Biostatistics and Research Design in Dentistry

Table 2-1 shows a good classification of the types of study designs. Also see Figure 2-5 to get clear on time and its relationship to the direction of inquiry.

The difference between an observational study and an experiment: a planned intervention.

Observational studies

What are the characteristics of each kind of study? What are the advantages?

Disadvantages? What are the main forms of bias inherent in this design?

Comparison of Study Designs

<table>
<thead>
<tr>
<th>Study Design</th>
<th>Past</th>
<th>Present</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case-series</td>
<td></td>
<td>Exposure</td>
<td>Outcome</td>
</tr>
<tr>
<td>Prospective cohort</td>
<td>Exposure</td>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>Retrospective cohort</td>
<td>Exposure</td>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>Case-control</td>
<td>Exposure</td>
<td>Outcome</td>
<td></td>
</tr>
</tbody>
</table>

Case-series

Characteristics: The description of interesting observations. No controls.

Purpose: to describe.

Advantages: Simple; easy. Generates testable hypotheses.

Disadvantages: Not conclusive.

Bias: Findings due to chance?

Cross-Sectional (surveys and polls)

- Defined population
- Gather data on exposure and disease
- Exposed; have disease
- Exposed; do not have disease
- Not exposed; have disease
- Not exposed; do not have disease

Characteristics: data collected on subjects at one point in time. Often looks at prevalence. See Figure 2–2.

Purpose: What is happening right now?

Advantages: Short duration.

Disadvantages: Short duration. Only looks at “now,” not across time.

Bias: The inclusion/exclusion of subjects is critical. Representativeness: The sample is representative of what?

Longitudinal studies: Case-Control and Cohort studies.

- Begin at a point in time; a process occurs and then time passes; end-of-study assessment
- Cohort studies look forward (prospective) from a risk factor to an outcome
- Case-control studies look backward (retrospective) from an outcome to risk factors

Case-Control

- Exposed
- Unexposed

Cases

- Exposed
- Unexposed

Controls

Past → Present
Characteristics: Begins with an outcome of interest, then look back to detect risk factors. See Figure 2–1.

Purpose: to explain outcomes by evaluating previous events. What happened?

Advantage: Good for rare diseases or for those that develop over a long time period. Quick and easy.

Disadvantage: The largest number of possible biases and errors, and they depend on high-quality historical records.

Bias: The major problem is the selection of the control group; It is never true that—except for the risk factor—the controls are identical to the cases.

Experimental studies

Clinical trials involve humans

Characteristics: A controlled study has a control condition.

Purpose: All other things being equal, let’s control the exposure of risk factors and see what the differences in outcomes are.

Types of controls

- Independent, concurrent controls
- Self-controls, such as cross-over studies. See Figure 2–7
- External controls, *historical controls* are outside of the control of this study. Historical controls are almost always worse off than a concurrent-control group. See Figure 2–8
- Uncontrolled studies are not clinical trials

Advantage: A randomized, double-blind, control study is the gold standard; results
are the strongest evidence for causation. The only way to establish *efficacy*.

Disadvantage: Difficult; expensive; time consuming. A nonrandomized or nonblinded study is subject to most of the biases of the cohort study.

Bias: When using a subject as his/her own control, the Hawthorne effect will be evident. (Subjects improve simply by being in a study.)
Cross-sectional versus Cohort

Vertical axis: % Edentulous