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Abstract—At this time, many industrial and science prob-
lems deal with a large number of decision variables. Classic
metaheuristics have shown excellent search abilities on bounded
problems, but they often lose their efficacy when applied to large
ones. This is known as the curse of dimensionality. To this issue,
we have to add the simple fact that the solution evaluation
becomes excessively demanding in time. To push the research
state forward on this type of problems, the IEEE Congress on
Evolutionary Computation regularly organises a competition on
large-scale global optimization since 2008. On the other hand,
general purpose computing with graphics processing units has
become very attractive in the last years, because they may attain
very high speed-up ratios on problems with high data parallelism
levels. In this work, we study the benefits of exploiting a scalable
and distributed computational architecture with multiple GPUs
for large scale function optimisation. The study is carried out in
terms of 1) evaluation speed-up, 2) quality of the results, and 3)
extremely large scale optimisation with real-parameter functions
with up to 10° variables.

I. INTRODUCTION

Nowadays, it is common to face real-world problems which
require optimizing millions of variables [1]. The surge of big
data and high-dimensional problems demands algorithms to
tackle the optimization of a very high number of dimensions,
such as in data mining, DNA and molecular simulation, fore-
casting, drug discovery, genomic studies, swarm intelligence,
etc. Metaheuristics have been successfully applied to many
large-scale global optimization problems [2], [3]. However,
their performance deteriorates rapidly as the dimensionality
of the problem increases, both in terms of the quality of the
results and run time [4].

The IEEE Congress on Evolutionary Computation (CEC)
has been regularly organising a competition on large-scale
global optimization algorithms since 2008 [5], [6]. The last
competition benchmark comprises 15 functions with a di-
mensionality of 1,000 variables. On most functions, vari-
ables cannot be optimised independently to find the global
optimum. This interaction is referred to as non-separability.
The benchmark functions feature non-uniform subcompo-
nents, imbalance contribution, overlapping subcomponents, ill-
conditioning, irregularities, and symmetry breaking, which
increase the difficulty of finding the optimum.

The great computing capabilities of modern Graphic Pro-
cessing Units (GPUs), and the apparition of massively parallel
computing frameworks such as CUDA [7], has attracted the
research community and promoted the addressing of increas-
ingly larger problems [8], [9], [10], [11], [12]. GPU cards
offer programmers a set of multiprocessors with many cores
each and a large global memory. These cores can execute in
parallel thousands of threads on different sets of data. This
type of architecture is especially interesting for problems with
high levels of data parallelism.

Recently, Lastra et al. [13] have extended the dimensionality
of some functions to high-dimensional problems with 3 million
variables, which represents an increase of three orders of
magnitude. They employed a single GPU to perform the
parallel computation of the functions, thanks to their addi-
tively decomposable characteristic, i.e., they can be expressed
as the sum of other functions. Nevertheless, increasing the
dimensionality causes three major problems. First, the run time
required to evaluate the high-dimensional functions becomes
unmanageable, especially considering that the benchmark is
run for 3 million evaluations. Second, the memory available
in a single GPU is relatively small, and therefore it limits the
dimensionality to a few million variables. Third, the heuristics
for high-dimensional problems should be redefined as they do
not converge to the optimum as fast as in low dimensional
problems.

The objective of this research is to explore the usage of more
than one GPU for the task of large-scale function optimisation.
For this goal, we first present a several-GPUs-based escalation
model of additively decomposable functions, particularly in-
stantiated with the CEC 2013 benchmark functions. We also
provide an extension of a memetic algorithm for exploiting
the available GPUs when addressing previous functions. Then,
we analyse the gained benefits: 1) the speed-up obtained when
evaluating a candidate solution; 2) the quality of the generated
results with regards to models that do not exploit the existence
of GPUs; and 3) the possibility of addressing extremely large-
scale problems with up to 108 variables, which is a leap of
two orders of magnitude as compared with, to our knowledge,
the maximum addressed in the literature [13].



This work is structured in the following Sections. First, we
describe the approach for several-GPUs-based escalation of
additively decomposable functions in Section II. A memetic
algorithm taking advantages from the computational power
of several GPUs is presented in Section IIl. The empirical
analysis is carried out in Section I'V. Finally, Section V depicts
the conclusions of the work.

II. TASKS DISTRIBUTION AND ESCALATION OF
ADDITIVELY DECOMPOSABLE FUNCTIONS ON
MuULTIPLE GPUS

A function is said to be additively decomposable if it
can be defined as a sum of component functions, each of
which depends on a subset of the input variables [14]. It
turns out that several problems appearing in the literature are
additively decomposable, such as NK-landscapes [15], some
instances of the quadratic assignment problem [16], or CEC
2013 benchmark functions for the large scale competition [6].
In this Section, we present a task distribution model, of the
solution representation and evaluation of additively decompos-
able functions, for exploiting the presence of multiple GPUs.
We firstly describe how we exploit the computational power
of a single GPU to carry out the evaluation of P solutions in
Section II-A. We comment in Section II-B, how the availability
of several GPU cards can be used, the possibilities and draw-
backs. Finally, in Section II-C, we propose a escalation model
for CEC 2013 functions taking advantages of a distributed
architecture with multiple GPUs, and describe a particular
example. We shall mention that we similarly exploited the
additively decomposable property of these functions to present
an extension for the MapReduce paradigm in [17].

A. One GPU Task Distribution

A solution is represented using an array of size D variables.
The population of P solutions is represented as an structure
of arrays (SoA) to optimize the performance and the access
pattern to variables. Indexing of the j-th variable of the i-th
solution is computed as ¢- D + j. This access pattern allows to
fully coalesce memory accesses and maximizes the memory
bandwidth. The main problem is that representing P solutions
of size D using double precision variables requires P - D - 4
bytes. Consequently, the dimensionality of the functions is
limited to a few million variables using a single GPU’s
memory. Moreover, additional information that the function
subcomponents require, such as rotation matrices, are also
allocated in the GPU memory.

The processes of initialization and genetic operators are
favoured by two levels of parallelism: population parallel and
data parallel. The population parallel run concurrent tasks for
every solution in P. Data parallel run concurrent tasks for
every variable in D. This approach benefits from both levels of
parallelism simultaneously. Therefore, initialization, crossover,
and mutation run as many threads as P-D to operate in parallel
on the j-th variable of the i-th solution.

On the other hand, the evaluation of the solutions demand
the majority of the runtime, especially when the dimensionality

increases. The evaluation of P solutions with D variables
each, according to an additively decomposable function with
NComp subcomponents, involves the following stages:

1) Decompose the function evaluation into N Comp paral-
lel tasks. Each task may run a unique code for each
given subcomponent. If the function does not have
subcomponents, there is a single task that involves all
the variables from 1 to D.

2) Decompose the subcomponent evaluation into multiple
threads. Each task runs a function’s code in a subset
of variables D, from y to z according to the function’s
formula. Multiple threads comprised in thread blocks are
scheduled to collaboratively compute the function within
their respective range of variables. In turn, each thread
eventually computes a fraction of variables D./TB
according to the threads block size T'B and outputs a
value that is temporally stored in shared memory. The
tasks for each subcomponent are run in parallel using
streams, which allows for concurrent data transfer and
computing, then maximizing the GPU’s occupancy and
performance.

3) Reduce the results from the subcomponent decomposi-
tion to compute the output for each subcomponent. The
partial results allocated in shared memory are reduced
(aggregated) to calculate the subcomponent’s output
(additively decomposable), and they are stored in global
memory.

4) Reduce the results from the subcomponent’s outputs to
compute the final fitness value. After the results for each
subcomponent are computed, they are again reduced to
calculate the final value as the fitness of the solution. All
these stages are all run in parallel for every solution.

An interesting fact is that some variables will need to be

read more than once, given that CEC 2013 functions present
overlapping components. But nevertheless, this can occur in
parallel without any overhead, because the GPU’s global
memory can be accessed by all its processors and cores.

B. Escalation on Multiple GPUs

The availability of multiple GPUs might enhance previous

scheme in two different ways:

e Time: If NComp is large enough, the workloads could
be reduced by distributing the function subcomponents
among the processors of different GPUs. In this case, the
presence of overlapping subcomponents would require
to duplicate some variables along the memories of the
different GPUs, and thus, communication overheads.

e Dimensionality: The combined memory of the GPUs can
be used to manage a larger number of decision variables.
Here it is important to evaluate the time and memory
complexity of the function, because the number of cores
and available memory are increased just proportionally
with the number of GPUs. As an example, functions
with D x D rotation matrices have a quadratic memory
complexity, but CEC 2013 functions consider at most
100 x 100 rotation ones.



In this study, we have opted for scaling up the dimensional-
ity of the functions, by applying the idea introduced by Lastra
et al. [13] and Cano et al. [17], which is to replicate the
function as a 1,000D black box as many times as required.
Each replication will be referred to a 1,000D bbox. The
advantages of this methodology are that it avoids communi-
cation between GPUs, because the computations in different
GPUs are independent, and that memory requirements grow
proportionally to the number of replications. On the opposite,
it incorporates the disadvantage that function non-separability
is restricted to each 1,000D group of variables.

In a multi GPU environment with NGPU s, there are two
main ways to distribute a population of P solutions with a
very large dimensionality of D variables. The former is to
distribute a subset of the population into each GPU device,
then a GPU allocates P/NGPU's solutions with D variables.
The former splits the population of P solutions into NG PU's.
This way, each GPU stores and processes the information of
P/NGPU s solutions and all D variables for a given solution
are physically stored in a single GPU memory. The latter
splits the D variables into NGPU's in a way that each GPU
stores and processes the information of D/NGPU s variables,
then each GPU allocates a chunck of every individual. The
main problem with the solutions distribution approach is
that it requires a large number of communication between
GPUs to perform the genetic operations. Therefore, a large
number of memory transfers of size D through the PCI-E
bus would significantly impact the performance negatively. On
the other hand, the variables distribution approach provides an
efficient mapping of the variables and it effectively scales to
a very large number of dimensions by simply adding more
devices. Genetic operators are not affected since all operations
are performed locally, avoiding memory transactions between
GPUs. However, when evaluating the quality of the individuals
(the fitness function) it is necessary to evaluate each subset of
dimensions for each device in parallel, and then synchronize
and combine the partial fitness values to compute the final
fitness value for the individual, that is communicated to all the
devices. Fortunately this memory transaction to the multiple
devices is very small, only P float values and therefore its
performance impact can be disregarded. The operation of
gathering the partial fitness, computing the value and copying
back the final fitness is controlled by the main host process.

C. A 108 Escalation Example

Consider the evaluation of P 10%-length solutions on the
CEC 2013 f4(&) function on 8 GPUs:

IS|—1
f4(f) = Z wifelliptic(z_;) + felliptic(aS\) (])

i=1
where S = {50, 25,25, 100, 50, 25,25,700}, feiptic(-) is a
base function, w; is a weight, and Z; is a set of variables
obtained from Z, by selecting a subset of size .S; and applying
a rotation and a local irregularities introduction transformation.
The rotation is not applied for the last set (with .S; = 700).

Notice that S indicates the subcomponents the function can
be additively decomposed into, so the function has exactly |S]
subcomponents.

To scale this function up to 108 dimensions, we replicate its
definition 10° times and each GPU is in charge of computing
the result of 10°/8 = 12,500 bboxes per solution. The data
associated with the function is loaded into the GPU, which
comprises the weights w;, the feyiptic definition, the rotation
matrices (notice that the largest one is just 100 x 100), and the
information associated with the transformation for introducing
local irregularities. Notice as well that this information is
loaded just once in the GPUs, and that it is read for each
10°/8 bbox processing. We also load the corresponding set
of variables of the P 103-length solutions into each GPU.
This amounts to P x 108 /8 variables, which requires 2384
MB (single precision) or 4768 MB (double precision) in each
GPU if P is set to 100 solutions.

Then, tasks are created for the parallel evaluation of the
function. Particularly, each GPU computes |S|x P x 105 /8 re-
sults, one per function subcomponent, solutions, and function
replication. Given that the code associated to each subcompo-
nent is the same, up to P x 10°/8 tasks could be processed
in parallel by threads in the same GPU, so tasks associated
to different function subcomponents should be distributed into
different processors of the GPU.

The results of the tasks are aggregated at two levels, function
subcomponents and function replications, producing P partial
values in each GPU. Finally, the real fitness value of each P
solution is computed in the host master at the CPU (central
processing unit) by aggregating their corresponding 8 partial
values.

The advantage of this distribution is that it does not require
transferring any significant amount of data between GPUs
nor to the CPU, then focuses on computationally intensive
workload. Moreover, it is highly scalable and allows to address
even larger dimensionalities easily by simply adding more
GPUs.

III. NGPUS-MA-SW-CHAINS

NGPUs-MA-SW-Chains is a multiple-GPUs-based exten-
sion of the original MA-SW-Chains method [18], which is
a steady-state memetic algorithm where only one offspring is
produced, and only one solution is optimised, per generation.
However, in order to take the most from the computation
power of the GPUs, several adaptations have been introduced.
Particularly, our model produces in parallel one new offspring
per member of the population at the evolution stage, and every
member of the population is refined at the optimisation one.
We shall mention that, though Lastra et al. already published
a single-GPU-based extension of this memetic algorithm [13],
ours is better conceived from the original MA-SW-Chains
model, and not from this single-GPU one.

Figure 1 presents the global schema of NGPUs-MA-SW-
Chains. The key idea is to divide the genotype of the individ-
uals in the population vertically, so each GPU card receives
the same portion of all the solutions in the population and
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Fig. 1. Global schema of NGPUs-MA-SW-Chains

Input:

D: Dimensions of the problem
P: Population size

Nit: Evol. and opt. iterations
NGPUs: Number of GPU cards
Output:

S: Best solution found

//Initialisation
1 foreach i € {1,...,NGPU} do //in parallel
Generate i-th portion of every j-th
solution in P in the i-th GPU;
3 fié—Evaluate i-th portion of every
j—th solution in the i-th GPU;
4 end

wm

<Fitness aggregation block; Figure 3>

//Main loop
repeat
<Pop. evolution block; Figure 4>;
<Pop. optimisation block; Figure 5>;
until Stop-condition is met;

D= R B Y

10 return Best-generated-solution();

Fig. 2. Pseudocode of NGPUs-MA-SW-Chains

//Evaluation (aggregation part)
1 foreach j € {1,...,NP} do
2 F) « Aggregate fJ, i€ {1,...,NGPU}, partial
values;
3 end
4 Broadcast FI, j€{1,...,NP}, fitness values
to all GPU;

Fig. 3. Additively aggregation of partial function values

applies the evolutionary operations on them. Figures 2 to 5
show the pseudocode of the model. Its operations are:

1) Population Generation: each GPU generates randomly a
portion of the genotype of the P individuals, according
to the box constraints of their respective decision vari-
ables (line 2, Figure 2). Concretely, each GPU produces
the initial values for those variables involved in its
associated 1,000D bboxes.

1 for Ni; iterations do
foreach i € {1,...,NGPU} do //in parallel

3 Apply crossover on the i-th portion of
every j-th solution in i-th GPU;

4 Apply mutation on the i-th portion of
every j-th solution in i-th GPU;

5 fié—Evaluate i-th portion of every
j—th solution in the i-th GPU;

6 end

7 <Fitness aggregation block; Figure 3>;

8 foreach i € {1,...,NGPU} do //in parallel

9 | Apply selection in the i-th GPU;

10 end

11 end

Fig. 4. Pseudocode of the evolution part of NGPUs-MA-SW-Chains

1 for Nij; iterations do
foreach i € {1,...,NGPU} do //in parallel

3 Sample neighbour of i-th portion of
every Jj-th solution in i-th GPU;

4 fiévaaluate i-th portion of every
j-th solution in the i-th GPU;

5 end

6 <Fitness aggregation block; Figure 3>;

7 foreach i € {1,...,NGPU} do //in parallel

8 ‘ Apply selection in the i-th GPU;

9 end

10 end

Fig. 5. Pseudocode of optimisation part of NGPUs-MA-SW-Chains

2) Evaluation: each GPU computes the values of its asso-

ciated 1,000 bboxes as commented in Section II-B. The
partial results produced by each GPU are aggregated
within the same card, so each one returns just P partial
fitness values to the main host process, one per solution
(lines 3, 5, and 4 in Figures 2, 4, and 5, respectively).
These partial values are then aggregated by the main
host process, obtaining the real fitness value of each
individual of the population, and broadcast to the GPU
cards (lines 5, 7, and 6 in the respective Figures, and
block in Figure 3).

3) Crossover and mutation: genetic operators are applied

in parallel on the genotype portions that each GPU
manages (lines 3 and 4, Figure 4). This is possible
because the MA-SW-Chains’ genetic operations, BLX-«
and BGA [13], have not got any genes interdependence.
To take the best from the parallelism, every genotype
portion is crossed over with another chosen from the
population according to the negative assortative mat-
ing [13], which promotes the recombination between
distant genotypes (the most distant among three ran-
domly chosen from the population). However, distances
computations are restricted to the portion of the geno-
type associated to each GPU, to avoid communication
overheads. Notice that this way, solutions are most
frequently crossed over with different solutions at the



same time, each portion with the one of a different chro-
mosome. Subsequently, the resulting genotype portions
are mutated.

4) Selection: Once offspring have been generated, mutated
and evaluated, the P best ones among parents and
offspring form the new population (line 9, Figure 4).

5) Optimization: Every genotype portion of every individ-
ual of the population is optimised in parallel for N;
iterations (line 8 in Figure 2, and Figure 5). Solis and
Wet’s method is considered, as in the original MA-SW-
Chains [18]. At each iteration, a new genotype portion is
firstly produced and evaluated per solution, from those
managed by the GPU; the main process subsequently
aggregates the partial fitness values and broadcasts these
to the cards; finally, each candidate portion is accepted
according to the fitness value of the corresponding whole
solution.

IV. EXPERIMENTS

This section presents the experiments carried out which aim
at showing evidence for the following hypothesis:

o First, the task distribution described in Section II allows
us to speed up the evaluation of a single solution with
regards to the number of available computational units,
either single processors or GPU cards (Section IV-A).

e Second, the additional computational resources enable
our NGPUs-MA-SW-Chains to generate results better
than those obtained by the sequential previous models,
MA-SW-Chains [18] and MA-SSW-Chains [19], after
the same number of global iterations (Section IV-B).
Given that the additional computational resources allow
NGPUs-MA-SW-Chains to generate many more solutions
per iteration than the other methods, P instead of just 1,
the quality improvement should be clearly expected.

o Third, the possibility of using multiple GPUs, the mem-
ory increment particularly, capacitates us to address ex-
tremely scaled up additively decomposable functions. For
this objective, we presents the results of our model on
functions with up to 10% dimensions with regards to
those of a multiple-GPUs-based random search method
(Section IV-C).

We have considered the CEC 2013 benchmark [6], which
consists of 15 minimization functions, where their global
optima have been shifted from the centre of the search space,
fitness values are also shifted from 0, and many of them
use rotation matrices to create variables interdependences. For
each function, we have carried out experiments with 103, 106,
107, and 108 variables, by repeating each 1,000D bbox as
indicated in Section II-B. Ten independent runs were executed
per function and dimension.

The parameter setting of NGPUs-MA-SW-Chains is the
same as that of MA-SW-Chains, particularly, P = 100 for
D =10%and D = 108, P = 50 for D = 107, and P = 25 for
D = 108, the crossover operator is BLX-a with o = 0.5, and
N;; = 500, i.e., the method alternatively applies 500 iterations

—— F1-CPU F6— CPU == F10 - CPU
—+—F1-GPU —#— F6 - GPU F10 - GPU

1000

10

Time (ms)
-

0 1 2 3 4 5 6 7 8 9
Comput. units (CPUSs or GPUs)

Fig. 6. Time vs number of computing units, either CPUs or GPUs

of the evolutionary scheme and 500 iterations optimising the
solutions.

A. Speed-up Analysis

Figure 6 shows the time required (log plot) to evaluate
one 10%-variables solution on three different functions (F1,
F6, and F10), according to the task distribution described in
Section II-B and using an increasing number of computing
units, either CPUs or GPUs. We observe that:

o The different functions show different complexities, so
F1 regularly requires almost half the time of F6 and F10
on the CPUs executions, and a fourth or tenth of F6 and
F10 on the GPUs ones, respectively.

o The execution in just one GPU is much faster than in one
or several CPUs. This is trivial because a sole GPU card
allows us to parallelise the evaluation of the solution on
its large number of cores, with minimal communication
overheads.

o A larger number of CPUs or GPUs allows more paral-
lelism by distributing the workload and thus speeds up
the evaluation. The graphs’ curvatures exhibit the com-
munication overheads, i.e., adding more computing units
requires further synchronization operations that impedes
a lineal gain. However, the overheads due to synchroniza-
tion are very low as compared to the actual computation
time. While CPU paralellism allows to scale up to a very
few number of cores in a processor, typically 4, 6 or 8
cores, GPUs comprise thousands of compute cores, and
our distribution methodology scales to a potentially high
number of GPU devices.

B. Fitness Improvement

Table I shows the mean and standard deviation of the results
of NGPUs-MA-SW-Chains, MA-SW-Chains, and MA-SSW-
Chains on the different functions, with D = 1,000, when
they are run along the same number of iterations (3, 000). The
GPU-MA-SW-Chains model [13] is not included because it
was not tested on these functions. Best results are boldfaced.
We observe that NGPUs-MA-SW-Chains always obtains the
best mean results and smallest deviations in most cases.
We carried out a non-parametrical statistical analysis with



TABLE I

NGPUS-MA-SW-CHAINS VS ITS PREDECESSORS (D = 1,000)

F1 F2 F3 F4 F5
MA-SW-Chains 6.27e-13  1.24e+3  2.14e+1 4.96e+9  1.86e+6
Std 5.34e-13  1.42e+2  4.52e-2  2.69e+9  3.66e+5
MA-SSW-Chains 8.18e-13  1.06e+3  2.03e+1 1.28e+10  1.34e+6
Std 6.88e-13  1.22e+2 3.90e-2 3.79¢+9  3.86e+5
NGPUs-MA-SW-Chains 0 4.78e+0  2.00e+1 9.01e+6  1.05e+6
Std 0 1.88e+0 0 7.10e+6  1.51e+5

F6 F7 F8 F9 F10
MA-SW-Chains 1.0le+6  3.69e+6 4.82e+13  5.38e+8  9.13e+7
Std  1.38e+4 1.0le+6 9.92e+12  2.34e+8  8.18e+5
MA-SSW-Chains 1.05e+6  8.4le+7 1.44e+14  2.56e+8  9.35e+7
Std  3.64e+3  2.68e+7 3.18e+13 1.45e+8  2.38e+5
NGPUs-MA-SW-Chains ~ 9.97e+5  2.27e+1 3.22e+11 1.19¢+8  3.67e+6
Std 1.44e+2  1.51e+1 3.37e+11 1.37e+7 2.79e+6

FI1 F12 F13 Fl4 F15
MA-SW-Chains 9.24e+11  1.24e+3  1.89e+7  1.46e+8  5.17e+6
Std  7.57e+9  9.69e+1  2.13e+6 1.75e+7  6.40e+5
MA-SSW-Chains 9.29e+11  1.34e+3  4.92e+9  3.78e+10 8.38e+6
Std  9.54e+9 1.05e+2  1.63e+9 1.61e+10  1.52e+6
NGPUs-MA-SW-Chains  1.67e+3  4.45e+2  1.66e+2 3.40e+3  5.39e+4
Std  1.02e+3  29le+2  5.09e+1 2.62e+3  3.14e+3

Friedman, Holm and Wilcoxon tests, not shown here for
producing trivial results, i.e., there are significant performance
differences because NGPUs-MA-SW-Chains always win.

These results reveal that the model is correctly exploiting the
computational resources, because it is able to get better results
than its predecessors with the same number of generations
Notice that this does not necessarily reveal that our approach
is better than the others, but just that it can make a good use of
the increased numbers of computing units, whereas the others
can not because of their sequential nature.

C. Comparison with Random Search

Tables II-IV show the results of NGPUs-MA-SW-Chains on
the functions of CEC2013 together with those of a NGPUs-
based Random Search approach. The NGPUs-based Random
Search exploits the available GPUs to generate in parallel the
portions of random solutions, in the same way NGPUs-MA-
SW-Chains produces the initial population. Both algorithms
are allowed to evaluate a maximum of 500, 000 solutions per
execution.

Notice that when the search space is extremely large, and
the computational resources limited (few solution evaluations),
the necessity of finding relatively good search regions may be-
come much more significant than the need of obtaining the best
from the found regions. This means that exploration acquires
a significant interest, and any effort invested in exploitation
may reduce the performance of the algorithm. Hence, this
experiment tests whether the information combination and
exploitation carried out by the operations of NGPUs-MA-
SW-Chains are still beneficial on these extremely large-scale
problems, handling any problem knowledge on real-parameter
optimization, with regards to a pure and unconscious explo-
ration approach. Notice that neither MA-SW-Chains, MA-
SSW-Chains, nor GPU-MA-SW-Chains can deal with this
great number of dimensions and therefore they cannot be
compared.

We observe that NGPUs-MA-SW-Chains obtains better
mean results on all the functions and dimensions, except

TABLE II
RESULTS IN 10% DIMENSIONS

F1 F2 F3 F4 F5
NGPUs-MA-SW-Chains  1.23e+13  1.85e+7 2.12e+1 8.91e+14 1.63e+10
Std 9.02e+11  4.6le+4 0 3.21e+13  7.08e+07
NGPU Random Search 241e+14  597e+7 2.17e+1 1.32e+17  7.74e+10

Std 3.92e+10  9.18e+3 7.63e-5 9.94e+14  2.11e+8
Fo6 F7 F8 F9 F10
NGPUs-MA-SW-Chains ~ 1.08¢+9  2.76e+13  1.15e+19 1.43e+12 9.80e+10
Std 3.77e+4  2.48e+13 8.57e+17 1.08e+11  1.49e+8
NGPU Random Search 1.08e+9  2.34e+21 8.10e+21 5.32e+12  9.82e+10
Std  2.68e+4  1.35¢+20 2.98e+19 1.83e+10  3.50e+6
F11 F12 F13 F14 F15
NGPUs-MA-SW-Chains ~ 9.72e+15  2.82e+13  1.26e+16 2.92e+16 3.50e+16
Std 1.47e+15 2.2le+12 3.87e+15 2.25e+16 2.04e+15
NGPU Random Search ~ 1.30e+23  1.99e+15 3.74e+22 291e+23 1.77e+19
Std 1.25e+22 5.76e+11 2.17e+21 1.84e+22 5.07e+15
TABLE 111
RESULTS IN 107 DIMENSIONS
F1 F2 F3 F4 F5
NGPUs-MA-SW-Chains  4.68e+14  2.72e+8  2.14e+1  1.66e+17 2.71e+11
Std 2.75e+13  5.65e+6 4.21e-3 4.61e+15 1.09e+9
NGPU Random Search 2.43e+15  6.00e+8 2.17e+1 1.41e+18  8.00e+11
Std 3.62e+11  2.55e+4  3.55e-15 1.37e+15  6.06e+8
F6 F7 F8 F9 F10
NGPUs-MA-SW-Chains  1.08e+10  3.02e+17  2.19e+21  2.22e+13  9.81le+11
Std  3.09e+5  1.57e+17 2.25e+20 1.22e+12  1.10e+8
NGPU Random Search 1.08e+10 8.18e+22  8.67e+22  5.52e+13  9.81e+11
Std  6.53e+4  2.03e+21 1.04e+20 6.44e+10  1.64e+7
F11 F12 F13 F14 F15
NGPUs-MA-SW-Chains  9.58e+18 3.42e+15 1.33e+20 6.99¢+20 4.77e+12
Std 3.28e+18 2.10e+13  8.35e+19 4.50e+20 3.77e+11
NGPU Random Search ~ 9.28e+24  2.00e+16 9.08e+23  1.03e+25 7.05e+16
Std 5.34e+23 4.21e+11 1.65e+22 3.63e+23 5.18e+14
TABLE IV
RESULTS IN 108 DIMENSIONS
F1 F2 F3 F4 F5
NGPUs-MA-SW-Chains ~ 8.42e+15  1.95e+9  2.17e+1  2.44e+18 2.55e+12
Std 8.65e+14  7.59e+6 8.36e-3 1.73e+17  1.21e+10
NGPU Random Search 2.43e+16  6.00e+9 2.17e+1 1.44e+19  8.09e+12
Std 2.64e+11  4.38e+4 0 8.24e+15  2.91e+9
F6 F7 F8 F9 F10
NGPUs-MA-SW-Chains  1.08e+11  1.81e+19 1.95e+23 2.07e+14 9.74e+12
Std  3.42e+6  4.31e+21 2.15e+22  1.52e+13  1.22e+10
NGPU Random Search 1.08e+11 1.39e+24 8.86e+23  5.59e+14  9.82e+12
Std  3.00e+5 2.51e+22 5.08e+20 7.48e+10  5.46e+7
F11 F12 F13 F14 F15
NGPUs-MA-SW-Chains  7.46e+21 4.59e+16 2.39e+21 9.67e+22  2.68e+19
Std 1.96e+21 3.29¢+15 1.33e+21  6.16e+22  1.80e+18
NGPU Random Search ~ 1.70e+26  2.00e+17  1.32e+25 1.56e+26 7.65e+19
Std 2.43e+24 4.90e+11 2.13e+23 1.53e+24 5.56e+16
F6 and F10. Therefore, we may conclude that in general,

its operations, which combine the information of previous
solutions by means of the crossover operator, and refine these
solutions by means of the local search, are still favourable
in these extremely large-scale contexts. Additionally, we may
point out that:

o The structure of F6 and F10 functions must be such that,
with these tested dimensions, attempts of exploiting the
information of previous solutions (exploitation) is prob-
ably less worthy than generating new random solutions
(exploration).

o Performance differences between these two algorithms
are orders of magnitude larger in some functions (F1,
F4, F7, F8 with D = 10° or D = 107, F11, F12, F13,



F14, and F15 with D = 10 or D = 107), modest in
some others (F2, F5, F9, and F15 with D = 108), and
minute in the rest (F3, F6, and F10). Interestingly, we
perceive that functions F6 and 10, those where random
search gets better results, belong to the group where
performance differences are very small, which means
that the performance loss for limited exploration is still
bounded to reasonable levels.

o Random search usually gets smaller standard deviation
results than NGPUs-MA-SW-Chains. This means that
random search is more stable producing similar results,
although usually inferior, than NGPUs-MA-SW-Chains.
Our hypothesis is that the performance of NGPUs-MA-
SW-Chains may depend more strongly on the reduced
number of search regions explored, so its results vary far
more than those of random search from one execution to
another.

Table V shows the Wilcoxon-based statistical analysis be-
tween the results of NGPUs-MA-SW-Chains and NGPUs-
RandomSearch. It shows the sum of rankings of the differences
favouring the memetic model, R+, and those for the random
search, R-. If the minimum between these two quantities
is inferior to the critical value, shown in the third column
for 99% confidence factor, then the test finds significant
performance differences favouring the algorithm with greater
sum of rankings. As it is shown, NGPUs-MA-SW-Chains

TABLE V
WILCOXON TESTS BETWEEN NGPUS-MA-SW-CHAINS (R+) AND
NGPUS-RANDOMSEARCH (R-)

Dimension R+ R- Critical Value (99%)
10% 1195 05 15
107 1185 1.5 15
108 1185 1.5 15

obtains in general better results than NGPUs-RandomSearch
on all the tested dimensions.

To complete the analysis, Figure 7 shows the best, mean and
worst intermediate results of NGPUs-MA-SW-Chains, along
the search process, on four functions and the four dimensions
considered. The functions have been chosen to show different
behaviours of the model, depending on the function tackled.
We may remark that:

o The algorithm shows a fast approximation towards better
fitness values on F1 with D = 1,000. However, as the
dimension of the problem increases, the method seems to
require a warm up period before gaining velocity.

e Regarding F4 and D = 1,000, we notice that the optimi-
sation speed is slower than on F1. When the dimension
increases, the algorithm seems to find valleys of local
optima, hard to scape from.
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Fig. 7. Convergence graphs of NGPUs-MA-SW-Chains on four functions along the considered dimensions



¢ On F6, which is one of the functions where random
search obtained better results, we observe a normal be-
haviour when D = 1,000, but an unstable one when D is
larger. We clearly notice that improvements rarely occur
and thus, generating new completely random solutions
might be more advantageous.

o Finally on F9, where NGPUs-MA-SW-Chains obtained
only modestly better results than random search, the
progress seems to be stable, but remarkably slow.

V. CONCLUSION

In this work, we have addressed the exploitation of a
scalable and distributed computational architecture with multi-
ple GPUs for real-parameter large-scale function optimization
problems. We have presented an escalation model for the eval-
vation of additively decomposable functions that allows both,
1) to reduce the time required for the evaluation of candidate
solutions and 2) to scale up the problems to an extremely
large number of variables, up to 10% in this study and two
orders of magnitude superior to what have been addressed
in the literature, to our knowledge. Additionally, we have
adapted a memetic algorithm for taking advantageous of the
presence of multiple GPUs. In the empirical study, we present
results regarding the solution quality improvement, due to the
increased computational capabilities, and the possibility of
dealing with the aforementioned 108 real-parameter functions.

For future studies, we aim at designing algorithms that
further improve the results presented here, and novel escalation
models that incorporate the non-separability nature of many
functions in the own escalation. Moreover, we also aim at
developing an extension of the model to multiple GPUs
distributed in several hosts connected through the network.
This way we could scale the model and combine the GPUs to
address even larger dimensionalities.
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