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THE FAILURE OF GCH AT A DEGREE OF

SUPERCOMPACTNESS

BRENT CODY

Abstract. We determine the large cardinal consistency strength

of the existence of a λ-supercompact cardinal κ such that GCH

fails at λ. Indeed, we show that the existence of a λ-supercompact

cardinal κ such that 2λ ≥ θ is equiconsistent with the existence of

a λ-supercompact cardinal that is also θ-tall. We also prove some

basic facts about the large cardinal notion of tallness with closure.

1. Introduction

Woodin showed that the existence of a measurable cardinal at which

GCH fails is equiconsistent with the existence of a cardinal κ that is

κ++-tall (see [Ham09], [Git89], or [Jec03]), where a cardinal κ is θ-

tall if there is a nontrivial elementary embedding j : V → M with

critical point κ such that j(κ) > θ and Mκ ⊆ M in V . In this paper

we extend Woodin’s result into the realm of partially supercompact

cardinals. Since κ is measurable if and only if κ is κ-supercompact, one

immediately sees several natural ways of doing this. Let us consider

the following questions for cardinals κ, λ, and θ.

(1) What is the strength of the hypothesis that κ is λ-supercompact

and GCH fails at κ?

(2) What is the strength of the hypothesis that κ is λ-supercompact

and GCH fails at κ with 2κ ≥ θ?

(3) What is the strength of the hypothesis that κ is λ-supercompact

and GCH fails at λ?

(4) What is the strength of the hypothesis that κ is λ-supercompact

and GCH fails at λ with 2λ ≥ θ?

We note that Woodin’s theorem answers question (1) in the case that

λ = κ.
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2 BRENT CODY

The following theorem, together with Woodin’s result, provides com-

plete answers to questions (1) - (4).

Main Theorem. Suppose λ and θ are cardinals.

(1) For λ > κ, the existence of a λ-supercompact cardinal κ such

that GCH fails at κ is equiconsistent with the existence of a

λ-supercompact cardinal.

(2) The existence of a λ-supercompact cardinal κ such that 2κ ≥ θ

is equiconsistent with the existence of a λ-supercompact cardinal

that is also θ-tall.

(3) The existence of a λ-supercompact cardinal κ such that GCH

fails at λ is equiconsistent with the existence of a λ-supercompact

cardinal that is λ++-tall.

(4) The existence of a λ-supercompact cardinal κ such that the 2λ ≥

θ is equiconsistent with the existence of a λ-supercompact car-

dinal that is θ-tall.

In each case above, the term “equiconsistent” is intended to mean that,

in the forward direction the same cardinal witnessing the hypothesis

also witnesses the conclusion; and in the reverse direction, the same

cardinal witnessing the hypothesis witnesses the conclusion in a forcing

extension.

The details of cardinal preservation in the various forcing extensions

in parts (1) - (4) of the main theorem will be worked out below.

Questions (1) - (4) above can be seen as a special case to a more

general question:

(5) What kind of GCH patterns are consistent with a λ-supercompact

cardinal from what type of large cardinal assumption?

There are some obvious resrtictions such as if GCH fails at κ, a λ-

supercompact cardinal, then it must fail unboundedly often below κ.

Also, if λ is a strong limit and GCH holds below and at κ then GCH

must hold up to λ. There are however some subtle issues in answering

the general question which we will address in a forthcoming paper.

Let us note that Friedman and Thompson have an alternate approach

to proving Woodin’s result. Indeed they show in [FT08] that from the

hypothesis of the existence of a P2κ-hypermeasurable cardinal κ, which

is equiconsistent with the existence of a cardinal κ that is κ++-tall,

after doing a preparatory forcing iteration one may use side-by-side
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Sacks forcing to pump up the size of the power set of κ to κ++ while

preserving the measurability of κ using what they refer to as the tuning

fork method.

The way we will establish Math Theorem (2)-(4) in this paper is by

forcing that achieves 2κ > λ+, and hence 2λ > λ+, and preserves the

λ-supercompactness of κ, where λ > κ is a cardinal. This suggests

the question, can one force a violation of GCH at λ while preserving

GCH in the interval [κ, λ) and preserving the λ-supercompactness of

κ? It seems as though the method of surgical modification of a generic,

due to Woodin, does not generalize to answer this question. However,

Friedman and Honsik show in their forthcoming paper [FH] that the

answer to this question is yes by using generalized Sacks forcing. We

also note that Question (5) above is part of a larger program of at-

tempting to describe what kind of Easton functions can be realized as

the continuum function by forcing while preserving large cardinals. For

more on this see [FH08].

Here we provide an outline of the rest of the paper. In section 2

we discuss some notational conventions. In section 3 we state some

basic lemmas about lifting large cardinal embeddings that will be used

throughout the paper. We will prove Main Theorem (1) in section 4.

In section 5, in order to prepare for the proof of Main Theorem (2)

- (4), we discuss the large cardinal concept of “tallness with closure,”

which synthesizes the concepts of λ-supercompactness and θ-tallness.

We prove Main Theorem (2) - (4) in section 6.

2. Terminology

Let us now give a few remarks about our notational conventions

and terminology, which are for the most part standard. For a forcing

poset P and conditions p and q in P we write p ≤ q to indicate that p

extends q. We say that P is ≤ κ-closed if every descending sequence

of conditions of length less than or equal to κ has a lower bound. We

say that P is < κ-closed if every descending sequence of conditions of

length less than κ has a lower bound. We say that P is ≤ κ-distributive

if the intersection of κ open dense subsets of P is an open dense subset

of P. We will assume that all forcing posets P have a greatest element

which we will denote by 1P. Suppose M and N are models of ZFC

and P is a forcing notion in M . We say that G ⊆ P is M-generic for

P if G intersects every dense subset of P that is in M . We will write
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“Mλ ⊆ M in N” or say that M is closed under κ-sequences in N to

mean that if ~x is a sequence of elements of M of length κ in N , then

~x ∈ M . If j : M → N is an elementary embedding between models of

ZFC the critical point of j is the least ordinal α such that j(α) 6= α

which we will denote as cp(j). For ordinals α we write cf(α) to denote

the cofinality of α. If A is a set and f is a function with A ⊆ dom(f)

we write f”A to denote {f(a) | a ∈ A}.

3. Basic lemmas on lifting embeddings

The large cardinal properties we are interested in, namely partial

supercompactness and partial tallness, are witnessed by embeddings

j : M → N and we will be interested in showing that these large

cardinal properties are preserved in certain forcing extensions. Here

we collect, for conveinence, some terminology and several standard

lemmas that will be used to lift embeddings of the form j : M → N to

forcing extensions j∗ : M [G] → N [j(G)]. In order to avoid notational

complexities we will make use of the standard abuse of notation by

using the same symbol, namely j, to denote both the ground model

embedding j and the lifted embedding j∗, even though j and j∗ may be

classes in different models. After lifting an embedding we will explicitly

state in which model the lift is a class. Whenever we say that j : M →

N is an embedding inM ′ we will mean that j is a nontrivial elementary

embedding, M , N , and M ′ are models of ZFC, and j is a class of M ′.

For a detailed discussion of lifting embeddings as well as a proofs of

Lemmas 1 – 5, the reader may consult [Ham] or Cummings’ article in

[FK10].

The following two lemmas are useful for building generic objects.

Lemma 1. Suppose that Mλ ⊆ M in V and there is in V an M-

generic filter H ⊆ Q for some forcing Q ∈ M . Then M [H ]λ ⊆ M [H ]

in V .

Lemma 2. Suppose that M ⊆ V is a model of ZFC, Mλ ⊆ M in V

and P is λ+-c.c. If G ⊆ P is V -generic, then M [G]λ ⊆ M [G] in V [G].

Suppose j : M → N is an embedding and P ∈ M a forcing notion.

In order to lift j to M [G] where G is M-generic for P, we will often

use Lemmas 1 and 2 to build an N -generic filter H for j(P) satisfying

condition (1) in Lemma 3.
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Lemma 3. Let j : M → N be an elementary embedding between tran-

sitive models of ZFC. Let P ∈ M be a notion of forcing, let G be

M-generic for P and let H be N-generic for j(P). Then the following

are equivalent.

(1) j”G ⊆ H

(2) There exists an elementary embedding j∗ : M [G] → N [H ], such

that j∗(G) = H and j∗ ↾ M = j.

We say that the embedding j∗ in condition (2) above is a lift of j.

Suppose j : V → M is an elementary embedding. We say that a set

S ∈ V generates j over V if M is of the form

M = {j(h)(s) | h : [A]<ω → V, s ∈ [S]<ω, h ∈ V }.(3.1)

where A ∈ V and S ⊆ j(A). We will often make use of the following

lemma which states that the above representation (3.1) of the target

model of an elementary embedding remains valid after forcing.

Lemma 4. If j : V → M is an elementary embedding generated over

V by a set S ∈ V then any lift of this embedding to a forcing extension

j∗ : V [G] → M [j∗(G)] is generated by S over V [G].

We will often make use of the next standard lemma which states that

embeddings witnessed by extenders are preserved by highly distributive

forcing.

Lemma 5. Suppose j : V → M is an elementary embedding with

critical point κ and M = {j(h)(s) | h : A → V, s ∈ [S]<ω, and h ∈ V }

where |A| = λ and S ⊆ j(A) is some set in V . If P ∈ V is ≤ λ-

distributive forcing then j”G generates an M-generic filter for j(P)

and j lifts uniquely to j∗ : V [G] → M [H ] in V [G] where j∗(G) = H is

the filter on j(P) generated by j”G.

4. Proof of Main Theorem (1)

Our proof of the main theorem will use a preparatory forcing notion

called the lottery preparation, which was introduced by Hamkins in

[Ham00]. The lottery preparation works uniformly as a generalized

Laver preparation in a variety of large cardinal contexts. Here we give

a brief introduction to the lottery preparation.
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The lottery sum of a collection of posets {(Qα,≤α) | α < κ} is

⊕

{Qα | α < κ} := {∅} ∪
⋃

α<κ

{(α, q) | q ∈ Qα}

where the ordering on the lottery sum is defined by (1) (α, q) ≤ ∅ for

all α < κ and q ∈ Qα and (2) (α, p) ≤ (β, q) if and only if α = β and

p ≤α q. As Hamkins says, a generic for the lottery sum of a collection

of posets chooses a poset and forces with it. For a detailed account of

the lottery preparation see [Ham00].

We now define the lottery preparation of κ, which is a reverse Easton

support iteration of length κ. We say a poset Q is allowed at stage γ

if Q is < γ-strategically closed; note that “< γ-strategic closure” will

not play a role in this paper so the reader that is unfamiliar with this

concept may take this to simply mean < γ-closed. For a partial function

f ⊆ κ × κ we define the lottery preparation of κ with respect to f to

be the reverse Easton support forcing iteration such that if γ < κ is

inaccessible and f”γ ⊆ γ then the stage γ forcing is the lottery sum in

V Pγ of all allowed posets in H(f(γ)+) and otherwise the stage γ forcing

is trivial. Suppose P is the lottery preparation of κ with respect to a

partial function f ⊆ κ × κ and that Q is a poset that appears in the

stage γ < κ lottery sum. Then the condition 〈pα | α < κ〉 with pα = ∅

for α 6= γ and pγ = 1Q opts for Q at stage γ where 1Q is a Pγ-name for

the top element of Q.

The lottery preparation P of some large cardinal κ is usually used

with respect to a partial function f ⊆ κ× κ with the Menas property,

such as a function added by fast function forcing (see section 5.2).

Using the lottery preparation with respect to such a function insures

that j(P), where j is an elementary embedding witnessing the large

cardinal property at hand, has a tail with a high degree of closure.

We will now show that given a λ-supercompact cardinal κ, one may

pump up the power set of κ to have size at least λ+ while maintaining

the λ-supercompactness of κ. This will establish Main Theorem (1)

because if we assume λ > κ then in a forcing extension we will have

2κ ≥ λ+ ≥ κ++. We note that this result essentially follows from the

methods of [AH02].

Theorem 6. If κ is λ-supercompact then there is a forcing extension

preserving this in which 2κ ≥ λ+.
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Proof. Since any λ-supercompact cardinal is also λ<κ-supercompact we

may assume without loss of generality that λ<κ = λ. We assume 2κ ≤ λ

because otherwise the theorem is trivial. We may further assume that

2λ = λ+ since the forcing to achieve this is ≤ λ-distributive and hence

preserves the λ-supercompactness of κ. Let j : V → M witness that

κ is λ-supercompact. By Lemma 4, we may assume that each element

of M is of the form j(h)(j”λ) where h : Pκλ → V is in V . Note

that (λ+)M = λ+ since M is closed under λ sequences in V . Thus

since j(κ) is inaccessible in M we have that j(κ) > λ+. Now let P be

the lottery preparation of κ relative to a partial function f ⊆ κ × κ

with the Menas property j(f)(κ) > λ. Let G be V -generic for P. Let

Q := Add(κ, λ+)V [G] and let H be V [G]-generic for Q.

By elementarity, j(P) is the lottery preparation of j(κ) defined rela-

tive to j(f). Since M is closed under λ-sequences in V we know that

the first κ stages of P and j(P) agree. Since j(f) ↾ κ = f it follows

that j(f)”κ ⊆ κ and since κ is inaccessible in M we see that the stage

κ forcing in j(P) is the lottery sum in M [G] of all allowed posets in

H(j(f)(κ)+). Since Q is in M [G] and also in H(j(f)(κ)+)M [G] it fol-

lows that Q appears in the stage κ lottery sum in j(P). Thus, we

may factor j(P) below a condition p that opts for Q at stage κ as

j(P) ↾ p ∼= P ∗Q∗Ptail where Ptail is a term for the forcing j(P) beyond

stage κ. For example, p could be the condition 〈pα | α < j(κ)〉 such

that pκ = 1Q and pα = ∅ for every other α < j(κ). Since j(f)(κ) > λ

and nontrivial forcing occurs in j(P) only at closure points of j(f), we

see that the next stage of nontrivial forcing beyond κ in j(P) is indeed

beyond λ and from this it follows that Ptail is a term for ≤ λ-closed

forcing. Since M ⊆ V we see that G is M-generic for P and H is M [G]-

generic for Q. Thus Ptail is ≤ λ-closed in M [G][H ]. Furthermore, it

follows from Lemma 2 that M [G][H ] is closed under λ-sequences in

V [G][H ] because P ∗ Q is κ+-c.c.. Since in V , P has at most 2κ ≤ λ-

many dense subsets we see that Ptail has at most j(λ)-many dense

subsets in M [G][H ] where |j(λ)|V ≤ (λ)λ
<κ

= λλ = 2λ = λ+. Thus in

V [G][H ], by constructing a descending sequence of conditions, we may

build an M [G][H ]-generic for Ptail, call it Gtail. We may now lift the

embedding to j : V [G] → M [j(G)] where j(G) = G ∗H ∗Gtail and the

lifted embedding is a class of V [G][H ]. It follows from Lemma 1 that

M [j(G)] is closed under λ sequences in V [G][H ].
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Now we lift the embedding through Q. To do this we follow the

method used in [AH02] Corollary 10. Let A ⊆ j(Q) = Add(j(κ), j(λ+))

be a maximal antichain in M [j(G)]. Let r ∈ j(Q) be a condition that

is compatible with every element of j”H . We will show that there is

a condition r′ ≤ r that decides A that is still compatible with every

element of j”H . Since j(Q) is j(κ+)-c.c. we know that |A| ≤ j(κ)

in M [j(G)]. Since cf(λ+) > λ we have sup j”λ+ = j(λ+) and this

implies that A ⊆ Add(j(κ), j(α)) for some α < λ+. We fix such an α

so that also r ∈ Add(j(κ), j(α)). Let q =
⋃

(j”(H ∩Add(κ, α))). Since

j(p) = j”p for p ∈ Add(κ, α) we have |q| ≤ λ < j(κ) and thus q ∈

M [j(G)] is a master condition in Add(j(κ), j(α)) (which is a complete

subposet of Add(j(κ), j(λ+))). Now since r is compatible with every

element of j”H we see that r and q are compatible in Add(j(κ), j(α)).

Choose r′ ∈ Add(j(κ), j(α)) below r and q deciding A. We will show

that r′ remains compatible with j”H . Consider j(p) for p ∈ H . We

may split p into two pieces: p = p0 ∪ p1 where dom(p0) ⊆ α × κ and

dom(p1) ⊆ [α, λ+) × κ. Then j(p) = j(p0) ∪ j(p1) where the domain

of j(p1) is disjoint from the domain of any element of Add(j(κ), j(α)).

Thus, r′ is compatible with j(p1) in Add(j(κ), j(λ+)). Furthermore,

we have r′ ≤ q ≤ j(p0) and hence r′ is compatible with j(p).

Since Q has λ+-many antichains we may iterate this to choose a de-

creasing sequence of conditions in V [G][H ] meeting all the antichains of

Add(j(κ), j(λ+)) such that each element of the sequence is compatible

with j”H . Let j(H) be the filter generated by this sequence. Then

j(H) is an M [j(G)]-generic for Add(j(κ), j(λ+)) with j”H ⊆ j(H).

Hence we may lift the embedding to j : V [G][H ] → M [j(G)][j(H)] in

V [G][H ], which implies that κ is λ-supercompact in V [G][H ].

�

5. Tallness with closure

5.1. Definitions and basic facts. Here we include some basic defini-

tions and results about θ-tall cardinals, and θ-tall cardinals with closure

λ, where λ is some cardinal and θ is an ordinal. A cardinal κ is called

θ-tall if there is a nontrivial elementary embedding j : V → M with

critical point κ such that j(κ) > θ and Mκ ⊆ M . Woodin and Gitik

used such cardinals to determine the strength of the failure of GCH at

a measurable cardinal (see [Git89]), and Hamkins has studied them in

their own right in [Ham09]. Hamkins says that κ is θ-tall with closure
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λ if there is an elementary embedding j : V → M with cp(j) = κ,

j(κ) > θ, and Mλ ⊆ M in V . By following a λ-supercompactness em-

bedding with a θ-tallness embedding one may show that if κ is θ-tall

and λ-supercompact, then κ is θ-tall with closure λ. Indeed, a cardinal

κ is θ-tall and λ-supercopmact if and only if it is θ-tall with closure λ.

We will need the following lemma.

Lemma 7. If κ is θ-tall with closure λ then there is an embedding

witnessing this j : V → M such that

M = {j(h)(j”λ, α) | α ≤ δ and h : Pκλ× κ → V is a function in V }

where δ = (θλ)M .

Proof. Let j0 : V → M0 witness the θ-tallness with closure λ of κ and

let

X = {j0(h)(j0”λ, α) | α ≤ δ and h : Pκλ× κ → V with h ∈ V }

where δ := (θλ)M . It is routine to verify that X ≺ M0. Let π : X → M

be the Mostowski collapse of X and define an elementary embedding

j : V → M by j = π ◦ j0 an let k := π−1 : M → X ⊆ M0. It follows

that j is the desired embedding. �

We will often make use of the easy fact that if κ is θ-tall with closure

λ, then it is θλ-tall with closure λ<κ, which we demonstrate now. If κ

is λ-supercopmact it is easy to see that κ must be λ<κ-supercompact.

By following a λ<κ-supercompactness embedding by a θ-tallness em-

bedding we obtain j : V → M witnessing that κ is θ-tall with closure

λ<κ, then since j(κ) is inaccessible in M and Mλ<κ

⊆ M , we have

θλ ≤ (θλ)M < j(κ). Thus j witnesses that κ is θλ-tall with closure λ<κ.

By the remarks in the previous paragraph, given that κ is θ-tall with

closure λ, in many arguments we will be able to assume without loss

of generality that θλ = θ and λ<κ = λ. Then by Lemma 7 there is an

embedding j : V → M witnessing that κ is θ-tall with closure λ such

that

M = {j(h)(j”λ, α) | α ≤ θ and h : Pκλ× κ → V is a function in V }.

5.2. Fast function forcing and tallness with closure. The goal of

this section will be to prove that we can force to add a function with

the Menas property with respect to θ-tallness with closure λ. In other

words, we will show that if j : V → M witnesses that κ is θ-tall with
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closure λ, then we may force to add a partial function f ⊆ κ× κ with

the property j(f)(κ) > θ. In fact, we can arrange any particular value

for j(f)(κ) up to j(κ), the degree of tallness of κ. To accomplish this

we will use a technique invented by Woodin called fast function forcing.

For a cardinal κ we define the fast function forcing poset Fκ as

follows. Conditions in Fκ are partial functions p ⊆ κ× κ such that

(1) each γ ∈ dom(p) is inaccessible and p”γ ⊆ γ,

(2) for each inaccessible γ ≤ κ we have |p ↾ γ| < γ.

The ordering on Fκ is given by p ≤ q if and only if p ⊇ q. For a

fixed condition of the form p := {(γ, δ)} we may factor Fκ below p as

Fκ ↾ p ∼= Fγ × F[λ,κ) where λ is the next inaccessible beyond max(γ, δ)

and F[λ,κ) := {p ∈ Fκ | dom(p) ⊆ [λ, κ)}. A generic G for Fκ pro-

vides a partial function f :=
⋃

G from κ to κ. Since we will only be

concerned with the function f , and f determines G, we will write the

forcing extension by the fast-function-forcing poset as V [f ] from this

point forward. For a more detailed account of fast-function-forcing see

[Ham00].

Lemma 8. Suppose j : V → M is a θ-tallness embedding with closure

λ with critical point κ where λ ≤ θ (or merely λ is less than the first

inaccessible beyond θ). Then there is a fast function forcing extension

V [f ] such that j lifts to j : V [f ] → M [j(f)] witnessing the θ-tallness

with closure λ in V [f ] such that j(f)(κ) > θ. Furthermore, for any

δ < j(κ) there is such a lift j such that j(f)(κ) = δ.

Proof. As mentioned at the end of subsection 5.1, we may assume with-

out loss of generality that λ<κ = λ and θλ = θ. We may assume that

2λ = λ+ since this can be accomplished using ≤ λ-distributive forcing,

which preserves the θ-tallness with closure λ of κ by Lemma 5. Let f

be V -generic for Fκ and let j : V → M be a θ-tallness embedding with

closure λ such that

M = {j(h)(j”λ, α) | α ≤ θ and h : Pκλ× κ → V is a function in V }.

Let δ be an ordinal with θ < δ < j(κ) and let p := {(κ, δ)}. We may

factor j(Fκ) ↾ p ∼= Fκ×F[γ,j(κ)) where γ is the next inaccessible cardinal

above δ.

We would like to build an M [f ]-generic filter for F[γ,j(κ)) in V [f ].

Let D be a dense subset of F[γ,j(κ)) in M [f ]. Then D has an Fκ name

Ḋ ∈ M and Ḋ = j(hḊ)(j”λ, α) for some α ≤ θ and hḊ : Pκλ ×
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κ → V . Since j”λ, j(hḊ) ∈ M it follows that ~D := 〈j(hḊ)(j”λ, α) |

α ≤ θ〉 ∈ M . Using the ≤ θ-closure of F[γ,j(κ)) in M [f ] we may find

a single condition in F[γ,j(κ)) meeting every dense set mentioned by
~Df := 〈j(hḊ)(j”λ, α)f | α ≤ θ〉.
Now we can assume without loss of generality that hḊ : Pκλ× κ →

{nice names of dense subsets of a tail of Fκ}. Since |Fκ| = κ it follows

that there are 2κ-many nice names for dense subsets of a tail of Fκ.

This implies that there are (2κ)λ
<κ

= 2λ = λ+-many functions h with

domain Pκλ × κ that represent nice names for dense subsets of a tail

of Fκ. In V we may enumerate such h’s as 〈hξ | ξ < λ+〉. Since

every dense subset of F[γ,j(κ)) in M [f ] has a nice name and each nice

name is represented by a function hξ on our list, we may build an

M [f ]-generic for F[κ,j(κ)) in V [f ] as follows. At a successor stage ξ,

by using the ≤ θ-closure of F[γ,j(κ)) in M [f ] we find a single condition

pξ ∈ F[γ,j(κ)) below all previously constructed conditions meeting each

dense set of the form j(hξ)(j”λ, α)f for α ≤ θ. At limit stages we use

the fact that F[κ,j(κ)) is < λ+-closed in V [f ] to find a condition below all

previously constructed conditions. This defines a descending sequence

of conditions in V [f ] and we let f[γ,j(κ)) be the M [f ]-generic filter for

F[γ,j(κ)) generated by the sequence. Since j”f ⊆ f ∪ p∪ f[γ,j(κ)) we may

lift j to j : V [f ] → M [j(f)] where j(f) = f ∪ p ∪ f[γ,j(κ)) and j is a

class of V [f ]. Since Fκ is κ+-c.c. and f[γ,j(κ)) is in V [f ] it follows by

Lemmas 1 and 2 that M [j(f)] is closed under λ-sequences in V [f ] and

hence that the lifted embedding witnesses that κ is θ-tall with closure

λ in V [f ].

�

5.3. The lottery preparation and tallness with closure. In [Ham00],

Hamkins shows that the lottery preparation makes many large cardi-

nals indestructible by a wide array of forcing notions. Here we will

extend the results in [Ham00] to include θ-tallness with closure λ.

Theorem 9. Suppose κ is θ-tall with closure λ where λ ≤ θ. Then after

the lottery preparation, the θ-tallness with closure λ is indestructible by

< κ-directed closed forcing of size ≤ λ and λ is preserved.

Proof. Suppose j : V → M witnesses the θ-tallness with closure λ of

κ. Without loss of generality we may assume that λ<κ = λ, θλ = θ,
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2λ = λ+, and

M = {j(h)(j”λ, α) | α ≤ θ and h : Pκλ× κ → V is a function in V }.

We remark that the forcing to obtain 2λ = λ+ collapses cardinals in

the interval [λ+, 2λ] to λ+. By Lemma 8 we may assume there is a fast

function f ⊆ κ× κ with j(f)(κ) > θ. Let P be the lottery preparation

defined relative to f and let G be V -generic for P. Let Q be any < κ-

directed closed forcing of size ≤ λ in V [G] and let H be V [G]-generic

for Q.

Since Q could be trivial forcing it will suffice to lift j to V [G][H ]

in V [G][H ]. We assume without loss of generality that Q ⊆ ORD.

Since |P|V = κ it follows that M [G]λ ⊆ M [G] in V [G] and hence

Q ∈ M [G]. By elementarity, j(P) is the lottery preparation of j(κ)

with respect to j(f). Since M is closed under λ-sequences in V it

follows that the first κ stages in P and j(P) are the same. Since λ ≤ θ

we have Q ∈ H(j(f)(κ)+) and thus Q appears in the lottery sum at

stage κ in j(P). Thus we may factor j(P) below a condition p that

opts for Q at stage κ as j(P) ↾ p ∼= P ∗ Q ∗ Ptail, where Ptail is a

term for the iteration beyond stage κ. We know that Ptail is a term

for ≤ θ-closed forcing because j(f)(κ) > θ. Since |Q|V [G] ≤ λ, it

follows that M [G][H ]λ ⊆ M [G][H ] in V [G][H ]. We will now construct

an M [G][H ]-generic for Ptail in V [G][H ]. Let D be a dense subset

of Ptail in M [G][H ]. Let Ḋ ∈ M be a P ∗ Q-name for D, that is

ḊG∗H = D, and let Ḋ = j(hḊ)(j”λ, α) where hḊ : Pκλ × κ → V ,

hḊ ∈ V , and α ≤ θ. Since j(hḊ), j”λ ∈ M the sequence of names
~D := 〈j(hḊ)(j”λ, α) | α ≤ θ〉 is in M , and furthermore the sequence

of dense subsets of Ptail, ~DG∗H := 〈j(hḊ)(j”λ, α)G∗H | α ≤ θ〉, is in

M [G][H ]. Since Ptail is ≤ θ-closed in M [G][H ] we can find a single

condition below every dense set mentioned by ~DG∗H . Without loss of

generality we may assume that the range of hḊ is contained in the set

of nice names for dense subsets of a tail of P. Now working in V [G][H ]

we put a bound on the number of functions

h : Pκλ× κ → {nice names for dense subsets of a tail of P}.

Since |P| = κ there are 2κ-many nice names for subsets of a tail of

P. Thus there are at most (2κ)λ
<κ

= 2λ = λ+-many such h’s. In

V [G][H ] we may enumerate all such h’s as 〈hξ | ξ < λ+〉. Since

every dense subset of Ptail in M [G][H ] has a nice P ∗ Q-name and
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each nice P ∗ Q-name is represented by one of the hξ’s on our list,

we may construct an M [G][H ]-generic descending sequence of condi-

tions of Ptail as follows. At successor stages ξ, we work in M [G][H ]

and use the fact that Ptail is ≤ θ-closed in M [G][H ] to find a condi-

tion of Ptail meeting every dense subset of Ptail which has a name on

the list 〈j(hξ)(j”λ, α) | α ≤ θ〉. At limits ξ < λ+, since M [G][H ] is

closed under λ-sequences in V [G][H ] it follows that Ptail is ≤ λ-closed

in V [G][H ], and hence, in V [G][H ], we may find a condition of Ptail

below all previously constructed conditions. This defines a descend-

ing λ+-sequence of conditions in Ptail and we let Gtail be the filter

generated by this sequence of conditions. Clearly Gtail ∈ V [G][H ]

is an M [G][H ]-generic filter for Ptail. Thus we may lift the embed-

ding to j : V [G] → M [j(G)] where j(G) := G ∗ H ∗ Gtail and j is a

class of V [G][H ]. Since P ∗Q is λ+-c.c. it follows from Lemma 2 that

M [G][H ]λ ⊆ M [G][H ] in V [G][H ]. Furthermore, since Gtail ∈ V [G][H ],

we see by Lemma 1 thatM [j(G)] is closed under λ-seqences in V [G][H ].

We will now lift j to V [G][H ]. Since H, j”Q ∈ M [j(G)] we may

build j”H in M [j(G)]. Since j(Q) is < j(κ)-directed closed in M [j(G)]

it follows that in M [j(G)], there is a master condition r ∈ j(Q) below

each element of j”H . We will now construct an M [j(G)]-generic filter

for j(Q) in V [G][H ]. Let D ∈ M [j(G)] be a dense subset of j(Q).

Then by Lemma 4 we may write D = j(hD)(j”λ, α) where hD ∈ V [G]

is a function from Pκλ× κ to the collection of dense subsets of Q and

α ≤ θ. Now let ~D := 〈j(hD)(j”λ, α) | α ≤ θ〉. Since j”λ, j(hD) ∈

M [j(G)] we see that ~D ∈ M [j(G)]. Since j(Q) is < j(κ)-directed

closed in M [j(G)] we can find, via an internal argument in M [j(G)], a

single condition that meets every dense set mentioned by ~D. In V [G],

|Q| = λ and this implies that there are at most (2λ)λ
<κ

= λ+-many

functions h ∈ V [G] that represent dense subsets of j(Q) in M [j(G)].

As before, we enumerate these functions as 〈hξ | ξ < λ+〉 and define a

descending sequence of conditions meeting every dense subset of j(Q).

We start the descending sequence with the master condition, r. If ξ

is a successor, we use the < j(κ)-directed closure of j(Q) in M [j(G)]

to meet all dense sets mentioned in 〈j(hξ)(j”λ, α) | α ≤ θ〉 with a

single condition that is also below r. At limit stages ξ < λ+ since

M [j(G)] is closed under λ-sequences in V [G][H ] it follows that j(Q)

is ≤ λ-closed in V [G][H ], and hence we may find a condition of j(Q)

below all previously constructed conditions. This defines a descending
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λ+-sequence of conditions below the master condition r. Let j(H) be

the generic filter generated by this sequence. Since r is stronger than

every element of j”H and r ∈ j(H) we have j”H ⊆ j(H) and thus

we may lift the embedding to j : V [G][H ] → M [j(G)][j(H)] where the

lifted embedding is a class in V [G][H ].

This shows that the θ-tallness with closure λ of κ is indestructible

by any < κ-directed closed forcing of size ≤ λ in V [G].

�

Let us now give a quick application of Theorem 9.

Corollary 10. If κ is θ-tall with closure λ where λ ≤ θ and λ is inac-

cessible then there is a forcing extension preserving the inaccessibility

of λ in which κ is θ-tall with closure λ and GCH holds on [κ, λ].

Proof. By Theorem 9 we may assume that the θ-tallness with closure λ

is indestructible by < κ-directed closed forcing of size ≤ λ. We define

a length λ forcing iteration Pλ with reverse Easton support as follows.

Let the first κ stages of Pλ be trivial forcing. For κ ≤ γ < λ we force at

cardinal stages γ with Add(γ+, 1)VPγ . Clearly Pλ is ≤ κ-directed closed

and thus ≤ κ-distributive. Let G be V -generic for P.

It is routine to show that λ remains inaccessible in V [G] and is thus

not collapsed by the forcing G.

Since λ is inaccessible it follows that P has size at most 2<λ ≤ λ.

Furthermore, P is < κ-directed closed. Hence by Theorem 9 it follows

that in V [G], κ is θ-tall with closure λ and GCH holds on [κ, λ). Now

we may force GCH to hold at λ with ≤ λ-distributive forcing Q =

Add(λ+, 1), which clearly preserves the θ-tallness with closure λ of κ

by Lemma 5.

�

6. Proof of Main Theorem (2) - (4)

Let us now argue that the equiconsistencies in the forward directions

in Main Theorem (2) - (4) are actually implications. For Main Theorem

(2), suppose j : V → M witnesses that κ is λ-supercompact and 2κ ≥ θ.

Since j(κ) is inaccessible in M we have θ ≤ 2κ ≤ (2κ)M < j(κ). Hence

j is a θ-tallness embedding with closure λ. The forward directions in

Main Theorem (3) and (4) are similar.

It remains to prove the backward directions of Main Theorem (2) -

(4). To do this we will start with an embedding j : V → M witnessing
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the θ-tallness with closure λ of κ, force to violate GCH at either κ or

λ, and then lift the embedding to the forcing extension. In order to

lift the embedding we will use Woodin’s method of surgery to modify

a certain generic g to obtain g∗ with the pullback property j”H ⊆ g∗.

The following lemma, due to Woodin, will allow us to show that g∗ is

a generic filter.

Key Lemma. Suppose N and M are transitive inner models of ZFC

and j : N → M is a nontrivial elementary embedding with critical point

κ that is continuous at regular cardinals ≥ λ+ where λ ≥ κ. Then if

A ∈ M is such that |A|M ≤ j(λ) then |A ∩ ran(j)|V ≤ λ.

Proof. Let j : N → M and A ∈ M be as above; that is, |A| ≤ j(λ).

First we will argue that it suffices to consider the case where A is a

set of ordinals. Let ~B := 〈bα | α < β〉 ∈ N be a sequence of length

β such that A ⊆ ran(j( ~B)); for example, ~B could be an enumeration

of some sufficiently large V N
θ so that j( ~B) is an enumeration of V M

j(θ).

Clearly j( ~B) is a sequence of length j(β) in M , write j( ~B) = 〈b′α |

α < j(β)〉. Let A0 = {α < j(β) | b′α ∈ A}. Then A0 ∈ M and we

have |A0|
M = |A|M . Clearly b′α ∈ ran(j) if and only if for some ξ < β

we have b′α = j(bξ) = b′j(ξ). In other words, b′α ∈ ran(j) if and only if

α ∈ ran(j). It follows that |A ∩ ran(j)|V = |A0 ∩ ran(j)|V , hence we

have reduced to the case in which A is a set of ordinals.

Suppose A ∈ M is a set of ordinals with |A|M ≤ j(λ) and |A ∩
ran(j)|V ≥ λ+. Then A contains λ+-many elements of the form j(α)

for α ∈ N . That is, we may assume A contains elements of the form

j(βα) where α < λ+ and 〈βα | α < λ+〉 ∈ V is a strictly increasing

sequence of ordinals which is not necessarily in N since it was defined

using A ∈ M . Now let δ = sup〈βα | α < λ+〉. Furthermore, we

know that cf(δ)V = λ+ and hence cf(δ)N ≥ λ+. This implies that

cf(j(δ))M ≥ j(λ+). Since j is continuous at regular cardinals ≥ λ+,

and thus at cf(δ)N , we know that A contains unboundedly many j(βα)

less than j(δ). So in M , A is unbounded in j(δ), but this implies that

|A|M ≥ j(λ+) which contradicts our assumption that |A|M ≤ j(λ).

�

The following theorem suffices to finish the proof of Main Theorem

(2) - (4).
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Theorem 11. For any cardinals κ ≤ λ ≤ θ, if κ is λ-supercompact and

θ-tall then there is a forcing extension in which κ is λ-supercompact and

2κ ≥ θ; and hence also 2λ ≥ θ. Indeed, the forcing preserves cardinals

on [κ, λ+] ∪ (2λ,∞) and assuming GCH holds at λ, all cardinals ≥ κ

are preserved.

In the following proof of Theorem 11 we will use Woodin’s method

of surgery referred to just before the above key lemma.

Proof of Theorem 11.

6.1. Setup. Let κ be λ-supercompact and θ-tall. As before, by the

remarks at the end of subsection 5.1, we may assume without loss of

generality that λ<κ = λ and θλ = θ. We may further assume that

2λ = λ+ since the forcing to achieve this is ≤ λ-distributive and thus

preserves the λ-supercompactness and θ-tallness of κ. By Lemma 7 we

have an elementary embedding j : V → M with cp(j) = κ, j(κ) > θ,

Mλ ⊆ M , and

M = {j(h)(j”λ, α) | α ≤ θ and h : Pκλ× κ → V is a function in V }.

By Lemma 8 we may assume without loss of generality that there is

a partial function f ⊆ κ × κ in V such that j(f)(κ) > θ. Let P be

the lottery preparation relative to f . Let G ⊆ P be V -generic and let

Q = Add(κ, θ)V [G]. Let H ⊆ Q be V [G]-generic. Notice that since P

has size κ and Q is κ+-c.c. it follows that P ∗Q is κ+-c.c., and thus by

Lemma 2 that M [G][H ] is closed under λ-sequences in V [G][H ].

6.2. Lifting j through the lottery preparation. By elementarity

j(P) is the lottery preparation of length j(κ) relative to j(f) as defined

in M . Since M is closed under λ-sequences in V it follows that the

iterations P and j(P) agree up to stage κ and since Q ∈ M [G] is

< κ-closed it appears in the stage κ lottery in j(P). Hence we may

factor j(P) below a condition p ∈ j(P) that opts for Q at stage κ as

j(P) ↾ p ∼= P ∗ Q ∗ Ptail. Since j(f)(κ) > θ it follows that the next

nontrivial stage of forcing in j(P) is beyond θ and hence that Ptail

is a term for ≤ θ-closed forcing. As in the proof of Theorem 9 we

will construct a descending λ+-sequence of conditions in V [G][H ] that

meets every dense subset of Ptail in M [G][H ]. Let D be a dense subset

of Ptail in M [G][H ] and let Ḋ ∈ M be a nice P ∗Q-name for D. Then

D = j(hḊ)(j”λ, α)G∗H for some α ≤ θ and some function hḊ with
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domain Pκλ×κ and range contained in the set of nice names for dense

subsets of a tail of P. Since the sequence of names 〈j(hḊ)(j”λ, α) |

α ≤ θ〉 is in M and Ptail is ≤ θ-closed in M [G][H ] we can find a

condition in Ptail meeting every dense set mentioned by the sequence

〈j(hḊ)(j”λ, α) | α ≤ θ〉. Since there are ≤ λ+-many functions from

Pκλ × κ to the set of nice names for dense subsets of a tail of P,

it follows from the fact that M [G][H ] is closed under λ-sequences in

V [G][H ] that we can construct a descending λ+-sequence in V [G][H ]

that meets each dense subset of Ptail in M [G][H ]. Let Gtail be the

M [G][H ]-generic filter generated by this descending sequence. Then

we may lift the embedding in V [G][H ] to j : V [G] → M [j(G)] where

j(G) = G ∗H ∗ Gtail and since Gtail ∈ V [G][H ] we may use Lemma 1

to see that M [j(G)] is closed under λ-sequences in V [G][H ].

6.3. The factor diagram. Let X = {j(h)(j”λ, θ) | h : Pκλ × κ →

V [G] where h ∈ V [G]}. Then X ≺ M [j(G)] and we let k : M ′

0 →

M [j(G)] be the inverse of the Mostowski collapse π : X → M ′

0 and

let j0 : V [G] → M ′

0 be defined by j0 := k−1 ◦ j. It follows that j0
is the ultrapower embedding by the measure µ := {X ⊆ Pκλ × κ |

(j”λ, θ) ∈ j(X)} where µ ∈ V [G][H ]. By elementarity, M ′

0 is of the

form M0[j0(G)], where M0 ⊆ M ′

0 and j0(G) ⊆ j0(P) ∈ M ′

0 is M0-

generic. Furthermore, j0(G) = G∗H0∗G
0
tail where H0 is M0[G]-generic

for Add(κ, π(θ))M0[G] and G0
tail is M [G][H0]-generic for the tail of the

iteration j0(P) above κ. The following diagram is commutative.

V [G]
j

//

j0 %%❑
❑

❑

❑

❑

❑

❑

❑

❑

❑

M [j(G)]

M0[j0(G)]

k

OO

It follows that j0 is a class of M0[j0(G)] which is closed under λ-

sequences in V [G][H0] and that j0(κ) > π(θ).

6.4. Outline of the rest of the proof. We would like to lift j through

the stage κ forcing, Q. This cannot be accomplished using a master

condition argument since |j”H| = θ. In order to lift the embedding

we will force with j0(Q) over V [G][H ] to obtain a generic g0 for j0(Q).

In subsection 6.5 we will argue that k”g0 generates an M [j(G)]-generic

g for j(Q). However, we have no reason to expect that j”H ⊆ g

and thus we need to do more work in order to lift the embedding. In
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subsection 6.6 we will use Woodin’s method of surgery to modify the

filter g to obtain an M [j(G)]-generic g∗ for j(Q) with j”H ⊆ g∗. Then

the embedding lifts to

j : V [G][H ] → M [j(G)][g∗](6.1)

in V [G][H ][g0] where j(H) = g∗.

The embedding (6.1) does not witness that κ is λ-supercompact in

V [G][H ] because the embedding is a class of V [G][H ][g0]. Under the

assumption that we have lifted the embedding as in (6.1) we will now

show that the embedding lifts further to our target model V [G][H ][g0]

witnessing that κ is θ-tall and λ-supercompact in V [G][H ][g0]. Fur-

thermore, we will show in subsection 6.7 that

(2κ ≥ θ)V [G][H][g0].(6.2)

Let us first argue, assuming we have g∗ as above, that M [j(G)][g∗]

is closed under λ-sequences in V [G][H ][g0]. We now show that j0(Q)

is ≤ λ-distributive in V [G][H ]. Since j0(κ) > λ it follows that j0(Q) is

≤ λ-closed inM0[j0(G)]. SinceM0[j0(G)] is closed under λ-sequences in

V [G][H0] it follows that j0(Q) is ≤ λ-closed in V [G][H0] and since ≤ λ-

closed forcing remains ≤ λ-distributive in λ+-c.c. forcing extensions,

it follows that j0(Q) is ≤ λ-distributive in V [G][H ]. Since M [j(G)] is

closed under λ-sequences in V [G][H ] and j0(Q) is ≤ λ-distributive in

V [G][H ] it easily follows that M [j(G)] is closed under λ-sequences in

V [G][H ][g0]. Since g∗ is constructed from g0 we have g∗ ∈ V [G][H ][g0]

and it follows that M [j(G)][g∗] is closed under λ-sequences of ordinals

in V [G][H ][g0]. By using a well ordering of a sufficient initial segment

of the universe M [j(G)][g∗], it follows that M [j(G)][g∗] is closed under

λ-sequences in V [G][H ][g0].

Now we show that the embedding (6.1) lifts through j0(Q). Every

element of M [j(G)][g∗] is of the form j(h)(j”λ, α) where h : Pκλ×κ →

V [G][H ] is in V [G][H ] and α ≤ θ. In other words, M [j(G)][g∗] is

generated by {(j”λ, α) | α ≤ θ} ⊆ Pκλ × κ over V [G][H ]. Since

Pκλ× κ has size λ and j0(Q) is ≤ λ-distributive, it follows by Lemma

5 that j”g0 generates an M [j(G)][g∗]-generic filter j(g0) for the poset

j(j0(Q)). Thus j lifts in V [G][H ][g0] to

j : V [G][H ][g0] → M [j(G)][g∗][j(g0)].
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Since j(g0) ∈ V [G][H ][g0] and M [j(G)][g∗] is closed under λ-sequences

in V [G][H ][g0] it follows that M [j(G)][g∗][j(g0)] is closed under λ-

sequences in V [G][H ][g0]. Since j is a lift of the original embedding

it still satisfies j(κ) > θ. Hence j witnesses that κ is θ-tall with closure

λ in V [G][H ][g0].

To complete the proof of Theorem 11 it remains to carry out the

surgery argument and to argue that (6.2) holds.

6.5. Obtaining the generic on which to perform surgery. Let

g0 be as in subsection 6.4; that is, g0 is V [G][H ]-generic for j0(Q). In

this subsection we will argue that k”g0 generates an M [j(G)]-generic

for j(Q). Each x ∈ M [j(G)] is of the form x = j(h)(j”λ, α) for some

α ≤ θ and some h : Pκλ× κ → V [G] with h ∈ V [G]. Since j0”λ ∈ M0

it follows that each x ∈ M [j(G)] is of the form k(h)(α) for some α ≤ θ

and some h : j0(κ) → M0[j0(G)] with h ∈ M0[j0(G)]; in fact since

k(h ↾ π(θ)), where π(θ) is the collapse of θ, still has every α ≤ θ

in its domain, we may assume that h : π(θ) → M0. Let D be an

open dense subset of j(Q) in M [j(G)]. Then D = k( ~D)(α) for some

fixed α ≤ θ where ~D = 〈Dβ | β < π(θ)〉 is a sequence of dense open

subsets of j0(Q). Since j0(Q) is ≤ π(θ)-distributive we know that

D :=
⋂

β<π(θ)(Dβ) is open dense in j0(Q). Hence there is a condition

p ∈ g0 ∩D. Then k(p) ∈ k”g0 ∩ k(D). Now D ⊆ Dβ = ~D(β) for each

β < π(θ) and this implies k(D) ⊆ k( ~D)(β) for each β < k(π(θ)) = θ.

It follows that

k(D) ⊆ k( ~D)(α) = D

and hence k(p) ∈ k”g0 ∩ k(D) ⊆ D. Therefore k”g0 generates an

M [j(G)]-generic filter for j(Q).

6.6. Surgery. Now that we have anM [j(G)]-generic g for j(Q) we use

Woodin’s method of surgery to obtain an M [j(G)]-generic g∗ for j(Q)

with j”H ⊆ g∗. We define g∗ in terms of g and j”H in the following

way. Let ∆ be the set of coordinates (α, β) ∈ j(θ) × j(κ) such that

there is a p ∈ H such that (α, β) ∈ dom(p) and j(p)(α, β) 6= g(α, β)

and let π : j(Q) → j(Q) be the automorphism induced by flipping bits

over coordinates in ∆. Then we let g∗ := π”g. In other words, we

obtain the modified generic g∗ by using g except that whenever g and

j”H disagree, we change g to match j”H .
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κ

κ j(κ)

j”H

g

j(θ)

j(κ)

Since j is continuous at regular cardinals ≥ λ+ the key lemma applies

and we use this to show that g∗ is a generic filter on j(Q). First note

that if p ∈ j(Q) then |p|M [j(G)] < j(κ) and so the set of coordinates on

which p∗ := π(p) 6= p has size ≤ λ by the key lemma and is thus in

M [j(G)] since M [j(G)]λ ⊆ M [j(G)] in V [G][H ][g0]. This implies that

p∗ ∈ M [j(G)] and thus that g∗ defines a filter in M [j(G)].

Now we show that g∗ is M [j(G)]-generic for j(Q). Let A ⊆ j(Q)

be a maximal antichain in M [j(G)]. Since j(Q) has the j(κ)+-c.c. we

have |A|M [j(G)] ≤ j(κ). Furthermore, each p ∈ A has |p|M [j(G)] < j(κ).

Hence |
⋃

p∈A dom(p)|M [j(G)] ≤ j(κ). By the key lemma, the set of

coordinates mentioned by conditions in A that were involved in the

changes we made from g to g∗ has size ≤ λ, call this set ∆A. In other

words, ∆A := ∆ ∩
(

⋃

p∈A dom(p)
)

. Let πA : j(Q) → j(Q) be the

automorphism induced by flipping bits over coordinates in ∆A. The

coordinates of bits that get flipped by πA are contained in the domain

of the antichain (see the shaded region in the figure below).

κ

κ j(κ)

j”H

g

j(θ)

j(κ)

A

Since |∆A| ≤ λ we have ∆A ∈ M [j(G)] and it follows that πA ∈

M [j(G)]. Then π−1
A ”A is a maximal antichain of j(Q) and by genericity

of g there is a condition p ∈ g that decides π−1
A ”A. It follows that

π(p) ∈ g∗ decides A since π”A = πA”A. This establishes that g∗ is

M [j(G)]-generic for j(Q).

Since we arranged j”H ⊆ g∗ by definition, we may use Lemma 3 to

lift the embedding to j : V [G][H ] → M [j(G)][j(H)] where j(H) = g∗.
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Since we used g0 to define g∗, this lift is a class of V [G][H ][g0]. We

argued above (in the outline given in section 6.4) that we can lift the

embedding further through the g0 forcing. So all that remains is to

show that j0(Q) preserves cardinals and that 2κ ≥ θ in V [G][H ][g0].

6.7. Preserving 2κ ≥ θ in V [G][H ][g0]. We have already argued that

j0(Q) is ≤ λ-distributive in V [G][H ] and we will now argue that j0(Q)

is λ++-c.c. From this it follows that j0(Q) preserves cardinals over

V [G][H ] and 2κ ≥ θ in V [G][H ]. Each condition p ∈ j0(Q) is in

M0[j0(G)] and is thus of the form p = j0(hp)(j0”λ, θ) for some hp :

Pκλ × κ → Q with h ∈ V [G]. For each p ∈ j0(Q), dom(hp) has size

λ in V [G] and thus hp leads to a function hp : λ → Q, which can be

viewed as a condition in the full support product of λ-many copies of

Q as defined in V [G], which we denote by Q. We will show that j0(Q)

is λ++-c.c. in V [G][H ] by arguing that Q is λ++-c.c. in V [G][H ] and

that an antichain of j0(Q) of size λ++ in V [G][H ] would lead to an

antichain of Q of size λ++ in V [G][H ].

Claim 12. Q is λ++-c.c. in V [G][H ]

Proof of claim. By a delta system argument Q is λ++-c.c. in V [G].

Suppose A ∈ V [G][H ] is an antichain of Q with |A| = δ. We will show

that A leads to an antichain of size δ of Q ∼= Q×Q in V [G] and thus

that δ < λ++. Let

q  Ȧ is an antichain of Q and ḟ : δ → Ȧ is bijective

where q ∈ Q ∩ H and ȦH = A. For each α < δ let qα ≤ q be

such that qα  ḟ(α̌) = p̌α where pα ∈ Q. We have Q ∼= Q × Q in

V [G] and we now show that W := {(qα, pα) ∈ Q × Q | α < δ} is

an antichain of size δ of Q × Q in V [G]. Clearly W ∈ V [G] because

in choosing the pairs (qα, pα) in W we only used the forcing relation

Q. Suppose for a contradiction that W is not an antichain, i.e. that

(q∗, p∗) ≤ (qα, pα), (qβ, pβ) for some α, β < δ with α 6= β and some

(q∗, p∗) ∈ Q × Q. Let H∗ be V [G]-generic for Q with q∗ ∈ H∗. Since

q∗ ≤ q it follows that ḟH∗ enumerates an antichain. Furthermore we

have ḟH∗(α) = pα, ḟH∗(β) = pβ , and p∗ ≤ pα, pβ, a contradiction.

Hence we conclude that W is an antichain of Q×Q in V [G] and since

Q ∼= Q×Q we see that W leads to an antichain of Q of size δ in V [G].

Therefore, δ < λ++. Hence we conclude that an antichain A of Q in

V [G][H ] must have size < λ++. �
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Now we complete the proof of Theorem 11 by showing that j0(Q) is

λ++-c.c. in V [G][H ]. Suppose that in V [G][H ], j0(Q) has an antichain

A of size δ. For each p ∈ A ⊆ j0(Q) let hp : Pκλ × κ → Q be such

that p = j0(hp)(j”λ, θ) where hp ∈ V [G]. As above each hp yields a

condition in Q, call it hp. For p, q ∈ A we have j0(hp)(j”λ, θ) ⊥j0(Q)

j0(hq)(j”λ, θ), and thus by elementarity we conclude that there is a

(σ, α) ∈ Pκλ × κ such that hp(σ, α) ⊥ hq(σ, α). This implies that

A := {hp | p ∈ A} is an antichain in Q where |A| = δ. By Claim 12,

δ < λ++. Thus j0(Q) is λ++-c.c. in V [G][H ].

Thus we have shown that in V [G][H ][g0], κ is λ-supercompact and

θ-tall, and 2λ ≥ θ.

Let us argue that cardinals in [κ, λ+] ∪ (2λ,∞) are preserved. We

started with a model and forced 2λ = λ+ which may have collapsed

cardinals in (λ+, 2λ]. We then add a fast function using κ+-c.c. forcing

which preserves cardinals ≥ κ. The remaining forcing is P ∗Q ∗ j0(Q)

where P ∗ Q is κ+-c.c. and j0(Q) preserves cardinals over V [G][H ].

Thus in the final model V [G][H ][g0] we have preserved cardinals in the

interval [κ, λ+] ∪ (2λ,∞).

�
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