, respectively.1

The sample is fitted to the full ACE, AE and E models using OpenMx (Boker et al., 2011).
The estimates of the variance components are shown in Table 5. The full ACE model gives a Ĉ
with very small entries, suggesting the AE model may hold in the population. The test statistic
for testing the AE model against the full ACE model is T = 3.175, yielding a p-value of 0.365
under the traditional χ2

3 distribution of LRT. To use the χ̄2 distribution proposed in this research,
we have to use the estimates Â and Ê under the AE model. As Â is not close to singular, the
procedure proposed in Section 2.2 is valid. The eigenvalues of (A + E)−1A are 0.822 and 0.615
and the three eigenvalues that determine the shape of the elliptic cone are given by −1.0038, −1
and 1.0038 (which are normalized such that the sum is −1), satisfying Corollary 1. Because the
three eigenvalues have similar magnitudes, the weights are close to those specified in Corollary 2.
In fact, we have w3 = 0.1466, w2 = 0.3537, w1 = 0.3534 and w0 = 0.1463. The critical value
for a 5 % level test is 5.486. The observed statistic is smaller than the critical value, yielding a
non-significant result. However, the p-value is 0.152, much smaller than the one given by a χ2

3
distribution.

1Because the sample sizes are smaller than those used in the simulation studies, a separate simulation study using
this sample size combination was conducted with the estimated AE model as the true model. The study showed that the
χ̄2 distribution is valid for this case.
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The test statistics for testing the E model against the AE and ACE models are both above
100, far beyond the critical values set by the χ2

3 and χ2
6 distributions. Because the naive use of

LRT is more conservative, a significant result would remain significant if the correct sampling
distribution were used.

6. Summary and Discussion

6.1. A Brief Summary

Testing whether a particular variance component exists is one of the main purposes
of the use of the ACE or ADE models. Unfortunately the traditional LRT for such pur-
poses has been found invalid due to the boundary condition imposed by the n.n.d. of vari-
ance components, which implies that a regularity condition of LRT is violated (Carey, 2005;
Visscher, 2006). The present research resolves the issue of testing the existence of one or two
variance components in bivariate ACE and ADE models by deriving the correct asymptotic sam-
pling distribution for the test statistic T . Our analysis shows that the geometry of the boundary
condition involved is more complicated than those studied by Self and Liang (1987) and those in
a univariate ACE or ADE models as discussed by Dominicus et al. (2006), and that the desired
distribution is a mixture of χ2 distributions which can be calculated by projecting a multivariate
normal distribution onto an elliptic cone (for testing a single component) or an oblique Cartesian
product of two elliptic cones (for testing two components). The correct distributions are stochas-
tically smaller than the χ2 distributions assumed by traditional LRTs and are more powerful. We
provide formulas and computer program for the computation of the mixture weights, and our
analytical derivations are confirmed by simulation studies.

Because our analytical results are entirely based on the FIM I of the model, it is appropriate
for all practical situations in general, including the presence of missing data, ordered categorical
data and covariates, as long as the central limit theorem holds. For complete normal data, several
invariance properties are established in Sections 2.3 and 3.3 using the special structure of I .
Interestingly, for a special type of missing data pattern, these invariance results are still valid.
This special type is missing by person, or that variables related to one twin are always missing
together. In this case, the FIM under the E model still have the desired structure (see Appendix B
for the proof), so the results in Section 3.3 are still valid, though in this case nMZ, nDZ, αMZ and
αDZ should be the sample sizes or percentages of complete MZ or DZ twin pairs. The invariance
properties discussed in Section 2.3 are also valid.

6.2. Generalization to Higher Dimensions and Other Models

The current research tackles the bivariate ACE and ADE models only, which may be a bit
disappointing as most readers would wish that such a study would resolve the LRTs for multi-
variate ACE or ADE models in general, once and for all. However, this is unfortunately not an
easy task. The current research exploits the fact that the n.n.d. for 2 × 2 matrices is defined by a
quadratic form on the three distinct elements, which is not true for higher dimensions. In higher
dimensions, this restriction is represented by non-negative eigenvalues of the variance compo-
nents and gives rise to more complicated geometry. Kuriki and Takemura (2000) studies this
geometry and gives the weights for testing a single p ×p variance component under the assump-
tion that the non-duplicated elements in the covariance matrix have independent distributions
with some specified variances, which is not the case for most practical situations.

Although an analytical expression is hard to derive for higher dimensions, Chernoff (1954,
Theorem 2) does suggest a Monte Carlo strategy for simulation of the asymptotic distribution.
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Normally distributed vectors a can first be simulated from N(0, Ĩ −1), the asymptotic distribu-
tion for non-restricted estimates, and then fitted to the restricted space defined by the n.n.d. by
minimizing the quadratic form (a1 − a)′Ĩ(a1 − a). The minimizer gives the desired sampling
distribution. This method was employed by Silvapulle and Sen (2005, Section 3.5) for inequal-
ity constrained normal means and by Han and Chang (2010) for a genetic linkage model. It has
also been used in Section 4.3 to validate the analytical results. Though expected to be computa-
tionally intensive when compared to analytical solutions, this simulation based approach is more
efficient than bootstrapping, as only the parameters of interest are involved and the optimization
is performed on a quadratic form. This method is also available for situations where the sampling
distribution is not a mixture of χ2’s due to concavity of Θ1 or Θ0. Research along this line is
beyond the scope of this article and will be published separately.

Though the current research concerns only the test of variance components in ACE and ADE
models, its application can be more general. Mathematically, any test on three parameters θ1, θ2
and θ3 with an alternative hypothesis of the shape θ1θ3 − θ2

2 ≥ 0 (θ1, θ3 ≥ 0) can be solved by the
method laid out in Section 2.2. One of such problems is the test of two random effects in random
coefficient models. Application to this area of study is beyond the scope of the current article.
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Appendix A. Some Properties of the χ̄2 Distribution

Property 1. When the approximating cone C0 of Θ0 is a subset of the largest linear2 subspace
of the approximating cone C1 of Θ1 and both cones are convex, the statistic T has an asymptotic
χ̄2 distribution. See Dr. Alexander Shapiro’s website for his proof.3 For the special case of Θ0 =
C0 = 0, we denote the weight wk of χ2

k by wk(p, I(θ0)
−1, C1), where p is the dimension of Θ1

and I(θ0) is the FIM of the alternative model.

Property 2. If nuisance parameters ξ are present but are not on their boundary, when testing
ψ = 0 against a constrained alternative ψ ∈ Ψ , the equation for the weights of the χ̄2 distribution
is given by wk = wk(q, I ψψ , C), where q is the length of ψ , I ψψ is the block of I −1 that
corresponds to ψ , and C is the approximating cone to Ψ in Rq .

Property 3. The weights {wk} for odd and even k sum up to 0.5, respectively (Shapiro, 1987).
See Dr. Alexander Shapiro’s website for proofs he receives from correspondence.4

Property 4. wk(p, I −1, C) = wp−k(p, I −1, C 0), where C 0 is the polar cone of C , defined as the
subset of Rp whose projection onto C is the apex of C , or C 0 = {x|x′Iy ≤ 0,∀y ∈ C}.

For more properties of the weights of a χ̄2 distribution, see Silvapulle and Sen (2005, Sec-
tion 3.6).

2Linearity refers to the closure under linear operations and should not be confused with “being flat”.
3The link can be found after Shapiro (1988).
4The link can be found after Shapiro (1987).
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Appendix B. The Fisher Information Matrix

We derive the FIM I(θ0) of a p-variate ACE model with complete normal data. In gen-
eral, the typical element of the FIM of a covariance structure model is given by (I)αβ =
1
2 tr{0αΣ−10βΣ−1}, where Σ = Σ(θ) is the covariance structure and 0α = ∂Σ/∂θα . For

the DZ twin group in an ACE model, Σ−1
DZ takes the shape

( ΣDZ
1 ΣDZ

2
ΣDZ

2 ΣDZ
1

)
, where all blocks are

symmetric. If we define the p × p binary matrix Kij = ∂C/∂cij (e.g., K12 = K21 =
( 0 1

1 0

)
for

p = 2), we have ∂ΣDZ/∂cij =
( 1 wC

wC 1

)
⊗ Kij and the derivatives w.r.t. A and E can be ob-

tained similarly. If we further define K as the p2 × p(p + 1)/2 matrix whose columns are the
vecKij ’s (e.g., K = diag{1,12×1,1} for p = 2) and QDZ

1 = K′(ΣDZ
1 ⊗ ΣDZ

1 + ΣDZ
2 ⊗ ΣDZ

2 )K
and QDZ

2 = K′(ΣDZ
1 ⊗ ΣDZ

2 + ΣDZ
2 ⊗ ΣDZ

1 )K, the FIM for the DZ twins can be expressed as

I DZ =

⎛

⎝
1 + w2

A 1 + wAwC 1
1 + wAwC 1 + w2

C 1
1 1 1

⎞

⎠ ⊗ QDZ
1 +

⎛

⎝
2wA wA + wC wA

wA + wC 2wC wC
wA wC 0

⎞

⎠ ⊗ QDZ
2 .

The FIM I MZ for the MZ twins can be obtained similarly by altering the weights. Let αMZ and
αDZ be sample size proportions of the two types of twin, with αMZ + αDZ = 1. The overall FIM
(of sample size one) is given by I = αMZ I MZ + αDZ I DZ.

A special case of interest is when ΣMZ
1 = a1X, ΣMZ

2 = a2X, ΣDZ
1 = a3X and ΣDZ

2 = a4X
are scalar multiples of the same matrix X. In this case, QMZ

1 , QDZ
1 , QMZ

2 and QDZ
2 are all scalar

multiples of K′(X ⊗ X)K, so the FIM takes the shape I = Y ⊗ [K′(X ⊗ X)K], where Y is some
3 × 3 matrix. When A = C = 0, we have a1 = a3 = 1, a2 = a4 = 0 and X = E−1, and the FIM
becomes

I =
(
13×3 + αDZwDZw′

DZ + αMZwMZw′
MZ

)
⊗

{
K′(E ⊗ E)−1K

}
, (B.1)

where 13×3 is a 3 × 3 matrix of 1’s, wDZ = (wA,wC,0)′ and wMZ = (1,1,0)′.
When data are missing by person, variables related to one twin are missing or present to-

gether. The covariance matrix of variables for the singletons is Σ0 = A+C+E for both MZ and
DZ twins, and the FIM for the singletons is given by I 0 = 1

2 (13×3) ⊗ [K′(Σ0 ⊗ Σ0)
−1K]. The

FIM for the entire data set is the weighted sum of I 0 and the complete data FIM given earlier.
Especially, when A = C = 0, we have Σ0 = E, and I 0 = 1

2 (13×3)⊗ [K′(E ⊗ E)−1K]. Summing
over the twin and singleton groups, we have

I =
{(

α + 1
2
β

)
13×3 + αDZwDZw′

DZ + αMZwMZw′
MZ

}
⊗

{
K′(E ⊗ E)−1K

}
,

where α = αDZ +αMZ are proportions of complete twin data and β is the proportion of data with
only a single twin.

Appendix C. Lemmas and Proofs

Lemma 1. Let Ω = {r|r ′Qr < 1, r1 > 0, r2 > 0}, where Q =
(a1 a3
a3 a2

)
≥ 0 and r = (r1, r2)

′. De-
note τ = a3/

√
a1a2 and t = arccos τ . We have

∫

Ω
r2

1 r2
2 dr = t − 3τ sin t + 2tτ 2

48 sin5 t (a1a2)3/2
,

∫

Ω
r1r

2
2 dr = 1

15(1 + τ )2a1a
3/2
2

,
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∫

Ω
r2

2 dr = 2t − sin(2t)

16
√

a1a
3
2 sin3 t

,

∫

Ω
r1r2 dr = sin t − t cos t

8a1a2 sin3 t

and
∫

Ω
r2 dr = 1

3a
1/2
1 a2(1 + τ )

.

Proof: One only need to prove for the case of a1 = a2 = 1 and a3 = τ . This can be done through
integration with the reparametrization (r1, r2) = R sin(t/2 ± θ)/ sin t . The region Ω becomes
{0 ≤ R ≤ 1, |θ | ≤ t/2} under the new coordinate system. !

Lemma 2. The matrices K = diag{1,12×1,1}, B = diag{1, 1
2 × 12×1,1} and M = KB′ =

diag{1, 1
2 12×2,1} satisfies

1. K′B = I, K′M = K′ and MB = B;
2. M is exchangeable with X ⊗ X for arbitrary X;
3. {K′(X ⊗ X)−1K}−1 = B′(X ⊗ X)B for arbitrary X.

Proof: See Gupta and Nagar (1999, Section 1.2) or check by simple algebra. !

Proof of Proposition 1: Given the relationship between the two sets of parameters, following
the calculations in Appendix B, we have Σ̃

j
i = X−1Σ

j
i X−1 ′ and Q̃j

i = YQj
i Y′ for i = 1,2 and

j = MZ,DZ, where Y = K′(X ⊗ X)−1B with K and B defined in Lemma 2 in Appendix C.
The relationship between blocks of the FIM can be further found as Ĩkl = YIklY′ for k, l =
a, c, e. From Equation (1), we have ĨA = YIAY′. For any decomposition IA = LL′, we have
ĨA = L̃L̃′, where L̃ = YL, and therefore L̃−1VL̃−1 ′ = L−1Y−1VY−1 ′L−1 ′. From Lemma 2, we
have Y−1 = (K′(X ⊗ X)−1B)−1 = K′(X ⊗ X)B, and simple algebra gives Y−1VY−1 ′ = |X|2V.
Therefore we have L̃−1VL̃−1 ′ = |X|2L−1VL−1 ′, which implies Λ̃ = |X|2Λ, so the weights in
the χ̄2 distribution must be the same for the two cases. !

Proof of Corollary 1: The conclusion follows from Proposition 1, if we choose X =
(C + E)−

1
2 U, where U’s columns are eigenvectors of (C + E)−

1
2 C(C + E)−

1
2 . Note now both

C̃ and Ẽ are diagonal matrices. Following our calculations in Appendix B, all nine blocks of
the FIM must be diagonal and therefore IA and L must be diagonal. Simple algebra shows that
the eigenvalues −λ1,−λ2 < 0 < λ3 of L−1VL−1 ′ must satisfy λ3 = λ2 or λ3 = λ1, and the
conclusion follows. !

Proof of Corollary 2: From Corollary 1, the pair of true values C̃ = γ I/(1 + γ ) and Ẽ =
I/(1 + γ ) would yield the same sampling distribution. Because C̃ and Ẽ are both scalar ma-
trices, as a special case treated in Appendix B, the FIM takes the form I = Y ⊗ [K′I4×4K] =
Y ⊗ diag{1,2,1} for some 3 × 3 matrix Y, and consequently IA = (I AA)−1 ∝ diag{1,2,1}.
Simple algebra gives λ1 = λ2 = λ3 and Equations (5) and (6) give w0 = w3 = 1

2 −
√

2
4 . !

Proof of Proposition 2: From Equation (B.1), Ĩ =
( τ 2

A ρτAτC

ρτAτC τ 2
C

)
⊗ {K′(E ⊗ E)−1K}, where

τ 2
A = w2

AαDZ + αMZ and τ 2
C = w2

CαDZ + αMZ. Consider the decomposition E = X′X and de-
fine B = diag{1, 1

2 × 12×1,1}, D = diag{1,
√

2,1}, L = K′(X ⊗ X)−1BD and M = BD2B′ =
diag{1, 1

2 12×2,1}. Using Lemma 2, we have the relationship LL′ = K′(X ⊗ X)−1M(X′ ⊗
X′)−1K = K′(E ⊗ E)−1K. We then consider the transformation (ā, c̄) = (τ−1

A L′a, τ−1
C L′c).
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Under the new parametrization, Ī =
( 1 ρ

ρ 1

)
⊗ I and the quadratic forms defining the cones be-

come ā′V̄ā ≥ 0 and c̄′V̄c̄ ≥ 0 with V̄ = L−1VL−1 ′. Again, remember L−1 = D−1K′(X ⊗ X)B

(Lemma 2) and simple algebra gives V̄ = 1
2 |X|2

[ 0 0 1
0 1 0
1 0 0

]
, so its three eigenvalues must be of the

same size. This implies that both ΘA and ΘC are circular cones with the height equal to the base
radius, and the weights are entirely determined by ρ in Ī . !

Appendix D. Calculation of Weights for Testing Two Components

We derive the weights wij using the notations and coordinate systems defined in Section 3.1.
Under the elliptic coordinate system, the FIM becomes G = J′Ī J, which is no longer a constant.
The unit ball in R6 is given by B = {θ̄ ′Ī θ̄ ≤ 1} = {α1r

2
a + α2r

2
c + 2α3rarc ≤ 1}, where the α’s

are given in Equation (10).
The polar cone of Θ1 was defined in Section 3.1. As a brief proof, we note the inner product

between (ra,ψa,φa, rc,ψc,φc) ∈ Θ1 and (r∗
a ,ψ∗

a ,φ∗
a , r∗

c ,ψ∗
c ,φ∗

c ) ∈ Θ0
1 is given by

θ̄
′
θ̄

∗ = r∗
a ra

{
cosφa cosφ∗

a cos
(
ψ∗

a − ψa

)
− sinφa sinφ∗

a

}

+ r∗
c rc

{
cosφc cosφ∗

c cos
(
ψ∗

c − ψc

)
− sinφc sinφ∗

c

}

≤ r∗
a ra

{
cosφa cosφ∗

a − sinφa sinφ∗
a

}
+ r∗

c rc
{
cosφc cosφ∗

c − sinφc sinφ∗
c

}

= r∗
a ra cos

(
φa + φ∗

a

)
+ r∗

c rc cos
(
φc + φ∗

c

)
≤ 0

because π/4 ≤ φa,φ
∗
a ,φc,φ

∗
c ≤ π/2. The unit ball in R6 is given by B = {θ̄∗ ′Ī −1θ̄

∗ ≤ 1} =
{α∗

1r∗2
a + α∗

2r∗2
c + 2α∗

3r∗
a r∗

c ≤ 1} in this new coordinate system.
Below we calculate the 10 weights by discretizing the cones. The elliptic cone ΘA is dis-

cretized by S equally spaced angles ψs between 0 and 2π , with s = 0,1, . . . , S and ψ0 = 0 and

ψS = 2π . They corresponds to generatrices gs = (
√

κA
1 cosψs ,

√
κA

2 sinψs ,
√

κA
3 )′, which dis-

cretizes the circular cone into a polyhedral cone with S faces. ΘC is similarly discretized with
subscripts r = 0,1, . . . ,R. The weights will first be calculated using the polyhedral cones and
then limits are taken to obtain weights wij for the original problem.

D.1. The Derivation of w33 and w00

The region of R6 that corresponds to w33 is simply Θ1 = ΘA × ΘC. Its volume V∥ inside B
can be calculated by integrating |G| 1

2 = |JA||JC||Ī| 1
2 = |ΛCΛA|− 1

2 |I ∗
A| 1

2 r2
a r2

c cosφa cosφc over
B.

V∥ =
∫ 2π

ψa=0

∫ 2π

ψc=0

∫ π
2

φa= π
4

∫ π
2

φc= π
4

∫ ∫

B
|G| 1

2 dra drc dφc dφa dψc dψa

= |I ∗
A| 1

2

|ΛCΛA| 1
2

∫ 2π

ψa=0

∫ 2π

ψc=0

∫ π
2

φa= π
4

∫ π
2

φc= π
4

cosφa cosφc(2tτ 2 − 3τ sin t + t)

48 sin5 t (α1α2)3/2
dφc dφa dψc dψa

where the double integral over (ra, rc) has been simplified using Lemma 1. The weight w33
is given by w33 = V∥/V6 where V6 = π3/6 is the volume of a 6-dimensional ball. w00 is the
proportion of the ball B that falls into the polar cone. It can be similarly calculated by integrating
over |G∗| 1

2 = |J∗
A||J∗

C||Ī|− 1
2 = |ΛCΛA| 1

2 |I ∗
A|− 1

2 r∗2
a r∗2

c cosφ∗
a cosφ∗

c .
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D.2. The Derivation of w23 and w10

The region of R6 that corresponds to w23, after projected onto Θ1, lies on a face of the
discretized ΘA and the interior of ΘC. Consider the face of ΘA, Fs , lying between generatrices
gs± 1

2
. The normal vector to Fs × ΘC is given by (ψ∗

a = ψs , φ∗
a = π/4, r∗

c = 0). For each s, the
proportion of the unit ball B that falls into this region can be calculated as the product of two
proportions: (1) p⊥(s) = 1/2, because the normal vector determines a unidimensional subspace
and half of it has the same direction of the normal vector; (2) p∥(s), the proportion of the 5-
dimensional subspace spanned by Fs × ΘC inside Fs × ΘC.

To calculate p∥(s), we note that Fs × ΘC = {ψs− 1
2

< ψa < ψs+ 1
2
,φa = π/4,π/4 < φc <

π/2}, so its volume inside B is given by

V∥(s) =
∫ ψ

s+ 1
2

ψa=ψ
s− 1

2

∫ 2π

ψc=0

∫ π/2

φc=π/4

∫ ∫

B

(
|G̃| 1

2
)
φa=π/4 dra drc dφc dψc dψa

= 2

15|ΛC| 1
2

∫ ψ
s+ 1

2

ψa=ψ
s− 1

2

∫ 2π

ψc=0

∫ π/2

φc=π/4

(
cosφc|J̃′

A I ∗
AJ̃A| 1

2

(1 + τ )2α1α
3/2
2

)

φa=π/4
dφc dψc dψa

where G̃ is the 5×5 block of G corresponding to the first, second, fourth, fifth and sixth columns

and rows and we have |G̃| 1
2 = |JC|ra |

( J̃′
A 02×3

03×3 I3×3

)
Ī
( J̃A 03×3

03×2 I3×3

)
| 1

2 = rar
2
c cosφc|ΛC|− 1

2 |J̃′
A I ∗

AJ̃A| 1
2 .

Note the double integral over B has been simplified using Lemma 1. We have w23 =
lim

∑
s p⊥(s)p∥(s) = 1

2 lim
∑

s V∥(s)/V5, where V5 = 8
15π2 is the volume of a 5-dimensional

unit ball. The weight w10 can be obtained by the duality between Θ1 and Θ0
1 as given in Prop-

erty 4 in Appendix A.

D.3. The Derivation of w13 and w20

The projection of the region of R6 that corresponds to w13 onto Θ1 lies on a 4-face gs ×ΘC
for some s. This 4-face of Θ1 is sandwiched by the two 5-faces Fs± 1

2
× ΘC, whose normal

vectors determine a plane orthogonal to this 4-face. The proportion of R6 that project onto this
4-face is the product of (1) p⊥(s), the proportion of the aforementioned plane sandwiched be-
tween the two normal vectors of the two adjacent 5-faces, and (2) p∥(s), the proportion of the
4-dimensional space spanned by gs × ΘC that lies inside it.

To calculate p⊥(s), we note the space between the two normal vectors of Fs± 1
2

× ΘC can
be represented by {ψs− 1

2
≤ ψ∗

a ≤ ψs+ 1
2
,φ∗

a = π/4, r∗
c = 0}, so its area inside B is given by

V⊥(s) =
∫ ψ

s+ 1
2

ψ∗
a =ψ

s− 1
2

∫

α∗
1 r∗2

a <1
r∗
a

(∣∣J̃∗ ′
A I ∗−1

A J̃∗
A

∣∣ 1
2
)
φ∗

a=π/4 dr∗
a dψ∗

a

=
∫ ψ

s+ 1
2

ψ∗
a =ψ

s− 1
2

( |J̃∗ ′
A I ∗−1

A J̃∗
A| 1

2

2α∗
1

)

φ∗
a=π/4

dψ∗
a

and p⊥(s) = V⊥(s)/V2, where V2 = π is the area of the unit disk.
For p∥(s), we note gs × ΘC = {ψa = ψs ,φa = π/4,π/4 < φc < π/2}. The volume of its

part inside B is given by
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V∥(s) =
∫ 2π

ψc=0

∫ π/2

φc=π/4

∫ ∫

B

(
|G̃| 1

2
)

φa=π/4
ψa=ψs

dra drc dφc dψc

=
(

r ′
a I ∗

Ara

|ΛC|

) 1
2

φa=π/4
ψa=ψs

∫ 2π

ψc=0

∫ π/2

φc=π/4

(
cosφc(2t − sin(2t))

16
√

α1α
3
2 sin3 t

)

φa=π/4
ψa=ψs

dφc dψc

where G̃ is the 4 × 4 block of G corresponding to its first, fourth, fifth and sixth columns
and rows with |G̃| 1

2 = |JC|ra|
( r ′

a 01×3
03×3 I3×3

)
Ī
( ra 03×3

03×1 I3×3

)
| 1

2 = rar
2
c cosφc|ΛC|− 1

2 (r ′
a I ∗

Ara)
1
2 . Again,

the double integral w.r.t. (ra, rc) was simplified with Lemma 1. The weight w13 is given by
w13 = lim

∑
s V⊥(s)V∥(s)/V2V4, where V4 = 1

2π2 is the volume of a 4-dimensional unit ball.
The weight w20 can be obtained from the duality between Θ0

1 and Θ1.

D.4. The Derivation of w03

The projection of the region that corresponds to w03 lies on the 3-face 0 × ΘC, which is
adjacent to 5-dimensional surface ∂ΘA × ΘC of Θ1. The collection of normal vectors of this
surface is the elliptic cone {φ∗

a = π/4, r∗
c = 0}. Let p⊥ be the proportion of the 3-dimensional

space spanned by this elliptic cone that falls inside this cone and p∥ be the proportion of the
3-dimensional space spanned by the 3-face 0 × ΘC that falls inside 0 × ΘC. We have

p⊥ = 1
2

− 1
π

∫ π/2

0
ς
((

Ī ∗
AΛa

)−1
,ψa

)
dψa and p∥ = 1

2
− 1

π

∫ π/2

0
ς(Λc,ψc) dψc

where function ς is defined in Section 2.2. The weight w03 is given by w03 = p⊥p∥.

D.5. The Derivation of w22 and w11

Both ΘA and ΘC need to be discretized to calculate w22. The projection of the region of R6

that corresponds to w22 lies on the 4-face F A
s × F C

r for some r and s, where F A
s is a face of the

discretized ΘA between edges gA
s± 1

2
, and F C

r is similarly defined. This 4-face is adjacent to 5-

faces F A
s × ΘC and ΘA × F C

r , whose normal vectors are given by {ψ∗
a = ψs ,φ

∗
a = π/4, r∗

c = 0}
and {ψ∗

c = ψr ,φ
∗
c = π/4, r∗

a = 0}, respectively. The proportion of the 2-dimensional subspace
between these two normal vectors is given by p⊥(s, r) = (t∗/2π)ψ∗

c =ψr ,ψ∗
a =ψs .

The 4-face F A
s × F C

r can be expressed as {ψs− 1
2

< ψa < ψs+ 1
2
,φa = π/4,ψr− 1

2
< ψc <

ψr+ 1
2
,φc = π/4}. To calculate its volume inside B, we note the metric tensor G̃ is now given

by the first, second, fourth and fifth rows and columns of G, and |G̃| = r2
a r2

c |J̃′Ī J̃|, where J̃ =
diag{J̃A, J̃C} is a 6 × 4 matrix. We have

V∥(s, r) =
∫ ψ

s+ 1
2

ψa=ψ
s− 1

2

∫ ψ
r+ 1

2

ψc=ψ
r− 1

2

∫ ∫

B

(
|G̃| 1

2
)
φa=φc=π/4 dra drc dφc dψc dψa

=
∫ ψ

s+ 1
2

ψa=ψ
s− 1

2

∫ ψ
r+ 1

2

ψc=ψ
r− 1

2

(
sin t − t cos t

8α1α2 sin3 t

∣∣J̃′Ī J̃
∣∣ 1

2

)

φa=φc=π/4
dψc dψa

where the double integral w.r.t. (ra, rc) has been solved by Lemma 1. This 4-face takes a pro-
portion of p∥(s, r) = V∥(s, r)/V4 out of the 4-dimensional space it spans. Combining the above
two proportions, we have w22 = lim

∑
s

∑
r p⊥(s, r)p∥(s, r). The weight w11 can be obtained

similarly.
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D.6. The Derivation of w12

The projection of the region of R6 that corresponds to w12 lies on the 3-face gA
s × F C

r =
{ψr− 1

2
< ψc < ψr+ 1

2
,φa = φc = π/4,ψa = ψs} for some r and s. Its volume inside B is given

by

V∥(r, s) =
∫ ψ

r+ 1
2

ψc=ψ
r− 1

2

∫ ∫

B

(
|G̃| 1

2
)

ψa=ψs
φa=φc=π/4

dra drc dψc

=
∫ ψ

r+ 1
2

ψc=ψ
r− 1

2

( |J̃′Ī J̃| 1
2

3α
1
2
1 α2(1 + τ )

)

ψa=ψs
φa=φc=π/4

dψc

where G̃ is given by the first, fourth and fifth columns and rows of G and |G̃| = r2
c |J̃′Ī J̃| with

J̃ = diag{ra, J̃C}.
The part of R6 whose projection lies on gA

s × F C
r is sandwiched between gA

s × F C
r and

{ψs− 1
2

< ψ∗
a < ψs+ 1

2
,φ∗

a = φ∗
c = π/4,ψ∗

c = ψr}. The latter is a part of the 3-dimensional sub-

space orthogonal to gA
s × F C

r . Similar to the derivation of V∥(r, s), we can obtain the volume of
this part of the normal space inside B as

V⊥(r, s) =
∫ ψ

s+ 1
2

ψ∗
a =ψ

s− 1
2

( |J̃∗ ′Ī −1J̃∗| 1
2

3α
∗ 1

2
2 α∗

1(1 + τ ∗)

)

ψ∗
c =ψr

φ∗
a=φ∗

c =π/4

dψ∗
a

where J̃∗ = diag{J̃∗
A, r∗

c}. The weight w12 is given by w12 = lim
∑

s

∑
r V⊥(r, s)V∥(r, s)/V 2

3 ,
where V3 = 4π/3 is the volume of a 3-dimensional unit ball.
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