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SUMMARY

Observational epidemiological studies suffer from many potential biases, from confounding and from
reverse causation, and this limits their ability to robustly identify causal associations. Several high-profile
situations exist in which randomized controlled trials of precisely the same intervention that has been
examined in observational studies have produced markedly different findings. In other observational
sciences, the use of instrumental variable (IV) approaches has been one approach to strengthening
causal inferences in non-experimental situations. The use of germline genetic variants that proxy for
environmentally modifiable exposures as instruments for these exposures is one form of IV analysis
that can be implemented within observational epidemiological studies. The method has been referred
to as ‘Mendelian randomization’, and can be considered as analogous to randomized controlled trials.
This paper outlines Mendelian randomization, draws parallels with IV methods, provides examples of
implementation of the approach and discusses limitations of the approach and some methods for dealing
with these. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The aim of this paper is to describe how Mendelian randomization—the random assignment of
an individual’s genotype from his or her parental genotypes that occurs before conception—can
be exploited to make causal inferences in aetiological epidemiology. The principle of Mendelian
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1134 D. A. LAWLOR ET AL.

randomization dates back to at least 20 years and has been attributed [1] to Katan [2], although
within the context of observational epidemiology the term itself was not used until the turn of the
millennium [3]. Thomas and Conti [4] pointed out that Mendelian randomization is an application
of the method of instrumental variables (IVs), which are commonly used in econometrics. In
Mendelian randomization studies genetic information is used as an IV. The use of Mendelian ran-
domization is growing rapidly in popularity, with increasing recognition of its statistical challenges
[5–9].

In this introductory section, we explain the limitations of conventional means of making causal
inferences and introduce the concept of Mendelian randomization with its associated terminology.
Section 2 provides a description of IV methods and the assumptions that underlie them: these
provide a formal framework for causal inferences from Mendelian randomization studies. We
illustrate these ideas with a specific example in Section 3. In Section 4 we outline potential problems
with the application of IV methods in Mendelian randomization studies and describe potential
solutions to these problems. Section 5 describes power calculations for Mendelian randomization
studies, and Section 6 contains concluding remarks.

1.1. The limitations of observational epidemiology for making causal inference

Conventional observational epidemiology has made important contributions to understanding dis-
ease aetiology. Notable examples include work pioneered by Sir Richard Doll that identified the
link between cigarette smoking and lung cancer, heart disease and other adverse health outcomes
[10, 11], and work establishing the causal associations of both high blood pressure and dyslipi-
daemia with cardiovascular disease [12, 13]. These findings have been important in the development
of interventions (lifestyle and pharmacological) that have resulted in population-level declines in
these risk factors and the treatment of those at highest risk, which together have led to decreases
in smoking-related cancers and in cardiovascular disease morbidity and mortality.

Despite the successes of observational epidemiology, the discipline has also produced its share of
high-profile failures, in that it has identified many exposures apparently increasing or decreasing
disease risk that have later been revealed by randomized controlled trials (RCTs) to be non-
causal. The most likely explanations are confounding by lifestyle and socioeconomic factors, or
by baseline health status and prescription policies, together with reverse causation and selection
bias [14–17]. Many potentially health-modifying factors (such as use of vitamin E supplements or
hormone replacement) are strongly related to a range of socioeconomic and lifestyle factors that
will confound their associations with health outcomes. It is often not fully appreciated that the
ability to deal with this issue statistically is limited [18]. These recent examples have important
consequences for public health. Many post-menopausal women have taken hormone replacement
for the prevention of cardiovascular disease, but RCT evidence shows that for most women
hormone replacement will not prevent cardiovascular disease and may increase overall mortality
and other adverse health outcomes [17, 19]. Similarly, large numbers of individuals take vitamin
E supplements (falsely) believing that they prevent cancer and cardiovascular disease.

1.2. Limitations of RCTs for making causal inferences

Well-conducted RCTs are appropriately considered to be the gold standard for making causal
inferences in health sciences. However, for a number of important modifiable exposures (e.g.
smoking, alcohol) involved in the aetiology and prognosis of major diseases (cardiovascular disease,
diabetes, cancer, mental ill-health), it would be unethical or impractical to randomly allocate
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MENDELIAN RANDOMIZATION 1135

individuals to these exposures. Because of the long lead time between exposure (e.g. to diet)
and the development of diseases such as cancer, trials may take many decades to produce robust
results. Participant compliance with dietary and other manipulations is often poor. One also needs
to carefully examine the generalizability of an RCT to the whole population for which one would
like to intervene to prevent disease or improve prognosis. RCTs tend to be conducted on very
specific groups of people without co-morbidities, who are not using other interventions and who
fall into a particular age group, whereas in real life clinicians and public health practitioners wish
to know about lifestyle and therapeutic interventions to prevent and treat disease in all individuals,
including those who do have co-morbidities. Those who give their informed consent to participate
in RCTs agree to an equal chance of being allocated to any of the randomization groups, and such
individuals may not be representative of the whole population for which we would like to consider
the intervention. RCTs are expensive, resource intensive and should be conducted only when there
is good evidence from basic science and observational epidemiology for a particular intervention.

1.3. The use of genetic epidemiology to make causal inference: Mendelian randomization

Mendelian randomization is the term that has been given to studies that use genetic variants in
observational epidemiology to make causal inferences about modifiable (non-genetic) risk factors
for disease and health-related outcomes [1, 3, 20]. Such studies exploit what is known as Mendel’s
second law or the law of independent assortment:

that the behavior of each pair of differentiating characters in hybrid union is independent of the
other differences between the two original plants, and, further, that the hybrid produces just so
many kinds of egg and pollen cells as there are possible constant combination forms [21].
In simple terms this means that the inheritance of one trait is independent of (i.e. randomized

with respect to) the inheritance of other traits. In contemporary times, Mendel’s law is described in
terms of genotype, alleles and phenotypes. Table I defines the genetic terms that will be used in this
paper; further detailed descriptions of genetic terms can be found in two recently published text
books on statistical analyses in genetic epidemiology [22, 23]. Mendel examined the inheritance
of seven traits of pea-plants—shape of the ripe seeds; colour of the seed interiors; colour of the
unripe pods; colour of the petals; inflated or pinched pods; long or short plant stems; and axial or
terminal flowers—and noted that they were all inherited independently of each other.

Subsequent work showed that Mendel’s second law was not always true. Punnett and Bate-
son published the first report of ‘gene linkage’ in peas, showing that when a broader set of
traits were explored not all of them assorted independently. Specifically, they found that petal
colour and pollen shape were not inherited independently—there was an excess of plants with
purple petals and long-shaped pollen, an excess of plants with red petals and round pollen, but
fewer plants that were either purple-round or red-long, than would be expected if these two
traits were inherited independently [24]. Thomas Hunt Morgan and colleagues then went on to
demonstrate that independent assortment is generally true for genes found on non-homologous
chromosomes (see Table I for definitions), but is not always true for a set of genes located
on a homologous chromosome, particularly if the genes are located close to each other [24].
The term linkage disequilibrium (LD) is used to describe this situation, which represents a
departure from the hypothetical situation in which all alleles exhibit complete independence
(linkage equilibrium, LE).
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Table I. A glossary of genetic terms.

• Alleles are the variant forms of a single-nucleotide polymorphism (SNP), a specific polymorphic site or a
whole gene detectable at a locus

• Canalization is the process by which potentially disruptive influences on normal development from genetic
(and environmental) variations are damped or buffered by compensatory developmental processes

• A Chromosome carries a collection of genes located on a long string of DNA. A non-homologous
chromosome carries a unique collection of genes on a long string of DNA that is different from the gene
collection of another non-homologue. Normal non-homologous chromosomes are not attached to each
other during meiosis, and move independently of one another, each carrying its own gene collection. Two
homologous chromosomes carry the same collection of genes, but each gene can be represented by a
different allele on the two homologues (a heterozygous individual). A gamete will receive one of those
homologues, but not both. Humans have 22 pairs of autosomal homologous chromosomes and 1 pair of
sex chromosomes

• DNA deoxyribonucleic acid (DNA) is a molecule that contains the genetic instructions used in the de-
velopment and functioning of all living organisms. The main role of DNA is the long-term storage of
information. It contains the instructions needed to construct other components of cells, including proteins
and ribonucleic acid (RNA) molecules. DNA has four nuleotide bases A, T, G and C. The two strands
of DNA in the double-helix structure are complementary (sense and anti-sense strands) such that A binds
with T and G binds with C

• A gene comprises a DNA sequence, including introns, exons and regulatory regions, related to transcription
of a given RNA

• Genotype of an individual refers to the two alleles inherited at a specific locus—if the alleles are the same,
the genotype is homozygous, if different, heterozygous

• Haplotype describes the particular combination of alleles from linked loci found on a single chromosome
• Linkage disequilibrium (LD) is the correlation between allelic states at different loci within the population.
The term LD describes a state that represents a departure from the hypothetical situation in which all loci
exhibit complete independence (linkage equilibrium, LE)

• A locus is the position in a DNA sequence and can be a single-nucleotide polymorphism (SNP), a large
region of DNA sequence, or a whole gene

• Pleiotropy is the potential for polymorphisms to have more than one specific phenotypic effect
• Polymorphism is the existence of two or more variants (i.e. SNPs, specific polymorphic sites or whole
genes) at a locus. Polymorphism is usually restricted to moderately common genetic variants—at least two
alleles with frequencies of greater than 1 per cent in the population

• Recombination is any process that generates new gene or chromosomal combinations not found previously
in that cell or its progenitors. During meiosis, recombination is the process that generates haploid cells that
have non-parental combinations of genes

• Single-nucleotide polymorphism (SNP) are genetic variations in which one base in the DNA is altered, e.g.
a T instead of an A

Many genetic association (and Mendelian randomization) studies exploit LD to their advantage
by using genetic markers (a detectable genetic signal) that are in LD with probably functional
variants that have a less readily identifiable signal. However, as discussed in more detail in
Section 4.5, there are possible situations in which LD might result in violation of Mendelian
randomization/IV assumptions.

The independent distribution of alleles (or blocks of alleles in LD) from parents to their offspring
means that a study relating health outcomes in the offspring to genetic variation transmitted from the
parents will not suffer from confounding. This holds true for full siblings who are not monozygotic
twins. Despite the actual random allocation of groups of alleles being at the level of parents to
their offspring dyads, at a population level—when relating genetic variants to disease outcome—
alleles are generally unrelated to those confounding factors (in particular, socioeconomic position
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and lifestyle factors) that distort the interpretations of findings from observational epidemiology
[25, 26]. Furthermore, disease processes do not alter germline genotype and therefore associations
between genotype and disease outcomes cannot be affected by reverse causality. Finally, genetic
variants that are related to a modifiable exposure will generally be related to it throughout life
from birth to adulthood and therefore their use in causal inference can also avoid attenuation by
errors (regression dilution bias) [27].

Mendelian randomization studies have being likened to a ‘natural’ RCT [28, 29]. Unlike con-
ventional RCTs, Mendelian randomization studies can be conducted in a representative population
sample without the need for exclusion criteria or for volunteers amenable to being randomly al-
located to treatment. However, as noted above, random allocation of alleles occurs within family
groups (from parents to offspring), whereas Mendelian randomization studies are most commonly
carried out within general population samples, which potentially makes them susceptible to dis-
torting factors such as population stratification, which is discussed in greater detail in Section 4.4.
The fact that randomization occurs at conception also means that these studies may be biased by
developmental compensation, which is also discussed in greater detail in Section 4.8.

Mendelian randomization studies are therefore defined as any study that uses genetic varia-
tion that serves as a robust proxy for an environmentally modifiable exposure in order to make
causal inferences about the outcomes of the modifiable exposure. We have utilized the Mendelian
randomization approach to determine the magnitude of causal relationships between C-reactive
protein (CRP) and both metabolic syndrome traits [30, 31] and carotid intima media thickness [32],
between fibrinogen and coronary heart disease [33], alcohol consumption and oesophageal cancer
[34], folate and schizophrenia [35], vitamin D and tuberculosis [36], and folate and breast cancer
[37]. Other groups have also examined some of the same pathways [38, 39] and have applied
the approach to additional exposures in relation to several important disease outcomes includ-
ing cardiovascular diseases, cancer, mental health and physical functioning in older age groups
[40–46].

It is important to note that the aim of Mendelian randomization studies is not to identify
functional genes for an outcome that might be used in genetic screening; indeed, the approach
depends on knowing about the function of genes before undertaking the study. In these studies,
genotype is an instrument for the modifiable exposure of interest. Thus, in the example that
we describe in Section 3, below, our aim is to determine the magnitude of the causal association
between circulating levels of CRP and insulin resistance. For this reason, and to ensure that readers
remain focused on the aim of making causal inference for modifiable exposures, throughout this
paper we refer to a modifiable exposure of interest, whereas in previous papers [1, 27, 29, 47] the
term ‘intermediate phenotype’ has frequently been used in place of modifiable exposure.

2. MENDELIAN RANDOMIZATION AND IVs

The use of genotype to provide causal inference for the effect of a modifiable (non-genetic) exposure
on disease outcome is an application of the general theory of IV analysis [4, 48–52]. An IV is
a variable associated with the outcome only through its robust association with an intermediary
variable—the exposure of interest in this case.

IV methods form the basis of much statistical analysis in econometrics. Specifically, econo-
metricians use IV methods to deal with what they term ‘endogeneity’, which is a broad term
covering what epidemiologists would refer to as regression dilution bias, confounding and reverse
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causality. The use of IV methods is not new to medical statistics, but its most common application
has been to deal with non-compliance in clinical trials, and there are papers introducing IVs to
epidemiologists and health service researchers that focus on this as a motivating example [48–51].
Its formal use in Mendelian randomization studies was introduced only recently [31] and is already
being debated in the literature [4–8].

Although econometrics shares much methodology and terminology with statistics, some of
its terminology will be unfamiliar to medical statisticians and epidemiologists. We shall seek to
explain terms from econometrics as we introduce them, but readers who wish to investigate the IV
literature may find the online glossary of research economics edited by Peter Meyer [53] useful,
or the recent introductory econometrics textbook by Murray [54], which also includes a glossary.
The most commonly cited graduate-level text is Wooldridge [55].

2.1. Assumptions of Mendelian randomization studies and IV analysis

Formally, an IV is defined as a variable that satisfies the following assumptions:

1. The IV Z is associated with the exposure of interest X ;
2. Z is independent of the confounding factors U that confound the association of X and the

outcome Y ;
3. Z is independent of outcome Y given X and the confounding factors U .

These assumptions are depicted in the directed acyclic graph (DAG) shown in Figure 1.
The theoretical underpinnings of the Mendelian randomization approach are that: the genotype

is robustly associated with the modifiable (non-genetic) exposure of interest (equivalent to as-
sumption 1 above); the genotype is not associated with confounding factors that bias conventional
epidemiological associations between modifiable risk factors and outcomes (assumption 2); and
that the genotype is related to the outcome only via its association with the modifiable exposure
(assumption 3). Thus, the relationship between the assumptions of IV analysis and the theoretical
underpinning of Mendelian randomization can be seen by comparing the two DAGs shown in
Figures 1 and 2.

The three assumptions listed above are sufficient for the simple case of statistical testing (i.e.
using genotype as an IV to test the null hypothesis that the modifiable exposure X is not associated

Z

X

Y

U

Figure 1. Directed acyclic graph (DAG) for the basic instrumental variables model. Z ,
instrumental variable; X , modifiable exposure of interest; Y , outcome of interest; and U ,

(unmeasured or measured with error) confounders.
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Z:CRP
U 

e.g. smoking, 
physical acitivity, 

socioeconmoic 
position

Y: HOMA-R
(insulin resistance)

X: CRP

Figure 2. Directed acyclic graph (DAG) for the effect of circulating levels of C-reactive protein on insulin
resistance (assessed using homeostasis model HOMA-R) determined using CRP as an instrumental variable.
Z : CRP, c-Reactive protein genetic variant, the instrumental variable; X : CRP, circulating c-reactive
protein levels, the modifiable exposure of interest; Y : HOMA-R, homeostasis model assessment of insulin

resistance, the outcome of interest; U , (unmeasured or measured with error) confounders.

with outcome Y ). However, in most epidemiological situations we are much more interested in
obtaining a precise estimate of causal effects (i.e. answering the question ‘what is the magnitude
of the causal effect of X on Y ?’) than in simply testing a null hypothesis. Further, in Mendelian
randomization studies where gene–outcome associations are expected to be weak, incorrect infer-
ence due to type 2 errors would be likely if we focused solely on statistical tests. Thus, the usual
aim of Mendelian randomization studies is to provide an estimate of effect with reliable confidence
intervals [7]. To estimate a causal effect with IV analysis, additional assumptions are needed; at a
minimum the following is assumed:

4. All of the associations depicted in Figure 1 are linear and unaffected by statistical interactions
[8, 9, 54].

This assumption is problematic for the situation with binary outcomes, where epidemiologists
wish to present the effect estimate as an odds ratio or risk ratio (as opposed to an absolute difference
in risk), since such associations are exponential (non-linear). Since this situation is frequent in
epidemiology, we discuss the ways in which violations of this assumption can be dealt with in
Mendelian randomization studies (see Section 4.9 for more details).

2.2. Estimating causal effects using IV methods

In the simplest case of linear associations and a continuous outcome variable Y (e.g. the log of
fasting insulin), it can be shown that the IV estimate of the regression coefficient for the effect of
exposure (X) on Y is [4, 8, 9, 54]

�̂IV = �̂ZY /�̂Z X (1)

where �̂ZY is the coefficient for the regression of outcome (Y ) on the IV (Z), and �̂Z X is the
coefficient for the regression of exposure (X) on the IV. The IV estimator �̂IV provides an estimate
of the causal effect of exposure on outcome, even in the presence of unmeasured confounders of
the exposure–outcome association. We may provide some intuitive motivation for equation (1) by
noting that the change in outcome for a unit change in the instrument, �̂ZY , is the product of the
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change in the exposure for a unit change in the instrument, �̂Z X , and the change in the outcome
per unit change in exposure, �̂IV. If we use this to estimate the causal effect �̂IV, we make use of
only that part of the variation in the outcome Y that is due to the instrument Z , and (by assumption
(2) above) avoid the contaminating effect of the variation in Y due to the confounding factors that
affect the regression of Yon X . Figure 1 shows the DAG for the basic IV model.

The estimator �̂IV above is sometimes called the Wald estimator and applies only when there
is a single IV. Usually there is more than one IV, for example for two contrasts between the three
genotypes for a biallelic polymorphism. It is then necessary to combine the information available
from each IV.

Several methods of IV estimation are available for the situation in which there is more than one
IV and the outcome Y is a numerical variable and associations between variables are linear. The
simplest and most widely available estimator for this situation is two-stage least squares (2SLS or
TSLS). 2SLS is so named as the same estimate (though not its standard error) can be derived by
the following procedure: First, perform least-squares regression of the exposure X on the IV(s) Z ;
second, perform least-squares regression of the outcome Y on the predicted values from the first
regression. When the IVs are indicator variables for a categorical instrument, which is usually the
case in Mendelian randomization using genetic information as the instrument, the predicted values
are simply the means of X within each category.

Other estimators for IV analyses include limited information maximum likelihood (LIML) and
the generalized method of moments (GMM), which are discussed in detail elsewhere [53, 55, 56].
There are methods for undertaking IV analyses in which the two estimates (X on Z and Y on Z )
are obtained from different study samples. However, there are a number of advantages of using
the same study sample for both estimates, including being in a better position to examine violation
of IV method assumptions (see Section 4 for more details) and having greater precision, since the
IV estimate will have smaller variance if estimated from the same study than if not [7]. Minelli
et al. describe an integrated approach to meta-analysis of genetic association studies that provides
an IV estimate in Mendelian randomization studies when the X–Z estimate and the Y–Z estimate
are obtained from different studies [57]. Methods that deal with non-linear models are described
in this paper in Section 4.9.

3. AN EXAMPLE OF THE USE OF IVs TO MAKE CAUSAL INFERENCES: THE EFFECT
OF CRP ON INSULIN RESISTANCE

To demonstrate the use and methodological issues in application of this approach, we will present
an example from one of our published studies: that of the effect of CRP on insulin resistance [31].
We refer the reader to the original publication of this study for full details of the study population,
measurements of the modifiable exposure (CRP), outcome of interest (insulin resistance) and
confounders and the derivation of CRP haplotypes [31]. Here we present a brief description of the
background to this study and why we felt a Mendelian randomization approach was important, the
statistical methods employed in our IVs analysis, the main results and how we interpret these.

3.1. Background

Findings from prospective cohort studies have suggested that CRP may have a causal effect on
the development of insulin resistance, type 2 diabetes and cardiovascular disease, and it has been
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suggested that therapeutics aimed at reducing CRP levels should be developed to prevent and/or
treat these conditions [58–63]. However, CRP is associated with a wide range of lifestyle and
socioeconomic characteristics [64] and may be elevated by the presence of atherosclerosis or
insulin resistance; hence, confounding or reverse causality may explain its association with insulin
resistance and cardiovascular disease [65, 66]. Studies have indicated that genetic variation in
CRP (C-reactive protein, pentraxin related, locus ID 1401) is associated with the concentration of
circulating CRP, and thus this genetic variant provides an instrument for examining the association
of CRP with insulin resistance. We applied Mendelian randomization using IV methods, with CRP
haplotypes as instruments to determine the magnitude of the causal association between circulating
CRP levels and insulin resistance. Figure 2 shows the DAG of the assumed associations between
CRP, insulin resistance, CRP and potential confounding factors.

3.2. Study methods and results

We used data from the British Women’s Heart and Health Study, a prospective cohort study of 4286
women who were aged 60–79 years at baseline examination (1999–2001). In total, 2809 women
were included in the analyses [31]. These women had provided informed consent for genetic
testing (less than 1 per cent of the eligible participants refused consent), were described by the
research nurse as White (using a pre-specified list of options that included White, Afro-Caribbean,
South Asian, Chinese, other; 99.6 per cent were described as White), were free of diabetes, had
fasting glucose levels less than 7mmol/l and had complete data on genotype, circulating CRP and
homeostasis model assessment (HOMA-R), a measure of insulin resistance.

3.2.1. Statistical analyses. General analysis: Plasma CRP and HOMA-R scores were positively
skewed and their logged values were used in all regression models. We used linear and logistic
regression to assess the association of log plasma CRP concentration with insulin resistance
(log HOMA-R) and potential confounding factors. We also used linear and logistic regression to
demonstrate the association of CRP haplotypes with CRP levels and also to test the assumption that
these genetic variations (haplotypes) would not be associated with lifestyle and socioeconomic
confounding factors that tend to confound associations of CRP with insulin resistance. To aid
interpretability, we used logarithms of CRP to base 2 and back-transformed regression coefficients
to give the ratio of geometric means of HOMA-R (entered as natural logarithm into regression
models) per doubling of CRP.

SIMHAP and haplotype analyses: Having collected genotype data, haplotypes were constructed
using the genetic data analysis program SIMHAP (http://www.genepi.com.au). SIMHAP uses
current estimation–maximization-based methods for the estimation of haplotypes from unphased
genotype data [67]. The current implementation of SIMHAP utilizes the statistical computing
package R (www.r-project.org) to resolve haplotypes and provide their posterior probabilities.
All possible haplotype configurations are resolved for each individual within the program itself,
and the posterior probability of each configuration calculated. Sensitivity analysis incorporating
the uncertainty of haplotype assignment was not performed in this study as all probabilities for
haplotypic inference were �0.99 [31].

IV analyses: In these analyses, we used the most likely haplotype assignment for each woman.
It is necessary to limit the number of variables used to model the effect of genotype on CRP in
order to ensure that these variables are strongly correlated with CRP and thereby avoid problems
of bias due to ‘weak instruments’ [68, 69]. We chose to use a model for the gene–CRP association
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which assumes that each of a woman’s two haplotypes contributes additively to her value of log-
CRP. We checked the fit of this model by examining the patterns of residuals for each possible
pair of haplotypes, i.e. diplotypes. As a sensitivity analysis, we also fitted a model allowing for
different log-CRP levels for each of the 10 possible diplotypes that an individual can possess. This
model avoids the assumption that each woman’s haplotypes have an additive effect on her CRP
levels. However, this model has more parameters and so may be more prone to bias due to weak
instruments since the amount of variation explained by each parameter will be lower.

We used 2SLS to fit the IVs models in the main analyses but checked results using LIML
and the GMM [56]. We compared the IV estimates with those from ordinary least squares (OLS)
regression using the Durbin form of the Durbin–Wu–Hausman statistic in the main analyses [56].
This tests the null hypothesis that the OLS estimator of the same equation would yield consistent
estimates when compared with the IV analyses. In econometrics, rejection of the null hypothesis
by this test is said to indicate problems of endogeneity (regression dilution bias, confounding,
reverse causality) in the OLS estimate and, therefore, the IV analysis is required for an unbiased
estimate of the effect of X on Y [56]. In addition to this main analysis, we also checked results
comparing the OLS estimate of the effect of CRP on HOMA-score with the IV estimate (using
CRP haplotypes as the IV) using the Hansen J statistics (LIML) and the Anderson–Rubin statistics
(GMM). We examined F-statistics from the first-stage regressions to evaluate the strength of the
instruments [68, 69]. Values greater than 10 are often assumed to indicate sufficient strength to
ensure the validity of IV methods [68]. All of the IV analyses were performed in Stata (version
9.2) using the user-written ivreg2 command [56] (usefully, Stata is one language that many
epidemiologists and econometricians have in common).

3.2.2. Main results and interpretation. As anticipated (based on the principle of Mendelian ran-
domization), there was no evidence of associations of CRP with cigarette smoking, alcohol
consumption, physical activity, hormone replacement use or life course socioeconomic position
[30, 31]. By contrast, there were strong associations between greater CRP levels and increased
prevalence of smoking, lower levels of physical activity, more adverse socioeconomic position
from across the participants’ life course and decreased prevalence of daily alcohol consumption
[30, 31].

In a conventional age-adjusted analysis without use of IVs, a doubling of CRP was associated
with a ratio of geometric means of HOMA-R of 1.09 (95 per cent CI: 1.07, 1.10, p<0.0001),
suggesting that a doubling of CRP resulted in a 9 per cent increase in HOMA-R (see Figure 3).
With additional adjustment for 10 indicators of socioeconomic position from across the life course,
smoking status, physical activity, alcohol consumption and hormone replacement use, this atten-
uated only slightly to 1.08 (95 per cent CI: 1. 07, 1.09, p<0.0001). We were concerned that
this association might still be influenced by residual confounding and/or reverse causality and
therefore went on to use CRP haplotype as an instrument to estimate the causal effect of CRP on
HOMA-R.

The 2SLS approach can be illustrated graphically when the instrument is categorical, and
this may help to build intuition. To do this, it is necessary to categorize women by the pair of
haplotypes (‘diplotype’) they carry and use indicator variables for these categories as instruments
(note that in our main analyses we used fewer parameters by categorizing each woman by her
two haplotypes combined, assuming they had an additive effect—see above). We excluded the
uncommon diplotypes carried by fewer than 10 women, leaving nine diplotypes and 2801 women.
Figure 4 illustrates this approach.
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Figure 3. Observational association between HOMA-R score and CRP with fitted line from ordinary least
squares using data from the British Women’s Heart and Health Study as described in Section 3. Both axes
are on a log scale. CRP values of 0.168mg/L are recorded as 0.168mg/L as this was the lower limit of

detection of the laboratory assay used to measure CRP.

Note that both scales of Figure 4 needed to be greatly enlarged over those in Figure 3, as
the variation between the means shown in Figure 4 is much smaller than the variation across
the population shown in Figure 3. The small proportion of variation in the exposure of interest
(log(CRP)) explained by the instruments (diplotype) leads directly to the much lower precision of
the IV estimate compared with the observational estimate from OLS. The IV estimate is therefore
less efficient than the OLS estimate if there is no confounding, reverse causality or measurement
error, but unlike the OLS estimator the IV estimate should remain consistent when these are present
[54, 55].

As discussed above, for the formal IV analysis we used an additive model for the effect of
haplotype on log(CRP) that fitted the data well with a modest number of genetic variables (three
indicator variables instead of the eight that would be needed for a saturated model of the nine
diplotypes). It does not matter if this ‘first-stage’ does not represent a causal relationship [55] and
its parameters are not of primary interest. Instead, it is often preferable to construct a parsimonious
model to lessen the potential for problems of ‘weak instruments’ [68] (see Section 4.10).

The 2SLS IV analysis yielded an estimated causal effect for a doubling of CRP of 0.94 (95
per cent CI: 0.84, 1.05), suggesting that a doubling of CRP is associated with a 6 per cent reduction
in HOMA-R, albeit with wide confidence intervals consistent with a marked inverse association
or a positive association. Results were very similar using the other two IV estimators: maximum
likelihood and GMM. The first-stage F-statistic was 13.7, suggesting that we should not have a
problem with weak instruments. The important difference in magnitude between the confounder-
adjusted association of HOMA-R on CRP from OLS regression analyses (1.08 (95 per cent CI:
1.07, 1.09)) and the IV analysis (0.94 (95 per cent CI: 0.84, 1.05)) confirms our concerns that
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Figure 4. Illustration of IV analysis of the effect of CRP on HOMA-R score using diplotype (haplotype
pair) as an instrument for CRP. Both axes are on a log scale but are greatly expanded compared with
Figure 3. Squares show geometric mean CRP and HOMA-R by diplotype. The size of the square is scaled
according to the number of women having each diplotype. Error bars show the standard errors of the
geometric means. The thick dashed line gives the IV estimate (2SLS method) of the CRP—HOMA-R
association, with the shading indicating the 95 per cent pointwise confidence interval around this estimate.
The dashed line, but not the confidence interval, can also be obtained from weighted least-squares analysis

of the logged geometric means.

the conventional observational association may be confounded or biased. The Durbin form of the
Durbin–Wu–Hausman statistic provided statistical evidence that the IV estimate differed from that
of the OLS regression estimate of effect (p= 0.0139). Corresponding tests for the LIML and
GMM estimators gave similar results.

To summarize, this study suggests that circulating levels of CRP may not be causally associated
with insulin resistance, and the difference in effect obtained from the conventional observational
epidemiological approach (OLS regression of insulin resistance on circulating CRP) compared
with that obtained from the Mendelian randomization IV approach suggests that the former was
affected by residual confounding and/or reverse causality. This assertion is dependent upon the
confidence that we had in CRP haplotypes fulfilling the assumptions, outlined in Section 2.1, that
are required for it to be a valid IV for circulating CRP levels.

With respect to the first assumption—that CRP haplotypes are associated with CRP—this is
supported by prior knowledge [70–78] and demonstrated within our own data set [31]. It is
important to note that it is not a requirement for any IV analyses, or when genetic variation
is used as an IV in Mendelian randomization studies, that the instrument (genetic variation in
Mendelian randomization studies) is causally related to the risk factor of interest. Thus, in this
specific example, the assumption is met because of both prior knowledge (well-replicated robust
associations) and demonstration within our own data set of an association between CRP haplotypes
and CRP levels.
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With respect to the second assumption—that CRP haplotype is unrelated to factors that are
likely to confound the association between CRP levels and insulin resistance—the independent
assortment of alleles from parents to offspring at conception provides the theoretical justifica-
tion for this. Further, within our data set we have shown that CRP haplotypes and individ-
ual SNPs are not associated with established socioeconomic and lifestyle-confounding factors
[30, 31].

The third assumption—that CRP haplotype is unrelated to insulin resistance, conditional upon
circulating CRP levels and confounders of the CRP–insulin resistance association—is harder to
prove. This requires the belief that there are no other pathways between CRP haplotype and insulin
resistance than the one via CRP levels shown in Figure 2. Theoretical possibilities that could result
in violation of this assumption through pleiotrophy, population stratification, LD and developmental
canalization are discussed in more detail in Section 4. Further work in our study has confirmed
that the variants used to generate the CRP haplotypes used here as IVs are in very close LD with
variation within a transcription factor binding site located 5′ of the CRP gene that is associated
with circulating concentrations of CRP and thought to be functional [79, 80]. It is unlikely that the
variations in circulating CRP associated with this marker (or those in LD with it) are substantially
involved in pleiotrophic events because of their role as a transcription factor binding site. Regarding
population stratification, there is no published evidence that CRP has been importantly influenced
by population selection. Further, the 23 centres used in this study were British towns that had a
history of stable populations with little or no migration. All women included in our analyses were
described by the examining nurse as ‘white’. Thus, population stratification is unlikely to have
resulted in a violation of assumption 3. Finally, we are currently extending this work by using a
multiple IV approach to explore the extent to which our findings and conclusions are likely to be
robust (see Section 4.7).

4. POTENTIAL PROBLEMS AND LIMITATIONS OF MENDELIAN
RANDOMIZATION STUDIES

There are sound biological reasons for believing that genotype will not be associated with the
socioeconomic and behavioural characteristics that commonly confound the effects of expo-
sures on outcome, and this makes genotype a potentially valid IV where these confounders
are unmeasured or measured with error. However, there are situations, summarized in Table
II, in which Mendelian randomization (IV) assumptions (assumptions 1–3 above) may be vi-
olated. Table II also summarizes methods that can be employed to test whether violations are
likely.

4.1. Finding a suitable genetic variant (instrument) for the modifiable exposure of interest

Mendelian randomization studies can be used only when there are established functional genetic
variants that affect the modifiable exposure of interest. In the example given in Section 3 above,
we genotyped women for variants in the CRP gene, which we knew from previous studies was
related to CRP levels. If we wanted to use Mendelian randomization approaches to determine, for
example, the magnitude of the causal association between vitamin D levels and insulin resistance,
we would first need to find a genetic variant that we knew was associated with vitamin D levels
and ensure that this association was robust (see Section 4.2). While it is likely that genotypes that
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Table II. Potential ways in which Mendelian randomization or instrumental
variable assumptions may be violated.

Possible cause of violation Approaches to assess and/or deal with possible violation

No suitable genetic variant (instrument) Variant required. Progress in genomics means that in the next
5–10 years an increasing number of genetic variants (instru-
ments) for modifiable exposures will become available

Unreliable gene associations The Mendelian randomization approach requires variants that
have had their association with the modifiable exposure of
interest demonstrated and replicated in several independent
data sets (i.e. needs this association to be reliable)
The association should also be demonstrated within the
Mendelian randomization study population

Social pressures on behaviours affected
by genotype

Demonstrate association of genetic variant (instrument) with a
modifiable behaviour (exposure) of interest in the population
under study

Population stratification Stratified analysis or analyses in homogeneous populations
Use of genetic markers known to be related to stratification
and/or ancestry. Statistical methods for detecting evidence of
sub-populations within a sample
Multiple instruments (genetic variants)
Mendelian randomization studies within parent–offspring
groups

Linkage disequilibrium Knowledge of function of variant
Multiple instruments (genetic variants)

Pleiotropy Knowledge of function of variant
Multiple instruments (genetic variants)

Developmental compensation Extent of problem in Mendelian randomization studies unclear
Requires understanding of developmental periods during which
expression of gene and the age of effect are influential

Non-linear associations Examine risk differences (rather than ratios)
Latent variables approach
Non-parametric (probit) models
Bounds of effect
Requires further research of use of these methods (widely used
in econometrics) to the Mendelian randomization context

Weak instruments F-statistic from first-stage regression (if less than 10, consider
other approaches) Permutation method
Other (e.g. likelihood based) methods
Requires further research and exploration in Mendelian ran-
domization studies

influence the levels or function of a majority of the modifiable exposures of interest in epidemiology
will be discovered, only a small number of such genotypes have so far been described. The rapid
expansion of knowledge in functional genomics makes it likely that in the next few years the
potential of Mendelian randomization will be realized in an increasing number of areas.
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4.2. Ensuring gene associations are reliable

The Mendelian randomization approach requires reliable estimation of the associations between
genotype and the modifiable exposure of interest and between genotype and the outcome of
interest, but it is well recognized that genetic association studies often fail to replicate [81–83].
Lack of power related to the modest effects of genotype for most complex phenotypes, chance
findings and publication bias contribute importantly to the noted failures to replicate initial gene
association studies [82]. Strategies for improving this situation have been discussed in detail
elsewhere and are beginning to be implemented [82]. In Mendelian randomization studies, one
should be using genotypes with reliably established (replicated in several independent studies)
associations with levels or function of the modifiable exposure of interest. This association should,
where possible, be confirmed within the Mendelian randomization study. Thus, in the example given
in Section 3 above, we knew that CRP had been shown to be associated with CRP levels in several
independent data sets [70–78], and we demonstrated this established association within our own
data set.

Unreliable estimates can also result from genotyping errors, when the observed genotype of an
individual does not correspond to his or her true genotype. Such errors can result from a number
of different reasons, several of which can operate together, including poor quality or quantity of
DNA, biochemical artefacts, faulty equipment and human error in reading outputs and entering
data [84]. Methods of assessing and maintaining high levels of quality control in genotyping,
including typing of blind duplicate samples, comparison with standard DNA samples and data-
entry checks, are described in detail elsewhere [84]. As discussed in Section 2.2, an IV estimate
can be obtained by estimating Z–X in a study sample different from that from which the Z–Y
estimate is obtained. However, an advantage of obtaining both estimates from the same study
sample is that this provides the opportunity to demonstrate that genotyping errors are unlikely to
explain null genotype–outcome associations. In the example presented in Section 3, the association
between CRP haplotypes and circulating levels of CRP is in the same direction and of the same
magnitude as of the same association found in previous studies. It is therefore not tenable to suggest
that the lack of association between CRP haplotypes and insulin resistance is due to genotyping
errors.

4.3. Social pressures on behaviours affected by genotype

For modifiable exposures of interest that are biological phenotypes, such as circulating CRP,
individuals are unlikely to be aware of the effect of any genotype on phenotype and therefore
will be unlikely to modify their lifestyles to change the phenotypic response to genotype. In
the situation where genotypes are being used as an instrument for a behaviour, e.g. alcohol
consumption, it is very important to test and demonstrate that the genotype does indeed result in
the anticipated behaviour change in the population under study. For example, one could imagine
that in populations where there are strong social pressures to consume moderate to large amounts
of alcohol, any genotype that resulted in unpleasant symptoms after consuming alcohol may have
limited effect on actual consumption (the social pressures to consume alcohol might out-weigh
any unpleasant symptoms). Such effects are likely to be population specific. Thus, in the British
Women’s Heart and Health Study, a prospective cohort study of women born in Britain in the 1920s
and 1930s [85], lactase-persistent genetic variants, which have been shown in other populations
to be related to milk consumption [86–88], are not related to whether the women avoid milk
(Davey Smith G, Lawlor DA et al, unpublished data, available from authors). While this lack
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of association might be related to measurement error in our assessment of milk consumption,
it is also conceivable that in women of this generation, who experienced food rationing during
the second world war and for some years afterwards, any gastrointestinal discomfort resulting
from lactose intolerance is ignored because of the previous social pressures not to be a ‘fussy
eater’. Consequently in this population, and in any other population in which the variants do not
relate to behaviour, lactase-persistent genetic variants will not be good instruments for determining
the causal effect of milk consumption on outcomes such as osteoporosis, insulin resistance and
diabetes [89]. The important point is that, with behavioural exposures in particular, it is essential
to demonstrate the association of genotype with exposure in the population under study. Again,
this highlights an advantage of obtaining both the Z–X and Z–Y estimates from the same study
sample.

4.4. Population stratification

Population stratification occurs when there exist population subgroups that experience both different
disease rates (or different distributions of traits) and have different frequencies of alleles of interest.
This can result in spurious (confounded) associations between genotype and disease in the whole
study population [90]. For example, in a study of nearly 5000 Native Americans of the Pima and
Papago tribes, a strong inverse association between the HLA Gm Gm3;5,13,14 haplotype and type
2 diabetes was found (odds ratio 0.27; 95 per cent CI: 0.18, 0.40) [91]. This could have been
interpreted as demonstrating that absence of this haplotype was causally associated with disease
risk. However, the authors went on to demonstrate that the occurrence of both type 2 diabetes and
the HLA haplotype was strongly related to ethnicity. In those of full American Indian heritage,
haplotype frequency was 1 per cent and type 2 diabetes prevalence was 40 per cent, whereas in
the Caucasian population in whom the haplotype frequency was 66 per cent, the prevalence of
type 2 diabetes was 15 per cent. When analyses were undertaken within ethnic strata, there was
no association between haplotype and diabetes [91].

The potential relevance of this to Mendelian randomization studies is that it could result in
confounded results (see DAG in Figure 5), particularly in the case where the gene (IV)-modifiable
risk factor association was undertaken in a different study population than the gene–outcome
association. Consider the above example and imagine that the investigators had not gone on to
demonstrate that the nature of the gene–diabetes association was in fact spurious, but had instead
published this as a study demonstrating that this haplotype was associated with diabetes. If this
haplotype were then used as an IV for type 2 diabetes in a separate study population, one that was
ethnically homogeneous, and it were only possible to examine the association of the haplotype
with cardiovascular disease outcomes (with an aim of determining whether diabetes is causally
related to these outcomes), a null association would be wrongly interpreted as suggesting that
diabetes was not causally related to cardiovascular disease. The null result would in fact occur
because the haplotype is not really associated with diabetes and is therefore not suitable as an IV
for its effect.

Concerns that population stratification may lead to false-positive inferences in population-based
genetic association studies, and biased findings in Mendelian randomization studies, have led to
calls for a greater use of family-based studies in genetic epidemiology in general [92] and also in
Mendelian randomization studies [4]. However, while the example described above is a ‘classic’,
which is frequently used to illustrate the potential of population stratification, other examples
are hard to find in the literature and there is a general perception that population stratification is
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Figure 5. Illustration of Mendelian randomization study in which there is population stratification that
results in violation of instrumental variable and Mendelian randomization assumptions. The assumptions
are violated because there are sub-populations within the study sample (for example sub-groups of different
ethnicities or ancestries) that have different allele frequencies for the variant being used as an instrumental
variable and different levels of disease risk (unrelated to their genotype). Thus, these sub-groups ‘confound’
the association between IV and outcome and cause a violation of assumption 3. Z : G genetic variant
that is being used as the instrumental variable; PS, population stratification, e.g. due to sub-groups in the
sample that differ by ethnicity and where different ethnic groups have differing allele frequencies for G
and differing levels of Y : X , modifiable exposure of interest; Y , outcome of interest; U , (unmeasured or

measured with error), confounders.

unlikely to be a problem in most situations [93]. The authors of a recent review of population
stratification concluded that

A great deal of research effort seems to have been compromised to protect against a confounding
factor that never realised its potential to bias allelic associations of complex traits [90].

Some caution may be warranted before applying these conclusions to Mendelian randomization,
however, as a degree of population stratification too small to compromise conventional genetic
association studies might still be enough to cause problems for Mendelian randomization, partic-
ularly when the effect of genotype on the modifiable exposure of interest is small (the instrument
is weak). Furthermore, some of the genetic variants that are considered attractive candidates in
Mendelian randomization studies—e.g. ALDH2 null variant, which is associated with alcohol
consumption (individuals who are homozygous for the allele, resulting in inefficient breakdown
of acetaldehyde, have severe adverse reactions to alcohol consumption and therefore tend to drink
very little) [94]; lactase-persistence variants, which are related to lactose intolerance phenotype and
would therefore be expected to be related to milk consumption [95]; and PTC-tasting variants,
which are associated with bitter taste and might be expected to be related to dietary factors
[96]—are ones that may be particularly prone to population stratification [97–100]. A salient
example is that of Campbell et al. in which they found a positive association between procession
of the T allele of LCT—13910C→T variant, which is associated with lactase persistence, and
height in a European American population, all of whom had described themselves as ‘white’ or
‘Caucasian’ and all of whom had grandparents born in either the U.S. or Europe [100]. Use of
conventional methods for detecting population stratification—including comparing observed with
expected �2 association statistics for a panel of 111 random SNPs, tests of stratification using
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ancestry informative markers (AIM) and statistical packages designed to test for population
structure—all suggested that there was no evidence of population stratification [100]. Since milk
consumption is likely to be greater in those with the T allele of this variant, there is a biologically
plausible reason for the association of this allele with height (better bone health/skeletal devel-
opment might result in taller stature as a consequence of greater dietary calcium in those with
genetically determined reduced risk of lactose intolerance). However, the investigators were con-
cerned that because the allele frequency of this variant varies greatly within European populations
(from 5–10 per cent in Southern Europe to 70–80 per cent in Northern Europe), along a similar
pattern as variation in height within Europe, some or all of the association might be explained
by population stratification. To explore this further, they stratified their sample on the basis of
grandparental ancestry and found that the association of LTC with height diminished considerably.
Further, when they examined this association in a sample from Poland and among family trios, all
from Scandinavia, they found no association of the genetic variant with height. They concluded
that the original association was largely or completely due to population stratification [100].

A number of methods are available in general genetic association studies for examining the
possibility of population stratification. These include comparing observed with expected �2 as-
sociation statistics for a number of random markers that have been used previously to examine
stratification [101, 102] tests of stratification using AIM, which will have more power at detecting
population stratification than random markers [103–105], and statistical packages, that use the
genetic data in a study to search for evidence of sub-groups (sub-populations) within the study
sample [106]. These methods can be used in Mendelian randomization studies, but, as the example
above demonstrates [100], they are not fool proof. More recently Epstein has demonstrated a
simple and improved method for dealing with population stratification, which uses a stratification
score (similar to a propensity score) that works on the LCT and height data originally explored
by Campbell et al. [107]. Studies performed within family parental–offspring triads would avoid
problems of population stratification in Mendelian randomization studies, and as knowledge in-
creases about the human genome we are likely to be in a better position to know which variants
are most likely to have been affected by selection in the short-to medium-term future.

4.5. Linkage disequilibrium

As discussed in Section 1, LD is the correlation between allelic states at different loci within
the population. The term LD describes a state that represents a departure from the hypothetical
situation in which all loci exhibit complete independence (LE). Traditionally, LD has been used
specifically to describe the correlation of genetic loci resulting from their close proximity to each
other on non-homologous chromosomes. More recently, the term has been applied to any situation
in which there is correlation between genetic variants, irrespective of whether this is due to physical
genetic linkage. For example, many authorities use LD for association generated by population
stratification [108]. In this paper we have used the definition in its more narrow and traditional
expression to mean physically close alleles that are co-inherited and discuss issues of population
stratification separately (Section 4.4).

When the genetic variant under study is correlated (shows high values of departure from LE
and is described as being ‘in LD’) with another polymorphic locus and this locus influences the
outcome of interest in the genetic association study, this may result in confounding. In Mendelian
randomization studies, if the measured genotype (the one being used as an instrument) is correlated
with a second polymorphism that is related to the modifiable exposure of interest (X), and X is
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Figure 6. (a) Illustration of Mendelian randomization study in which there is linkage disequilibrium but
where assumptions of instrumental variables analysis are not violated. The assumptions are not violated
here because the genetic variant being used as an instrument is in linkage disequilibrium with a functional
variant related to the exposure of interest and therefore is still a valid instrument. Assumptions are violated
if the variant being used as an instrument is in linkage disequilibrium with a variant that is related to
the outcome (see (b)). Z : G1 genetic variant that is being used as the instrumental variable; G2, genetic
variant in linkage disequilibrium with G1 and related to X , but not related to Y ; X , modifiable exposure
of interest; Y , outcome of interest; U , (unmeasured or measured with error) confounders. (b) Illustration
of Mendelian randomization study in which there is linkage disequilibrium that leads to violation of the
instrumental variables analysis. The assumptions are violated here because the genetic variant being used
as an instrument is in linkage disequilibrium with a functional variant related to the outcome of interest
(compare this with (a)). Z : G1 genetic variant that is being used as the instrumental variable; G2, genetic
variant in linkage disequilibrium with G1 and related to Y ; X , modifiable exposure of interest; Y , outcome

of interest; U , (unmeasured or measured with error) confounders.

observed so that the association Z–X can be estimated, none of the core IV assumptions (1)–(3)
nor the underlying principles of Mendelian randomization will be violated. This is illustrated in
the DAG (Figure 6(a)) and stems from the fact that an IV Z need not be causally associated
with the levels or function of the exposure X of interest [9, 48, 109]. Indeed, in many Mendelian
randomization studies this form of LD is exploited, in that it is LD of a genetic marker (a detectable
genetic signal) with a functional variant that is driving the signal being used to characterize
the IV.

However, if there is LD between the genotype being used as an instrument and a polymorphism
that is associated with the outcome (Y ), then assumption (3) will be violated and the estimate of
the causal association between X and Y obtained from the IV analysis will be confounded. This
is illustrated in the DAG in Figure 6(b). This latter situation is an extended example of pleiotropy,
which is described in more detail in Section 4.6.

4.6. Pleiotropy

As seen in the case of LD, pleiotropy refers to a genetic variant having multiple functions. While
pleiotropy is common, in the context of a Mendelian randomization study this will not result in
violation of the core assumptions if the variant is associated with pleiotropic effects that do not
(other than via the modifiable exposure of interest) influence the outcome (see DAG in Figure 7(a));
genetic variants with pleiotropic effects that do influence the outcome will, however, invalidate
the Mendelian randomization approach (see DAG in Figure 7(b)). In the example presented in
Section 2, for pleiotropy to explain the lack of evidence of a causal effect from the IV estimate,
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Figure 7. (a) Illustration of Mendelian randomization study in which there is pleiotropy but where
assumptions of instrumental variables analysis are not violated. The assumptions are not violated here
because the other functions that the genetic variant is related to are not in any way associated with
the outcome (compare this with (b)). (b) Illustration of Mendelian randomization study in which there
is pleiotropy and the assumptions of instrumental variables analysis are violated. The assumptions are
violated here because the other functions that the genetic variant is related to are associated with the
outcome (compare this with (a)). Z , G genetic variant that is being used as the instrumental variable;
PE, pleiotropic effects of G that are not related to Y ; X , modifiable exposure of interest; Y , outcome of

interest; U , (unmeasured or measured with error) confounders.

there would have to be other functions of CRP haplotype (other than via CRP levels) that resulted
in a decrease in insulin resistance to a magnitude that counterbalanced a putative positive effect
of CRP on insulin resistance.

In some cases pleiotropy may distort Mendelian randomization studies. Consider the use of
APOE genotype as an IV for examining the causal role of high-density lipoprotein cholesterol
(HDLc) and low-density lipoprotein cholesterol (LDLc) on myocardial infarction risk [1]. The
causal effect of these lipids on myocardial infarction risk is established from RCTs of the effects
of statins, and the association of APOE with the apolipoprotein carriers of HDLc and LDLc
(Apo A-1 and Apo B, respectively) is known. It was surprising then that the association of
APOE with myocardial infarction was weaker than would be predicted from the RCT evidence
of the causal effects of these on apolipoprotein and lipids [41]. One plausible explanation for
this is pleiotropy [1]. The �2 variant of APOE, as well as its association with lower LDLc and
higher HDLc (both of which would result in reduced myocardial infarction risk), is also related
to less efficient transfer of very low-density lipoproteins and chylomicrons from the blood to
the liver, greater postprandial lipaemia, and an increased risk of type III hyperlipoproteinaemia
(all of which would result in increased myocardial infarction risk) [1]. Thus, the multiple effects
of APOE, each affecting myocardial infarction risk, make it unsuitable as an IV to examine
the causal effect of any one of these pathways on myocardial infarction (equivalent to DAG
in Figure 7(b)).

4.7. Using multiple genes to deal with population stratification, LD and pleiotropy

The specific problems of population stratification, LD and pleiotropy described above can to
some extent be dealt with by using ethnically homogenous study populations, identifying and
incorporating the population strata in the analysis and ensuring that the function of the genetic
variant is fully understood (Table II). In addition, multiple instruments (genetic variants) can
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be used to examine the possibility that the Mendelian randomization/IV assumptions have been
violated. Two or more genotypes known to functionally affect the modifiable exposure via different
biological pathways can be used as multiple instruments. For example, in future studies we aim to
undertake a multiple instrument approach to examine the causal effect of CRP on insulin resistance
and other outcomes using both CRP and IL6.

Both these loci are known to be related to CRP levels, but via different pathways. If the IV es-
timate from both instruments is the same then it is implausible that this is explained by population
stratification, LD or pleiotropy since this would imply the same magnitude of confounding/bias
by one or more of these mechanisms occurring in both the CRP and IL6 associations. This is
analogous to comparing the results from two RCTs of different blood pressure-lowering drugs
(i.e. completely different classes of drugs, each lowering the blood pressure by a different mech-
anism) on the risk of stroke. If each trial demonstrates the same magnitude of effect (e.g. a
4mmHg reduction in blood pressure being associated with a 10 per cent decreased risk in stroke
over 10 years), then this strengthens the argument that blood pressure is really causally related
to stroke risk by this magnitude of effect. It argues against either of the trials being distorted
by problems such as lack of concealment of allocation, that can result in non-random alloca-
tion and confounding in poorly conducted RCTs. Furthermore, such evidence suggests that it
is blood pressure lowering itself—rather than any other effect of a particular antihypertensive
agent—that influences stroke risk. As Imbens and Rosenbaum have said, . . . if each instrument is
plausible but not certain (with respect to complying with the basic assumptions of IV analysis),
there may be no reason why these different instruments should be biased in the same direction
[110].

The use of multiple instruments is common in the field of econometrics, where they are combined
efficiently to obtain a single IV estimate of the magnitude of the causal effect, leading to a
reduced variance of the IV estimator (i.e. their use is primarily to increase the precision of the
causal estimator) [55]. When there are multiple instruments, it is also possible to construct a test
of assumptions (2) and (3) by checking the estimates obtained using different instruments that
are consistent (testing the so-called ‘overidentifying restrictions’ [54–56]). The use of multiple
genes in Mendelian randomization studies to specifically test for violation of assumptions 2
and 3 due to population stratification, LD and pleiotropy is a developing area requiring further
exploration.

4.8. Canalization (developmental compensation) and violation of Mendelian randomization/IV
assumptions

Canalization (also known as developmental compensation) refers to the buffering of the effects
of either environmental or genetic forces attempting to perturb development [111–114]. Several
molecular mechanisms are likely to be involved in this buffering, including genetic redundancy,
feedback regulation and cooperative biochemical interactions [113]. Whatever the mechanism, this
buffering could invalidate findings from Mendelian randomization studies by altering the effect
of a genotype on the outcome of interest in adulthood without any effect on the association
between genotype and the modifiable exposure of interest. Hence, the estimate of association
between Z and X (�Z X in equation (1)) would be valid, whereas that between Z and Y (�ZY in
equation (1)) would not be valid; consequently, the IV estimate of causal effect would be biased. In
effect, a polymorphism expressed during fetal development or post-natal growth may influence the
expression of a wide range of other genes, leading to changes that may compensate for the effect of
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the polymorphism. For example, if an individual developed and grew (in utero or during the early
post-natal period) within an environment in which one factor was disturbed (e.g. elevated CRP
due to genotype), then he or she could be rendered resistant to the influence of lifelong elevated
circulating CRP through permanent changes in tissue structure and function that counterbalance
the effect of elevated CRP levels.

The most dramatic demonstrations of developmental compensation come from knockout stud-
ies in animals, in which a functional gene is rendered non-expressive but the animal shows less
severe phenotypic effects than anticipated [1]. Unlike other potential violations of IV assump-
tions described above, a solution to the potential problem of developmental compensation is not
easy to envisage. The use of multiple genotypes as multiple instruments is not an obvious so-
lution, since the effects of all genotypes (e.g. 2 polymorphisms, CRP and IL6 affecting CRP
levels) resulting in perturbations during the developmental period are equally likely to be buffered.
However, most examples of developmental compensation relate to dramatic genetic or environ-
mental insults and it is unclear whether the generally smaller phenotypic differences induced by
common functional polymorphisms will be sufficient to induce compensatory responses. Thus, it
is unclear how important this theoretical problem will prove to be in practice. Nonetheless, as
pointed out previously [1], when making analogies between Mendelian randomization studies and
RCTs, it should be born in mind that in RCTs individuals are usually randomized to interventions
in adulthood, after the developmental period during which compensation can occur, whereas in
Mendelian randomization studies random allocation to alleles occurs at conception (i.e. at the
very start of human development). By the same token, genetic variants that influence behaviours
that first occur later in life, after developmental periods (for example, the effect of ALDH2
null variant on alcohol consumption), will not be affected by developmental compensation. It
is, therefore, not a problem for these Mendelian randomization studies. Further, developmental
decompensation will not be a problem when maternal genotype is being used as an IV for the
effect of in utero exposures on later offspring outcomes. For example, the association of ma-
ternal MTHFR genotype with offspring neural tube defects illustrates the causal association of
low levels of folic acid exposure during development on the offspring [1]. If there were some
element of developmental decompensation for the effect of low folic acid levels on the risk of
neural tube defects, this is appropriately (with respect to the need to know the causal effect) taken
into account both in analyses using maternal genotype as an IV and in randomized controlled
trials of the effect of periconceptual and antenatal folic acid supplementation on these neural tube
defects.

4.9. Non-linear associations

Assumption (4) (linearity and absence of statistical interactions, see Section 2.2) can be particularly
problematic for Mendelian randomization studies when the outcome is binary and we wish to
express the causal effect as an odds ratio or risk ratio, as is often the case in epidemiology. Several
solutions are possible. First, a linear model can be used to estimate the risk difference rather than
the risk ratio [7, 9] (it might be argued that absolute causal effects should be presented more in
epidemiology). Second, a full parametric model can be specified using a latent model formulation
where the underlying outcome variable is assumed to be continuous and the observed binary
outcome depends on whether a particular threshold has been exceeded (e.g. probit models) [55].
Such an approach requires additional assumptions (e.g. normality of unobservable error terms), and
the sensitivity of Mendelian randomization estimates to violation of these assumptions is, as yet,
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unclear. While the natural regression parameter can be estimated with this latent variable approach,
its causal interpretability may not be straightforward [9, 115, 116]. Third, non-parametric methods
can be used to obtain bounds for the causal effect, at least when the instrument, exposure and
disease are all categorical variables [9, 117], though this approach may prove less useful with the
continuous exposures common in epidemiology [9, 117].

These IV methods for binary outcomes have been used in econometrics and for determining
causal effects in RCTs when there are non-compliers [9, 48, 118, 119], but not yet, to our knowledge,
in Mendelian randomization studies. Their utility in this context requires further exploration, and
more methodological development may also be needed.

Even with continuously measured outcomes, the assumption of a linear effect of exposure on
outcome may still be questioned. It will sometimes be useful to transform either or both of the
exposure and outcome to make linearity assumptions more reasonable. However, it is often difficult
to check linearity assumptions within the IV framework. As illustrated by Figures 3 and 4, the
IV approach uses only the variation in the mean exposure between categories defined by the
instrument, and such variation often covers a range of the exposure much smaller than the range
in the population. A linear model will still often be a good way of testing the null hypothesis
of no effect of exposure on outcome. But when the estimated size of the effect is of interest,
the question arises as to what an IV estimator from a linear model is estimating when the true
underlying exposure–outcome effect is non-linear, or when the effect differs between individuals.
An interesting, if somewhat controversial [48], answer has been suggested in terms of a weighted
average of the slope of the exposure–outcome effect over a range of the exposure determined by
the instrument–exposure relationship [109, 120].

4.10. Weak instruments in Mendelian randomization studies

An instrument is ‘weak’ if it has only a slight effect on the exposure of interest (i.e. if the
magnitude of �Z X is small) [68, 69, 110]. If the instrument is extremely weak, it may provide little
or no information. In principle, this should simply lead to very imprecise estimates of the causal
effect. However, in recent years, econometricians have realized that with very weak instruments the
usual asymptotic methods of IV estimation perform badly, giving biased estimates and confidence
intervals that are too narrow, even in samples that would normally be thought large enough for
asymptotic results to hold [68, 69, 110, 121, 122]. F-statistics from the first-stage regression of
2SLS can be used to check whether the combination of instrument strength and sample size will
make asymptotic results reasonable. Values greater than 10 are often taken to indicate sufficient
strength to ensure the validity of IV methods [68], although detailed tables are available showing
how the bias of the IV estimate and the size of tests vary with instrument strength [54]. For a
dichotomous instrument, for example, F<10 corresponds to p<0.0015, i.e. there needs to be strong
evidence for an effect of gene on the modifiable exposure to be sure that weak instruments are not
a problem. Imbens and Rosenbaum have recently suggested that permutation-based methods can
be used to provide valid estimates and confidence intervals even with very weak instruments [110].
However, as yet, there is no software for performing such analyses. Other alternative approaches
have also been suggested recently, and one based on the conditional likelihood ratio has been
programmed in the statistical software package Stata [123, 124]. We would suggest that currently
researchers using IV analyses in Mendelian randomization studies always report F-statistics from
the first-stage regressions to examine the strength of the instrument and avoid making causal
inferences, or seek advice from an IV expert where this is close to or less than 10. A useful
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overview of weak instruments was presented recently by Nichols [125], including new techniques
for their diagnosis and for conducting valid inference in their presence.

4.11. Are Mendelian randomization studies invalidated if the exposure of interest is influenced by
many genetic and environmental exposures?

The modifiable exposure of interest in Mendelian randomization studies is likely in most cases
to be influenced by a large number of environmental and genetic factors. Some epidemiologists
have suggested that this implies that Mendelian randomization cannot provide causal inferences.
For example, Jousilahti and Salomaa have suggested that Mendelian randomization approaches
cannot be used to examine the causal effect of fibrinogen on coronary heart disease because this
approach does not take into account the complex genetic background of multifactorial disease,
and fails to recognize that genetic factors and environmental factors other than the variant under
study influence fibrinogen levels [126]. Note that the authors are not referring to any of the other
problems discussed in Sections 4.1–4.10. The suggestion here is that because other factors (than
the genetic variant) influence the exposure of interest (fibrinogen), the IV estimate cannot be used
to provide a valid estimate of the causal effect of fibrinogen on CHD.

This is a misunderstanding of the theoretical underpinning of the Mendelian randomization/IV
approach, which is used, in part, to ‘control’ for potential confounding and thus by definition takes
into account the many factors that are known to influence the exposure of interest. If groups in
the population are defined by a genetic variant that is known to affect levels of fibrinogen then
these groups will consistently differ with respect to mean fibrinogen levels. This can be illustrated
by a thought experiment, suggested previously by one of the authors [47]. Within a population
the use of antihypertensive medicines (even if these are widely and appropriately used) will only
make a small contribution to the variance in blood pressure. However, this does not imply that
antihypertensive drugs will not have an influence on the clinical consequences (stroke, coronary
heart disease) of raised blood pressure. The fact that many other environmental and genetic factors
contribute to variation in blood pressure is irrelevant, as is the wide range of factors contributing
to variance in fibrinogen levels in the example discussed by Jousilahti and Salomaa [126].

Groups with initially similar blood pressure that then differ with respect to antihypertensive
drug use will differ with respect to final blood pressure, and this will result in differences in
rates of stroke and coronary heart disease. Similarly, groups that differ with respect to a genetic
polymorphism related to fibrinogen levels will differ with respect to fibrinogen level, and if
fibrinogen level were a cause of coronary heart disease (in the way that blood pressure is indeed
a cause of coronary heart disease) these groups should have different rates of disease [47]. To
make this more concrete, consider an RCT in which half of a population are randomized to an
antihypertensive treatment and the other half to a placebo. If the antihypertensive therapy reduced
blood pressure by a quarter of a standard deviation, which is approximately the situation for such
pharmacotherapy, then assignment with in the whole population being randomized to treatment
or placebo group will explain 1.54 per cent of the variance in blood pressure. In the example
we use of CRP haplotypes as an instrument for CRP levels, these haplotypes explain 1.66 per
cent of the variance in CRP levels in the population. As can be clearly seen, the quantitative
association of genetic variance as instruments can be similar to that of randomized treatments with
respect to biological processes that are modified and influence disease risk. Both the logic and
quantification fail to support Jousilahti and Salomaa’s criticisms of the Mendelian randomization
approach.
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5. STATISTICAL POWER IN MENDELIAN RANDOMIZATION STUDIES

Conventional power calculations can be modified for Mendelian randomization studies. If a reason-
able estimate is available of the effect of the gene (instrument) on the exposure, equation (1) can
be used to calculate size of the gene–outcome (Z–Y ) association corresponding to the exposure–
outcome (X–Y ) effect it is desired to detect. Conventional power or sample size calculations can
then be applied to this gene–outcome association. This approach involves approximations, but
often approximating power or sample size is all that is required. The resulting sample sizes may
well prove sobering, particularly when the gene–exposure effect is modest compared with the
variability of the exposure in the population [127, 128]. Meta-analysis is therefore often valuable
in order to combine information from several studies, but this approach may have its own problems
[57]. We intend to return to these issues in more detail in a future paper.

6. CONCLUSIONS

Mendelian randomization studies aim to use genotypes that affect modifiable exposures to make
causal inferences about the aetiological effects of these exposures. The statistical methods required
for such inferences—IVmethods—have been used widely in econometrics, but not in epidemiology.
The use of genetic variants as instruments for modifiable exposures has the potential to avoid some
of the limitations of observational epidemiology (confounding, reverse causality, regression dilution
bias) and RCTs (problems with generalizability, unfeasible for some exposures, expensive) for
making causal inferences. However, the approach has a number of potential limitations, including
lack of suitable genetic variants, unreliable associations, population stratification, LD, pleiotropy,
developmental canalization, the need for large sample sizes and some potential problems with
binary outcomes. In this paper, we have discussed the likely extent of these potential limitations
and offered some approaches to deal with them. We believe that there is considerable potential for
Mendelian randomization studies to improve causal inference in epidemiology over the coming
years. Realizing this potential will lead to utilization of the rapid expanse in genomic knowledge
that will continue over the coming years, and the continuing adoption, adaptation and development
of IV methods for use in Mendelian randomization studies will help realize this potential. We
look forward to close collaboration between genetic and conventional epidemiologists, molecular
biologists, statisticians and econometricians in pursuit of this goal.
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