RANDOMIZED, PROSPECTIVE, CLINICAL EVALUATION OF PROSTHODONTIC MODALITIES FOR MANDIBULAR IMPLANT OVERDENTURE TREATMENT

David R. Burns, DMD, John W. Unger, DDS, James P. Coffey, DDS, MS, Thomas C. Waldrop, DDS, MS, and Ronald K. Elswick, Jr, PhD
Virginia Commonwealth University, Richmond, Va

Statement of problem. Mandibular implant overdentures provide improved treatment outcome than conventional denture therapy, but there is controversy as to which overdenture treatment is the best choice.

Purpose. This study evaluated 3 different mandibular implant overdenture treatments with respect to prosthesis retention and stability, tissue response, patient satisfaction and preference, and complications to determine treatment outcomes.

Material and methods. In a prospective, randomized clinical trial, using a crossover design, 30 subjects (mean age, 58.9; 63% male) received 4 implants in the anterior mandible. For each subject, 3 different overdenture attachment types were fabricated and/or fitted to the implants. These included a 4-implant bar attachment fitted to all 4 implants, a 2-implant bar attachment, and 2 independent ball attachments. Subjects were randomly assigned to 1 of 6 possible treatment sequences and received all 3 attachment types each for approximately 1 year. Data were collected at baseline, and at 6 and 12 months for treatment types. Denture retention and stability and parameters of soft tissue response were recorded. Complications were documented and questionnaires were used to identify subject masticatory ability, denture complaints, and preferences. Data were analyzed to determine statistical equivalence among the 3 different treatments using the Schuirmann’s two one-sided test (TOST) procedure, and the Wilcoxon-Mann-Whitney TOST procedure (α=.05).

Results. Force gauge prosthesis retention measurements showed that the 3 treatment types were not statistically equivalent, with the 4-implant bar demonstrating the greatest retention. Criterion-based retention scores were statistically equivalent for all treatments. Both the force gauge and criterion-based prosthesis stability measurements were statistically equivalent among all 3 treatment types. Analysis of all other multiple criterion-based scoring systems indicated the majority of these variables demonstrated equivalence. Where equivalence was not identified, the most favorable responses were typically found with the O-ring treatment, and the least favorable with the 4-implant bar treatment. From the small percentage of treatment visits demonstrating minor complications, no single treatment presented with greater complications than the others. For the treatment preference among subjects, 52% selected the independent ball attachment, 32% the 4-implant bar, and 16% the 2-implant bar (P=.10).

Conclusions. The 2-implant independent treatment used in this study provided equivalent or more favorable treatment outcomes for most measured parameters relative to the more complex and costly 2- and 4-implant bar attachments. The 4-implant bar treatment provided greater prosthesis retention than the other treatment types in this study, but after experience with all systems, subjects were more satisfied with and preferred the independent implant treatment. (J Prosthet Dent 2011;106:12-22)
The benefits of implant-retained/supported mandibular implant overdenture (IOD) treatment relative to conventional mandibular denture treatment have been well documented.19 Half of all conventional mandibular dentures demonstrate problems with prosthetic stability and retention, with retention being the single most important deficiency reported.10 Feine et al11 and Thomason et al12 stated that for the edentulous mandible, a 2-implant overdenture treatment should be the standard of care relative to conventional denture treatment.

Enhanced prosthesis retention and stability have been identified as perhaps the most important factors for producing more favorable mandibular IOD treatment outcome and improved patient satisfaction.2,10,13 Mandibular IOD prosthesis retention, stability, and support are provided by both the mucosa and implants. As increasing numbers of implants are used, it is possible they will assume a greater role with treatment outcome, particularly involving prosthetic support.14 However, more implants may not translate to improved prosthesis retention and/or stability, and subsequent treatment outcome may be relatively unaltered,14 other than a slight increased risk from additional treatment and added expense. Zarb and Schmitt15 and Visser et al16 indicated that successful IOD treatment outcome can be achieved regardless of the number of implants used, but this concept remains controversial.14

Two implants have been considered the minimum necessary for mandibular IOD treatment,15 and can be used either with independent, unsplinted attachments or splinted together using a cast metal bar and a bar-clip attachment.17 Four implants splinted with 3 interconnecting bar and bar-clip attachments is another treatment alternative. With a lack of consensus regarding the number of implants necessary for mandibular implant overdenture treatment, the best choice of an attachment mechanism between the implants and denture base also remains controversial.14,18

Wismeijer et al19 studied 110 mandibular IOD patients, who received either 2 implants with a bar attachment, 2 implants with an interconnecting bar, or 4 implants splinted with 3 bars. Treatment outcome was measured using patient questionnaires. Nearly all subjects were satisfied with treatment after 16 months, and no statistical difference was found among the 3 treatment strategies. The authors concluded that the 2-implant ball attachment treatment was a good choice, but the need for additional clinical trials was emphasized. Mau et al20 conducted a randomized study to evaluate 2-versus 4-implant bar attachments. The authors found a higher rate of complication for the 4-implant design, but in terms of treatment efficacy, both methodologies were the same after 5 years of service. Using 3-dimensional finite-element analysis, Meijer et al21 studied bone stress in the anterior mandible surrounding implants when either 2 or 4 implants were used for IOD treatment. The authors concluded that when the occlusal load was distributed over increasing numbers of implants, there was no reduction in the principal bone stresses surrounding the individual implants.

Timmerman et al22 reported that after 8 years, subjects from their study were more satisfied with a 2-implant single bar treatment than either 2 independent implants with ball attachments or 4 implants with 3 bars. They suggested that patient satisfaction was linked to prosthesis retention and stability, and not the number of implants used. Cune et al23 measured patient satisfaction using a crossover design, where 18 subjects received 2 implants, and then in a randomized order, received magnetic, bar-clip, or ball attachments, each for a 3-month period. Questionnaires were used to register complaints, satisfaction, and preference. The authors reported that after subjects experienced all treatments, 1 subject preferred the magnetic attachment, 7 preferred the ball attachment, and 10 preferred the bar-clip.

Walton et al24 evaluated time and cost factors associated with IOD. Sixty-four subjects received 2 mandibular implants and either a bar with 2 clips or 2 ball attachments. The authors found that subjects were equally satisfied with their treatments, but 84% of subjects with the ball attachment required at least 1 repair versus 20% for the bar-clip attachment. They concluded that because of the lower rate of repair, the bar-clip design was a better choice. However, Watson et al25 stated that all IOD attachments required significant post insertion maintenance, but there were advantages to using independent implant attachments relative to bar attachment designs. The free-standing attachments required less space within a denture base; they were easier for a patient to keep clean; the initial prosthetodonic treatment was less involved and more economical to perform; and routine maintenance, such as denture relines, was easier to manage. Gottfredsen and Holm26 studied maintenance requirements for both ball and bar attachments over a
5-year period. They found that during the first year, there were significantly more complications requiring repairs with the bar group relative to the ball group. After the first year, there was no significant difference between the 2 groups.

Naert et al27 compared prostho-
dontic treatment and subject satis-
faction with splinted versus unsplint-
ed 2-implant mandibular IODs in 36 sub-
jects over a 10-year period. The authors found that at year 10, the ball
attachment provided better prosth-
esis retention and patient satisfaction,
with fewer soft tissue complications
relative to bar or magnetic attach-
ment designs. The bar attachment
negatively influenced the opposing
maxillary denture in terms of comfort
and stability. Stoker et al27 provided a
cost analysis of initial treatment and
aftercare expenses associated with 3
mandibular IOD treatments over an
8-year period. The authors compared
a 4-implant bar, a 2-implant bar, and
a 2-implant ball attachment. They
found that aftercare patient expenses
were comparable for all treatments,
but initial costs represented 75% of
the total costs, and were significantly
higher for the 4-implant treatment
relative to the 2-implant varieties.

The hypothesis of this study was
that clinical treatment outcomes us-
ing measured parameters to define
prosthesis performance and patient
satisfaction/preference for the various
mandibular IOD treatment modal-
ties were equivalent. If the hypothesis
were supported, it would imply that a
2-independent implant treatment op-
tion might be preferred because the
more costly and complex treatment
involving additional implants and bar
splinting would provide similar treat-
ment outcomes to those using less
costly and simpler solutions.

MATERIAL AND METHODS

This study was a prospective, ran-
donized clinical trial, using a cross-
over design to prospectively test the
statistical equivalence among the 3
different mandibular IOD treatments.
In contrast to the typical clinical trial,
in which the intent is to demonstrate
the superiority of one treatment over
another, the goal of this study was to
demonstrate equivalence among the 3
treatment types. Preliminary
data were gathered during a previ-
ous study and were used for the sta-
tistical power analysis.1,2 Equivalence
testing with dental clinical trials was
described in a previous study.28 It was
determined that 30 subjects were re-
quired to provide appropriate statisti-
cal power, and additionally, allow for
a potential 25% subject dropout over
the course of the study. Prospective
subjects were all patients of record
at Virginia Commonwealth Univer-
sity School of Dentistry, and all had
conventional complete denture expe-
rience for at least one year. Inclusion
criteria included adult patient, male
or female, at least 1 year of previ-
ous conventional complete denture
treatment history, willingness to ac-
cept the conditions of the study and
freely provide informed consent, abil-
ity to participate for at least 6 years,
ability to understand and respond to
self-reporting measurement scales
used in the study, a minimum of 20-
mm interarch distance at the esti-
mated occlusal vertical dimension,
bone quality of 1 or 2 according to
the Lekholm and Zarb criteria,29 and
adequate bone quantity to minimally
accommodate 4 (3.75mm diameter)
implants (Brånemark; Nobel Biocare
USA, Yorba Linda, Calif) anterior to
the mental foramen bilaterally. Exclu-
sion criteria included administrative
or physical considerations that would
seriously affect the surgical proce-
dure or constitute a hindrance for a
6-year involvement, history of drug or
alcohol abuse, excessive smoking (1+
pack/day), uncontrolled systemic dis-
ease, inability to undergo minor oral
surgery because of health or personal
reasons, irradiated surgical site, un-
realistic expectations of the prostho-
dontic treatment outcome, psycho-
logical or psychiatric conditions that
could influence the subject’s reac-
tion to treatment, acute or chronic
temporomandibular disorder (TMD)
problems, pregnancy, class II jaw rela-
tionship, and after informed consent,
conventional dental treatment as the
treatment of choice.

Selected subjects were required to
provide written informed con-
sent. The study was approved and
continuously monitored by an inter-
nal Institutional Review Board and
an external National Institutes of
Health, Data and Safety Monitoring
Board. Eighty-seven potential sub-
jects were screened and of these, 51
were excluded due to failure to meet
inclusion criteria or willingness to
sign the informed consent. Thirty-six
subjects were enrolled and provided
informed consent. Six of these sub-
jects dropped out for various reasons
after enrollment, but before implant
placement. Thirty subjects provided
pretreatment demographic informa-
tion. After implant placement and
during the course of the investiga-
tion, 3 subjects were discontinued from
the study and therefore provided no pos-
tervention data. One was removed
because of compliance concerns re-
garding prosthetic use. This subject
was diagnosed with Alzheimer’s dis-
ease and was unable to communicate
effectively as to his treatment satisfac-
tion, complications, and preferences.
The second subject was unable to
continue because of his wife’s chronic
illness and inability to return for data
collection. A third subject died due to
a ruptured coronary aneurysm. De-
mographic data for enrolled subjects
with postintervention data are pre-
sented in Table I.

Four implants (Brånemark Nobel
Biocare USA) were placed anterior
to the mental foramen bilaterally in
the mandible of each subject using
conventional 2-stage surgical tech-
niques.30 All subjects received 3.75
mm diameter implants, but implant
length varied for each subject to pro-
vide the most favorable treatment
prognosis. A presurgical trial denture
was fabricated and used to produce
a surgical implant guide for each sub-
ject.
TABLE I. Demographic summary (n=27)

<table>
<thead>
<tr>
<th>Enrolled with Postintervention Data</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>17 (63%)</td>
</tr>
<tr>
<td>Female</td>
<td>10 (37%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject age</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean (SE) Years Edentulous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxillary</td>
</tr>
<tr>
<td>Mandibular</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean (SE) Years with Current Denture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxillary</td>
</tr>
<tr>
<td>Mandibular</td>
</tr>
</tbody>
</table>

A crossover design was used in this investigation; each subject received all 3 attachment systems over the course of the trial. Specifically, a 4-period (12 month duration/period), a 6-sequence (A-B-C-C; A-C-B-B; B-A-C-C; B-C-A-A; C-A-B-B; C-B-A-A), and a 3-treatment crossover experimental design was used. Each of the subjects was randomly assigned to 1 of 6 treatment sequence groups according to a randomization schedule generated by the biostatistician investigator. The 3 implant overdenture treatments consisted of (2I), an independent O-ring attachment using 2 implants, (2B), a bar attachment using 2 implants, or (4B), a bar attachment using 4 implants. The purpose of the fourth period was to allow for testing of an equal carryover effect on the crossover design by repeating the third period data collection for an additional 12 months. During this fourth period, the direct effects of the treatments were estimated more efficiently because they were not confounded with carryover influence.

The respective denture bases were fitted and adjusted to the alveolar tissues. Space previously created in the tissue surface of the mandibular denture to correspond with the 4B attachment permitted easy access and orientation for placement of all bar clips or O-ring housings within the denture base, regardless of the treatment type being used. These retentive elements were positioned on their corresponding implant components and secured within the denture base using autopolymerizing acrylic resin (Perm Reline and Repair Resin; The Hygienic Corp, Akron, Ohio), while the prosthesis was accurately and simultaneously positioned on the supporting alveolar tissues (Fig. 1). Resilient lining material (TruSoft; HJ Bosworth, Skokie, IL) was used to provisionally fill the open denture base space not being used when the 4B treatment was not being tested (Fig. 2). Final prosthesis occlusal adjustment was completed after the addition of the attachment mechanism.

For standardization, the clips used with all bar attachments were arbitrarily adjusted before installation to 10±0.1 N of retentive quality. This was done by placing each clip on a section of the gold bar material used in this investigation and removing it using a push/pull force gauge (Chatillon 5 kg push/pull force measurement gauge; Hunter Products, Bridgewater, NJ). Crimping adjustments to each clip were accomplished as necessary until the proper retentive force measurement was achieved.

In addition to screening demographic and implant integration information, the clinical conditions associated with each subject’s preexisting dentures were evaluated and recorded after both preimplant and postimplant placement surgery using each investigative parameter. Thereafter, subjects received the appropriate treatment at approximately 12-month intervals in response to their specific randomized treatment sequence schedule. During this time, denture adjustments were accom-
ized procedures were uniformly fol-

tation principle. All post-implant data

was sustained for an identical fourth

monitoring and data collection proto-

subject’s randomized treatment

Group. After monitoring and data collection for another 12
months, the third and final attach-

collection protocol was followed. This final treatment

was sustained for an identical fourth

12-month period of data collection.

Subjects were included in the data

analysis regardless of outcome during

the clinical trial, following the intent to
treat principle. All post-implant data

were included in the data analysis.

Throughout the investigation, the

following data collection standard-

ized procedures were uniformly fol-

lowed: The push/pull force gauge

(Chatillon 5 kg) was used to quantita-

tively measure denture retention and

stability. With prostheses in place,

subjects sat upright in a dental chair.

To measure retention, the “pull” end

of the force gauge was connected to

a 15-cm long, 18 gauge orthodon-
tic wire (Great Lakes Orthodontics,

Tonawanda, NY) with the ends of the

wire bent into a hook. The hook was

positioned under the mid-labial flange

of the IOD, and the force gauge was

pulled vertically upward until denture

retention was lost and the prosthesis

moved vertically. This force was mea-

sured in newtons (N) and recorded.

For stability, the “push” end of the
gauge was positioned in the ginv
gal embrasure area of the canine denture

tooth on the right side of the prosthe-
sis. The gauge was pushed horizon-
tally against the denture. The force

(up to a maximum of 20 N) necessary
to destabilize and dislodge a denture

was measured and recorded. In addi-
tion to this objective analysis, each

subject’s mandibular denture was

evaluated for denture retention and

stability with the criteria scoring sys-
tem previously reported.1 Examiners

independently observed a subject’s

IOD and recorded the numbered cri-
teria that best described the denture

retention and stability. The reten-
tion criterion was defined as a score

from 0 to 3 with 0 = no retention, 1

= minimal retention, 2 = moderate

retention, and 3 = good retention.

Similarly, the stability criterion was

defined as a score from 0 to 2 with 0

= no stability, 1 = some stability, and

2 = sufficient stability.

The condition of the prosthesis-
supporting oral mucosa and peri-

implant health were assessed using

multiple criterion-based scoring

systems. Where multiple readings

were required around individual and

multiple implants, a mean score was
calculated and recorded. Prosthe-
sis supporting tissues for each arch

were evaluated with a scoring system

previously reported by Burns et al.1

Perimplant parameters were evalu-

ated in the following locations: the

Gingival Index as adapted from Lo
e and Silness32 and the Plaque Index,
as adapted from Silness and Loé,33

were measured in 4 locations around
each implant; measurements of the

amount of keratinized mucosa were

measured according to Apse et al34 in

2 locations around each implant; the

attachment level was measured in mil-

limeters from the top of the implant
to the level of implant-tissue attach-

ment in 4 locations for each implant.

The probing depth as adapted from

Geertman et al35 was measured in 4

locations in millimeters around each

implant, and radiographic evaluation
of each implant, as adapted from Geertman et al.13 was recorded from a panoramic radiograph made for each treatment at the 12-month data collection appointment. Additionally, the radiographic bone-crest to inferior border-of-mandible measurement in millimeters was recorded for each implant, and the radiographic mandibular symphysis bone height was recorded. Implant mobility was assessed by tapping the abutments alternatively back and forth with 2 instrument handles. Observable movement was identified as evidence of individual implant mobility using the criteria suggested by Smith and Zarb.16

At each data collection appointment, subjects were asked to complete a 40-item denture complaint questionnaire.37 Each item was rated on a 4-point scale: 0 = not at all; 1 = a little; 2 = quite a lot; 3 = extremely. The maximum score was 120 and the minimum score was 0, where lower scores corresponded to greater denture satisfaction.

Additionally, an 8-item masticatory ability questionnaire was used that asked how well 8 different foods could be masticated.38,39 The 8 items were answered according to a 3-point scale: 0 = good; 1 = moderate; 2 = bad. The maximum score was 16 and the minimum score 0, where lower scores corresponded to better masticatory ability. The score from each questionnaire and for each subject was determined and recorded.

The clinical implant performance scale (CIP scale) as adapted from Geertman et al13 was used to assess complications and failures. The CIP scale documents complications and categorizes them according to severity. Itemized complications were documented for each subject relative to type, date, and the treatment conditions in use at the time of the complicating outcome. Specific attention was given to ongoing changes in physical or mental health that could influence complications, failures, and adverse events.

At the completion of all data collection, when subjects had experienced all IOD attachment systems, they were given an IOD treatment preference questionnaire, modified from Burns et al. It consisted of questions designed to determine subject preference among the 3 implant overdenture treatment modalities tested. Additional assessment of subject preference relative to treatment was established by allowing subjects to choose and receive their “favorite” treatment type at the end of the data gathering period.

To minimize carryover influence, at the completion of a 12-month data collection period for each treatment type, selected tissue criteria scores were required to ensure standardized optimal healthy conditions before the next 12-month time period could begin. This provided an adequate amount of time to washout the effect of previous treatment influence before data collection for the next treatment in the sequence. As a result, it was necessary that the alveolar mucosa tissues were free of pathology with a maxillary and mandibular supporting tissue score of no less than 3, a Gingival Index score of 1 or 2, and no mobility around any independent, unattached implant. Any mobility excluded a subject from further study participation. If minimum scores were not met, at the discretion of the investigators, subjects could be temporarily returned to conventional denture treatment by replacing implant healing abutments and temporarily relining the mandibular denture base with resilient denture base lining material. The next 12-month investigative sequence was only initiated upon successful completion of this interim treatment period.

This study used multiple variables as endpoint measurements. Because variation of endpoint outcomes could result in conflicting conclusions, equivalence in this investigation was defined as using prosthesis retention and stability (force gauge and criterion-based measurements) as primary indicators of equivalence. Also, to establish equivalence among treatment modalities, similar results from retention and stability measurements were required, with the largest difference being no greater than 20% as documented in Imrey et al.10 As a result, an adjustment for multiplicity was not required, and an alpha of .05 was used for all comparisons, except for an alpha of .1 for tests of carryover effect. Secondary measures were prosthesis supporting and perimplant tissue response, subject satisfaction and preference, and complications.

All endpoints except for the criterion-based retention and stability scores and the IOD treatment preference questionnaire were analyzed to determine statistical equivalence using the Schuirmann’s two one-sided tests (TOST) procedure41-43 from the 3-treatment, 6-sequence, 4-period, crossover model. The least square means presented in the figures and tables arose from a mixed effects model that included fixed effects for treatment types, sequence, period and carryover, and a random effect for subject. The Schuirmann’s TOST was operationalized by calculating the 90% confidence interval about the paired difference between the least square means, and then if this 90% confidence interval fell within the interval ± 20% of the reference mean (for the 4B group), the treatments were declared equivalent. Criterion-based retention and stability were tested for equivalence using the Wilcoxon rank sum TOST procedure.43 Similar to the Schuirmann’s TOST, the non-parametric Wilcoxon tested the equivalence of the medians by first calculating a 90% confidence interval about the median of the Walsh average difference, and then if this 90% confidence interval fell within the interval ± 20% of the reference median (for the 4B group), the treatments were declared equivalent. For the Wilcoxon test, it was not possible to use the fourth period data, thus the testing used the 3-treatment, 6-sequence, 3-period, crossover model. Finally, the IOD treatment preference questionnaire responses were compared
RESULTS

The potential influence of any carryover effect was monitored throughout the investigation using the clinical evaluation process previously described. No subjects were delayed from progressing to the next study period due to the influence of previous treatment on the health of the tissues or implants. No independent implant mobility was found for any implant during the investigative phase. Additionally, at the end of the investigation, potential carryover influence was tested for each study variable and no statistically significant carryover effect was found.

Figures 3 and 4 demonstrate the least mean square force gauge retention and stability values and standard errors. The force gauge retention was not equivalent for any of the 3 treatment types; however, the force gauge stability was equivalent across all 3 treatments. Figures 5 and 6 show the retention and stability criterion-based medians and interquartile range. Both the retention and stability criterion-based medians demonstrated equivalence among the 3 treatments.

Table II shows the multiple criterion-based scoring systems used to assess the prosthesis-supporting oral mucosa and periimplant health. Maxillary and mandibular supporting tissue health was found to be equivalent among all treatment groups. Gingival and Plaque Index scores were not equivalent and showed more favorable tissue responses and less plaque associated with the 2I attachment. The 4B had the highest plaque scores and the least desirable Gingival Index scores of the 3 treatments. Other parameters were equivalent for all treatments. Masticatory ability and denture complaint data from subject questionnaires are shown in Figures 7 and 8, respectively. Even though there was no demonstration of equivalence in either questionnaire, the 2I and 4B treatments provided the most favorable, and the 2B treatment, the least
Table II. Mean values (standard errors) from crossover analysis with results of equivalence testing

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment *</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4B</td>
<td>2I</td>
<td>2B</td>
<td></td>
</tr>
<tr>
<td>Maxillary supporting tissue score</td>
<td>3.73 (0.08)</td>
<td>3.80 (0.09)</td>
<td>3.78 (0.09)</td>
<td>yes</td>
</tr>
<tr>
<td>Mandible supporting tissue score</td>
<td>3.73 (0.06)</td>
<td>3.73 (0.06)</td>
<td>3.71 (0.06)</td>
<td>yes</td>
</tr>
<tr>
<td>Gingival Index score</td>
<td>0.455 (0.048)</td>
<td>0.417 (0.048)</td>
<td>0.424 (0.050)</td>
<td>no</td>
</tr>
<tr>
<td>Plaque Index score</td>
<td>1.228 (0.134)</td>
<td>0.848 (0.136)</td>
<td>0.923 (0.146)</td>
<td>no</td>
</tr>
<tr>
<td>Probing depth (mm)</td>
<td>0.285 (0.041)</td>
<td>0.142 (0.041)</td>
<td>0.141 (0.041)</td>
<td>no</td>
</tr>
<tr>
<td>Keratinized tissue score</td>
<td>1.801 (0.102)</td>
<td>1.767 (0.103)</td>
<td>1.786 (0.104)</td>
<td>yes</td>
</tr>
<tr>
<td>Attachment level (mm)</td>
<td>0.786 (0.059)</td>
<td>0.795 (0.059)</td>
<td>0.787 (0.059)</td>
<td>yes</td>
</tr>
<tr>
<td>Radiographic implant bone height (mm)</td>
<td>29.56 (1.18)</td>
<td>29.07 (1.18)</td>
<td>29.36 (1.18)</td>
<td>yes</td>
</tr>
<tr>
<td>Radiographic mid-symphyseal bone height (mm)</td>
<td>29.85 (1.16)</td>
<td>29.23 (1.16)</td>
<td>29.85 (1.16)</td>
<td>yes</td>
</tr>
</tbody>
</table>

* Least square means (± standard errors) from crossover mixed effects model are presented except where noted otherwise.
† Equivalence assessed by Shurman’s TOST procedure using 3-treatment, 6-sequence, 4-period, crossover model except where noted.
** Medians and interquartile range
‡ Equivalence assessed by non-parametric Wilcoxon-Mann-Whitney TOST procedure from 3-treatment, 6-sequence, 3-period, crossover model.

7 Denture complaint questionnaire. Presented as least square means (± standard errors).
8 Masticatory ability questionnaire. Presented as least square means (± standard errors).
favorable results.

For the CIP data, there were no complications noted for the vast majority of treatment visits across all 3 treatments. Of the 212 recorded subject visits, in which a subject received CIP ratings from 3 investigators, 93% (n=197) of the subject visits had all 3 ratings scored at 0 (success with no complications) and were trouble free. Only 7% (n=15) of the visits included 1 or more of the ratings with a score of 1 (minor complications). None of the subject visits received CIP scores of 2, 3, or 4. The 12-month CIP mean (SD) scores for the 3 treatment groups were 0.07 (0.28) for the 4B, 0.09 (0.27) for the 2I, and 0.10 (0.27) for the 2B. From the small percentage of treatment visits that demonstrated minor complications, no single treatment presented with greater complications. Radiographic bone height levels remained stable over time and equivalent among treatments.

Subject treatment preference data are presented in Table III. Most often, subjects preferred 2I treatment as the one to keep after experiencing all treatment options. Overall, subjects were best satisfied with the 2I treatment, which had the highest frequency for all questions except for “greatest movement.” The 4B showed the most favorable results, with the least favorable results found with the 2B treatment; this was with the exception of the “Easiest to keep clean” question, where the 4B treatment demonstrated the lowest frequency.

DISCUSSION

The standardization of methods was an important aspect of this investigation; therefore, all clips used for the bar-clip attachments were standardized to an arbitrary 10 N of retentive quality prior to use. This value was selected because it represented an appropriate retentive quality that subjects had preferred in a previous investigation.1 The standardization assisted with comparisons among bar-clip attachments, but the 10 N provided an arbitrary retentive quality for the 4B IOD that exceeded that of both the 2B and 2I IOD. This resulted in a greater retentive mean value for the 4B IOD that was not equivalent to that of either the 2I or 2B IOD. Consequently, the study hypothesis was not supported, and the greater retentive mean could be considered an indicator of more favorable treatment. After completion of the study, however, the authors believe that this is directly associated with the arbitrary standardization of the bar clip retentive value and is not a valid conclusion. This is a significant limitation of the study. Currently, many IOD attachment systems allow for the adjustment of retentive quality. Patients may prefer a higher retentive quality, but because retention can be commonly adjusted within a range, the measured retentive quality at any given time may not provide an appropriate measure of treatment outcome.

What is interesting about this study result is, that if indeed greater retention were a valid indicator of better treatment outcome, it would be expected that other data from the study would corroborate this finding. Instead, the 2I IOD, with less retention than the 4B IOD, showed equivalent or more favorable results according to other data collected in this study. These other combined data presented a clearer understanding of treatment outcome and provided compelling evidence that the 2I treatment was a more favorable choice than the other treatment types. For instance, with both the masticatory ability and denture complaint questionnaires, the 2I treatment showed more favorable

Table III. Frequency (%) of implant overdenture treatment preference (n=25)

<table>
<thead>
<tr>
<th>Question</th>
<th>2I</th>
<th>4B</th>
<th>2B</th>
<th>All Same</th>
<th>No Opinion</th>
<th>p‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall best satisfied</td>
<td>12 (48%)</td>
<td>8 (32%)</td>
<td>4 (16%)</td>
<td>1 (4%)</td>
<td>0 (0%)</td>
<td>0.15</td>
</tr>
<tr>
<td>Selected treatment</td>
<td>13 (52%)</td>
<td>8 (32%)</td>
<td>4 (16%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0.09</td>
</tr>
<tr>
<td>Easiest to get used to</td>
<td>11 (44%)</td>
<td>5 (20%)</td>
<td>3 (12%)</td>
<td>6 (24%)</td>
<td>0 (0%)</td>
<td>0.12</td>
</tr>
<tr>
<td>Best denture retention</td>
<td>9 (36%)</td>
<td>8 (32%)</td>
<td>4 (16%)</td>
<td>4 (16%)</td>
<td>0 (0%)</td>
<td>0.43</td>
</tr>
<tr>
<td>Best able to chew</td>
<td>11 (44%)</td>
<td>6 (24%)</td>
<td>3 (12%)</td>
<td>5 (20%)</td>
<td>0 (0%)</td>
<td>0.14</td>
</tr>
<tr>
<td>Best able to speak</td>
<td>7 (28%)</td>
<td>5 (20%)</td>
<td>3 (12%)</td>
<td>10 (40%)</td>
<td>0 (0%)</td>
<td>0.62</td>
</tr>
<tr>
<td>Greatest movement</td>
<td>4 (16%)</td>
<td>2 (8%)</td>
<td>12 (48%)</td>
<td>5 (20%)</td>
<td>2 (8%)</td>
<td>0.026*</td>
</tr>
<tr>
<td>Easiest to keep clean</td>
<td>12 (48%)</td>
<td>1 (4%)</td>
<td>2 (8%)</td>
<td>8 (32%)</td>
<td>2 (8%)</td>
<td>0.01**</td>
</tr>
</tbody>
</table>

‡ Chi-square test of “no preference” or “equal preference”
* 2B provides statistically significantly greater movement
** 2I statistically significantly easier to keep clean
responses than the 4B treatment. According to the preference data, nearly half of all subjects were most satisfied with the 2I IOD and more than half preferred and selected the 2I as the treatment they kept after completion of the investigation. In fact, for the preference questionnaire that was completed after subjects experienced all treatments and could make valid judgments, the 2I IOD demonstrated the most favorable responses for most questions. Other factors such as subject treatment preference and satisfaction with prosthetic functional aspects, ease of subject accommodation to a treatment type, tissue health, hygiene and maintenance issues, and complications outweighed the superior retentive features of the 4-implant bar. When these factors were weighed together, prosthesis retention was only one aspect of the entire process.

It is not surprising that subjects responded most favorably to the 2 independent-implant treatment, since it provides a satisfactory treatment outcome without the added treatment of 2 additional implants and interconnecting bar attachments. The 2 independent abutments require less space in the denture base, and data from this study demonstrate that they are easier to clean than those with a bar. Since the weak link in conventional mandibular denture treatment is inadequate prosthesis retention and stability, subjects appear to prefer the ability to overcome these issues with only 2 implants that provide a near equivalent outcome to more costly and complex treatments using more implants or bar interconnection between implants. This finding is in agreement with the Feine et al11 and Thomason et al12 consensus reports that indicate that for the edentulous mandible, a 2-implant overdenture is the treatment of choice.

There were few complications due to attachment-related or other problems. From the complications encountered, no single treatment stood out as having more complications than any other. Other studies have found that attachment mechanism complications can be problematic, but there is no clear evidence that one treatment is more problematic than another.20-22 Of course the nature of this study involved frequent recall with new treatment on a yearly basis, and therefore, many complications were avoided.

The benefits of the crossover design for this implant-related investigation were numerous.28 The ability to accommodate a variety of treatment types by switching back and forth among implants and abutments worked well. Additionally, because all subjects were able to experience all treatments, fewer subjects required statistical testing, and the completed subject preference information gathered after the routine data collection provided a strong indicator of treatment outcome. Equivalence testing is new to dental research. In essence, if this investigation could prove equivalence among the treatment types, then the less expensive, simpler treatment would be the treatment of choice and the hypothesis would be proven.

In a broader sense, results from this study for the 2I IOD can probably be generalized to represent other similar 2-independent-implant treatment types, and this study might provide a greater understanding of the treatment outcomes for more contemporary 2-independent-implant attachment systems. Nonetheless, the O-ring attachment that was used is no longer commercially available, a limitation of the study. In this regard, the findings from this study are in agreement with 2 consensus conferences11,12 that both concluded that the 2-implant, independent IOD treatment was the best choice.

CONCLUSIONS

The results of this investigation showed that IOD retentive quality was less important than other clinical parameters in determining treatment outcome. Even though prosthesis retention for the 2I IOD was less than the 4B attachment, most other measured parameters showed equivalent or more favorable results for the 2I system when compared with the 2B or 4B attachments. Subjects preferred the 2I attachment to the other choices, and more than half the subjects selected the 2I IOD as their prosthesis after the conclusion of the investigation.

REFERENCES

