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Abstract—Multi-label learning is a challenging problem which
has received growing attention in the research community over
the last years. Hence, there is a growing demand of effective and
scalable multi-label learning methods for larger datasets both in
terms of number of instances and numbers of output labels. The
use of ensemble classifiers is a popular approach for improving
multi-label model accuracy, especially for datasets with high-
dimensional label spaces. However, the increasing computa-
tional complexity of the algorithms in such ever-growing high-
dimensional label spaces, requires new approaches to manage
data effectively and efficiently in distributed computing environ-
ments. Spark is a framework based on MapReduce, a distributed
programming model that offers a robust paradigm to handle
large-scale datasets in a cluster of nodes. This paper focuses on
multi-label ensembles and proposes a number of implementations
through the use of parallel and distributed computing using
Spark. Additionally, five different implementations are proposed

and the impact on the performance of the ensemble is analyzed.
The experimental study shows the benefits of using distributed
implementations over the traditional single-node single-thread
execution, in terms of performance over multiple metrics as well
as significant speedup tested on 29 benchmark datasets.

Keywords-Multi-label learning; Ensemble learning; Distributed
computing; Apache Spark; Big data;

I. INTRODUCTION

Classification is a supervised learning problem in which data

is formed by a set of instances associated with a unique class.

In traditional classification an instance belongs to a unique

class. However, in many real world scenarios one instance may

belong simultaneously to multiple classes, which motivates

the use of an extended type of learning called multi-label

classification [1]. In multi-label classification the instances

are associated with a set of classes, which are called labels.

An instance may have multiple labels associated indicating to

which categories it belongs.

Multi-label classification has attracted growing interest in

the last decade. One of the reasons are real-world applications

that fit in the multi-label paradigm: functional genomics [2],

recommending bid phrases to advertisers [3], image [4] and

music [5] classification among others [6], [7]. Other reasons

are new challenges and opportunities introduced by the use

of multiple labels, such as the identification and exploitation

of dependencies between labels [8], the discretization of the

attributes based on the label interdependence [9], and the

increased space and time complexity involved in learning from

large-scale multi-label data [3].

To address the additional computational complexity of

predicting multiple labels, ensemble techniques have become

increasingly popular as they have demonstrated the ability to

improve the results of individual classifiers [10], [11]. Ensem-

bles are built using a combination of multiple base classifiers.

Therefore, their computational complexity increases as the

number of base classifiers and the size of the data grows.

Eventually, it is not feasible to build ensembles when the

number of data instances or labels become unmanageable due

to the excessive execution time.

Distributed computing addresses the scalability of ensemble

models to larger datasets. The MapReduce [12] framework

offers a simple and robust paradigm to handle large-scale

datasets in a cluster of nodes. This framework is suitable for

processing big data because of its fault-tolerant mechanism,

which is highly recommendable for long time executions. One

of the first implementations of MapReduce was Hadoop [13],

yet one of its critical disadvantages is that it processes the

data from the distributed file system, which introduces a

high latency. On the contrary, Spark [14] provides in-memory

computation which results in a big performance improvement

in iterative jobs, and hence makes it more suitable for data

mining. Spark has been shown to outperform Hadoop by 10x

on machine learning jobs [15].

This paper analyzes the characteristics of multi-label en-

sembles to present five implementations based on parallel

computing and Spark. To the best of our knowledge this

paper includes the first native implementation of a multi-label

ensemble in Spark, without using any wrapper or embedding

of traditional classification framework. Specifically, our main

contributions are:

• Analysis of the computational complexity of multi-label

ensembles.

• Propose five implementations which start from a single-

thread and single-node multi-label ensemble, and then

scaling to multiple threads and nodes in a cluster.

• Comparative analysis of the predictions of single-node

and distributed approaches using classification metrics.

• Extensive experimental study that focuses on the execu-

tion time and scalability of the different approaches.

Experimental results indicate that Spark is capable to ef-

ficiently distribute the workload, allowing to handle larger

datasets. However, it is observed that for small datasets the
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single-node approaches outperform the distributed implemen-

tations because the network latency and overheads introduced

overcome the actual performance gain. Nevertheless, the use

of distributed computing for small data is not justified due to

the short runtime.

The paper is structured as follows: Section II reviews

related works. Section III describes the characteristics of the

ensembles and presents our contributions for improving the

ensemble building. Section IV describes the experimental

study. Section V shows and discusses the experimental results.

Finally, Section VI presents the conclusions of this research.

II. BACKGROUND

Let’s assume a dataset D, a single instance (or example) x ∈
D is represented as a set of features x = (x1, x2, ..., xm), where

m is the number of features. Multi-label considers a finite set

of labels L = {λ1, λ2, ..., λk}, where k is the number of labels.

Each of the instances is associated with a subset of labels L

∈ 2k. These associations are represented as a binary vector y

= (y1, y2, ..., yk) = {0, 1}k where yi = 1 ⇐⇒ λi ∈ L.

A. Multi-label learning

Tsoumakas et al. [1] divide the methods for multi-label

classification into two categories: problem transformation and

algorithm adaptation.

Problem transformation methods convert multi-label data in

multiple representations of single-label transformations, where

traditional single-label classification algorithms can be applied.

The most important transformations are:

• Binary relevance (BR) learns a binary classifier for each

different label. The dataset is transformed to k datasets

Dλi
, i = 1 ... k, where k is the number of labels. The

datasets have only one label λi and for each instance

will have the value of the original dataset. The main critic

to this method is the assumption of label independence,

since does not take into account label interdependencies.

• Label power-set (LP) transforms the dataset into a multi-

class problem, where each class represents an unique

combination of labels. The principal advantage of this

method is that the set of active labels are modeled

together, and as a consequence it maintains the label

interdependence. However, the number of classes needed

are min(n, 2k), where n is the number of instances

and k the number of labels. This approach becomes

unmanageable for datasets with a large number of labels.

Algorithm adaptation methods modify the traditional clas-

sifiers to handle multi-label data directly. In [16] they propose

the modification of the C4.5 algorithm in order to be able to

consider multi-labels in the leaves of the tree. Another adap-

tation modifies the back-propagation error for neural networks

to consider multiple labels [17]. A kernel that supports multi-

label data for Support Vector Machines is presented in [18].

A more complex approach is to use a set of multi-label

classifiers, which can be either a problem transformation

or algorithm adaptation, and combine them to produce a

prediction that surpasses the individual ones. The most well

known ensembles are:

• Random k-labelsets (RAkEL) [19] is a popular ensemble

classifier in which each of its components are constructed

using a base classifier on a randomly chosen subset of

labels. The number of base classifiers by default is the

minimum between two times the total number of labels

and the binomial coefficient of the number of labels and

the size of the subsets. Experiments show that RAkEL

improves the results obtained by simply using Binary

Relevance and Label Power-set problem transformations.

• Ensembles of pruned sets (EPS) [20] is also proposed

to address the problem of Label Power-set. The idea

is to prune the infrequent sets of labels, and to focus

on the most important label correlations with reduced

complexity. Therefore, it deletes low represented labels.

To construct the pruned sets it samples the data (i.e. boot-

strap). The experiments showed that EPS outperformed

Label Power-set, and it also proved to be particularly

competitive in terms of efficiency, at the cost of discard-

ing underrepresented labels.

• Hierarchy of multi-label classifiers (HOMER) [21] is

designed for effective and computationally efficient multi-

label learning of a large number of labels. HOMER

generates a tree of classifiers, the root node considers

all the labels and the tree is constructed from top-down.

Each of the nodes deals with a smaller set of labels,

compared with the total number of labels, and a more

balanced example distribution. One of the critical parts

is to distribute all the labels into disjoint subsets so that

interrelated labels are grouped together.

B. MapReduce, Hadoop, and Spark

The increasing complexity of the algorithms that process

large-scale data, in addition to the ever-growing generation of

data, require distributed methods to scale data efficiently.

The MapReduce framework [12] was developed to process

data using a distributed strategy, allowing to scale to data

unable to fit in the physical memory of a single machine.

This framework provides an abstraction of the underlying

hardware and software of the cluster. It partitions, duplicates

and distributes the data providing fault-tolerance. Moreover,

it schedules the jobs and the network communications, as a

result the user only needs to implement the primitives and

launch the application.

Hadoop [13] is an open-source implementation of MapRe-

duce. Despite its popularity, Hadoop presents some important

weaknesses, such as the impossibility to maintain data in-

memory, thus leading to poor performance on iterative meth-

ods [22] [23]. On the contrary, Spark [14] resolves the previous

issue, given that it allows to maintain the data in memory.

This allows Spark to outperform Hadoop on iterative machine

learning jobs [15].

The main components of the Spark architecture are: The

driver which loads the application and create a relation of

tasks to be executed. The workers are the set of different
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nodes in the distributed environment, each of them with at least

one executor. The executors are distributed agents that execute

the tasks in their local partitions of the data in their assigned

memory space. The scheduling of the tasks and assign of the

resources to each executor is done by the cluster manager.

Spark has been successfully applied in different data mining

scenarios, such as subgroup discovery [24], real-time fraud

detection [25], distributed kNN classification [26], kNN-IS

an iterative clustering classifier [27], or entropy minimization

discretizer [28], among others.

III. SPEEDING UP ENSEMBLE LEARNING

This section presents our contributions for speeding up

ensemble learning on large-scale multi-label data. First, it

discusses the methodology for computing the base classifiers

using parallel and distributed computing. Second, it presents

five different implementations based on RAkEL.

A. Building parallel and distributed base classifiers

Traditional implementations build each base classifier iter-

atively. However, in many ensembles the process of learning

base classifiers are totally independent from each other. They

do not incur into any data dependencies since they only involve

concurrent reads of the dataset. Neither there is task inter-

dependencies, since there are no interactions in the learning

process among the base classifiers.

There are two approaches to improve the execution times

of building base classifiers, which are inclusive. First, each

base classifier can be considered independently and built in

parallel. Second, the tasks used to build each base classifier

can be distributed and later aggregate the results.

In the parallel approach the learning process of each of the

base classifiers is performed using parallel threads in a given

host. This is straightforward using multiple threads, however

is strictly limited by the resources of a single host, in terms of

CPU and memory. On the other hand, the distributed approach

divides the learning process into smaller tasks that are executed

concurrently in multiple machines, taking advantage of both

the distributed computation and memory resources, with no

latency/overheads due to inter-dependencies. Hence, providing

better scalability to handle both bigger ensembles with larger

number of components, that need additional computational

power, and larger datasets, that need more memory space.

The distributed approach using Spark provides transparent

parallelism and scalability to the user, as it automatically

conducts the remote execution of the jobs in the nodes and

the data communications.

B. Parallel and distributed implementation alternatives

This section details the implementations resulted from the

combination of the parallel and distributed approaches.

1. Mulan: The first implementation is the original RAkEL

from Mulan [29], which is built on top of Weka [30]. The

Mulan implementation is used as a reference to study the

performance of the traditional ensemble methods. This method

only supports sequential single-threaded execution, hence it
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Figure 1: Mulan distributed implementation

is limited by the resources of a single node. Therefore, it is

not scalable to large datasets [31]. The data is read once and

loaded into memory, but since the construction of the models

is sequential, they do not compete for memory.

2. Mulan threading: This implementation is a modification

of the original Mulan. It builds the base classifiers following a

parallel approach, as explained in III-A, using multiple threads

on the host. It is expected to have a speedup bounded by the

number of cores available. However, threads share available

memory, limiting its application to large datasets.

3. Mulan distributed: This implementation uses the out of

the box classifiers provided by Mulan, and Spark to distribute

and schedule the tasks among multiple executors. Figure 1

presents how the computation and data are distributed. The

driver extracts the label information, avoiding reading the

whole dataset. It then distributes this information among

the executors, each having one task which is to build an

independent model as if they were a thread in a single node

using their own memory space. Every executor reads the whole

dataset and proceeds to build their models locally. Since the

scalability is introduced by the number of executors and each

of them builds a single-thread model, the best configuration is

to have as many executors as cores available in each worker.

The principal advantage of this approach is delegating the

parallelism to Spark. It provides transparency, since Spark

allocates the resources. In addition, this approach avoids the

communication among workers, as well as among executors,

since they build independent models with their local data. On

the other hand, each executor needs to read the entire dataset,

resulting in multiple loads of the dataset in the same worker.

4. Mulan distributed threading: This implementation is

based on the previous one, but uses Spark to control the

distribution of the tasks and not the parallelization in each

worker. Figure 2 illustrates the behavior of this model. As

mentioned previously, the driver reads the label information

and distributes the workload among the executors. Each execu-
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tor creates multiple threads manually and handles the creation

of the models in parallel, thus sharing the memory among the

models constructed by a single executor. To avoid multiple

executors competing for the resources in a worker, the best

configuration is to use a single executor per worker, which will

utilize all the available resources. This implementation handles

the construction of the threads manually, avoiding multiple

reads of the data per worker. However, the same data is still

read multiple times in the construction of the ensemble.

5. Spark: The Spark native implementation is built on

top of the native machine learning library (MLlib) [32]. This

implementation is illustrated by the diagram in Figure 3. First,

the driver reads the whole dataset, which is then divided into

different partitions and sent to the executors through the cluster

manager. Every executor will compute the given tasks in their

local partition of data and once completed, send back the

results to the driver. The construction of each model takes

multiple tasks, resulting in an increase network communication

between the workers and the driver.

This approach reads the data from a distributed file system,

allowing each worker to read the local partitions for its

executors. Using a distributed file system avoids reading the

full dataset, hence allowing to handle large-scala datasets. This

approach uses all the available cores, without being dependent

of the number of instances or labels of the data.

Table I: Implementation summary

Implementation Parallel Distributed
Redundant
data reads

Shared
memory

Scalability

Mulan � � � � �

Mulan
Threading

� � � � # cores

Mulan
Distributed

� � � � # executors

Mulan
Distributed
Threading

� � � �
# cluster

cores

Spark � � � �
# cluster

cores

C. Implementation summary

Table I summarizes the key aspects of the five implementa-

tions. It presents the following series of characteristics: parallel

construction of the models, distribution of the computation,

multiple reads of the dataset, construction of various models

in the same memory space, and the resources that influence

the scalability.

IV. EXPERIMENTAL SETUP

This section presents the experimental study carried out to

compare the performance impact of each implementation and

the parallel and distributed approaches.

Experiments were executed in a cluster with 144 cores

and 288 GB of memory. The cluster operating system was

Rocks cluster 6.2 x86-64 with Mulan 1.5 for the single-node

classifiers and Spark 2.0.0 for the distributed computation.

The predictions obtained by the ensembles were calculated

partitioning the data and using the 10-fold cross validation.

The base classifier for the single-node and distributed ensem-

bles is a Binary Relevance transformation with a decision tree

whose maximum height is set to eight.

A. Datasets

The experiments were conducted on 29 multi-label datasets.

They have been collected from the MULAN1, MEKA2 and

LABIC3 repositories websites. Table II list the datasets, which

have been compiled attending to a diversity of the two char-

acteristics which are expected to have the most impact in the

results: label dimensionality and number of instances. It also

presents the cardinality and density to measure the imbalance

level, a frequent problem for multi-label data [33].

B. Evaluation Measures

The evaluation metrics for multi-label differ from the

traditional classification. The most commonly metrics used

are proposed in [34] are Hamming Loss, subset-accuracy,

example-based metrics and label-based metrics. Hamming

Loss computes the symmetric difference between the predicted

set of labels and the true labels. Subset accuracy requires that

1http://mulan.sf.net
2http://meka.sf.net
3http://computer.njnu.edu.cn/Lab/LABIC/LABIC Software.html
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Table II: Multi-label datasets and their statistics

Dataset Inst. Attr. Labels Card. Dens.

Flags 194 26 7 3.39 0.48

Emotions 593 78 6 1.87 0.31

Birds 645 279 19 1.01 0.05

Genbase 662 1,213 27 1.25 0.05

Medical 978 1,494 45 1.25 0.03

Plant978 978 452 12 1.08 0.09

Enron 1,702 1,054 53 3.38 0.06

Scene 2,407 300 6 1.07 0.18

Yeast 2,417 117 14 4.24 0.30

Human3106 3,106 454 14 1.19 0.08

Rcv1 (subset1) 6,000 601 101 2.88 0.03

Bibtex 7,395 659 159 2.40 0.02

Arts 7,484 526 26 1.65 0.06

Health 9,205 532 32 1.64 0.05

Business 11,214 530 30 1.60 0.05

Social 12,111 539 39 1.28 0.03

Entertainment 12,730 521 21 1.41 0.07

Corel16k 13,766 653 153 2.86 0.02

Society 14,512 527 27 1.67 0.06

Delicious 16,105 1,483 983 19.02 0.02

20NG 19,300 1,026 20 1.03 0.05

EUR-Lex (dc) 19,348 912 412 1.29 0.00

EUR-Lex (ev) 19,348 4,493 3,993 5.31 0.00

EUR-Lex (sm) 19,348 701 201 2.21 0.01

Tmc2007 28,596 522 22 2.16 0.10

Mediamill 43,907 221 101 4.38 0.04

Bookmarks 87,856 708 208 2.03 0.01

IMDB 120,919 1,029 28 2.00 0.07

NUS-WIDE 269,648 209 81 1.87 0.02

the predicted set of labels is exactly the same as the real labels.

For both, example-based and label-based metrics, the basic

measures are the same: precision, recall, accuracy, f-measure

and specificity. They just differ in how they are averaged,

hence example-based gives the same weight to each instance,

micro-averaged label-based gives more weight to labels with

more instances and macro-averaged label-based treats all the

labels equally reflecting equally less-represented labels [35].

V. RESULTS

This section presents the experimental obtained by the

proposed implementations on Section III-B. The results are

divided in two groups: prediction metrics and execution times.

The analysis of the experiments will first discuss the prediction

metrics obtained for the single-node classifiers (Mulan) and

the distributed classifiers (Spark), and then it will study the

execution times needed to train the ensembles.

A. Evaluation of prediction metrics

In this experiment, we investigate the prediction results

of the different implementations on the multiple datasets. To

measure the performance of the ensembles we use the multil-

label classification metrics presented in Section IV-B which

show different perspectives of the same results.

Table III: Prediction metrics averaged for the 29 multi-label

datasets and p-values comparison

Type Metric Mulan Spark p-value

Hamming Loss 0.0699 0.0670 1.04E-01

Subset accuracy 0.1298 0.2382 1.70E-05

Example-
based

Accuracy 0.2365 0.3717 1.49E-08

Precision 0.2296 0.4688 1.87E-05

Recall 0.2695 0.4246 1.49E-08

F-Measure 0.2746 0.4221 8.80E-06

Specificity 0.9654 0.9597 8.86E-04

Micro-
averaged

Precision 0.5417 0.5721 5.68E-02

Recall 0.2447 0.3919 1.49E-08

F-Measure 0.3013 0.4410 1.49E-08

Specificity 0.9658 0.9603 1.73E-03

Macro-
averaged

Precision 0.2928 0.3557 2.09E-04

Recall 0.2187 0.2941 1.35E-05

F-Measure 0.2263 0.3001 5.16E-05

Specificity 0.9560 0.9967 1.20E-04

The Mulan-based implementations all obtain the same

prediction results because they learn the same classification

model. On the other hand, Spark learns a distributed model,

which will produce a different classifier depending on the

distribution of the data into the partitions of the nodes.

Table III presents the averaged measures obtained for the

different metrics. The measures are grouped attending to the

type of averaging: example-based, micro-averaged, and macro-

averaged. With the exception of Hamming Loss and subset

accuracy, since they do not depend of the averaging process.

Table III also presents the p-values, which compares the results

obtained by both approaches using the Wilcoxon [36] test. The

Wilcoxon rank sum is a non-parametric test recommended by

Demšar [37], which allows us to identify whether there are

significant differences between the results. The smaller the p-

values the bigger the difference between Mulan and Spark.

First, Spark presents more competitive results than Mulan

in terms of average values. These differences are produced by

the training process of the decision trees. Spark uses the infor-

mation of the nominal attributes to find better split candidates,

thus leading to a considerable improvement of the predictions.

This difference is more evident in datasets with a considerable

presence of those attributes such as medical, genbase or enron.

The results obtained by Spark are not influenced by the number

of partitions used, since this parameter only affects to the

parallelization level and the number of intermediate operations

before aggregating them.

Second, the p-values obtained by comparing the measures

are small. The largest values are obtained by the less strict

metrics, where small changes in the predictions do not have a

big impact on the measure, such as Hamming Loss which

evaluates the symmetric difference. This indicates that the

results obtained by both approaches are relatively similar.

Also, the macro-averaged metrics have larger values compared

to the others. These metrics give the same weight to all the

labels, producing more balanced results.
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However, other type of metrics such as exampled-based

or micro-averaged have smaller p-values reflecting larger dif-

ferences in the measures. Micro-averaged metrics give more

weight to the underrepresented labels, hence to the models

with bigger differences due to the nature of their instances, and

example-based give the same weight per instance producing

more diverse results depending on the size of the dataset. This

difference can also be appreciated in the averaged measures,

and are a result of the specifics of each implementation.

B. Evaluation of execution times

In this experiment, we investigate how the parallelization

and distribution of the computation affect execution times in

the training process of the multi-label ensembles. To train the

ensembles we used the full datasets, without splitting the data

into train and test folds. This allowed us to train with all the

instances available and study the performance at large-scale.

Table IV compares the implementations using the execution

times. The first column shows the execution time on seconds

of the original Mulan as the reference. The second group of

columns indicate the speedup of the proposed implementations

with respect to the original Mulan.

The Mulan threading implementations outperforms the se-

quential version for every dataset, achieving a linear speedup

of roughly four. This implementation has the best results for

the smallest datasets. However, the execution times for larger

dataset are still unacceptably long.

On the other hand, the performance of the distributed

approaches for the Mulan-based and Spark-based implementa-

tions is significantly better for larger datasets. The distribution

of the data, and hence the computation, comes with a small

network overhead due to serialization, transfer and synchro-

nization. This overhead has a significant impact when the data

size is small, and therefore it actually takes more time to

Table IV: Execution time of Mulan and speedups of each

proposed implementation

Dataset

Mulan -
Execution
time (s)

Speedup

Mulan
thread.

Mulan
distrib.

Mulan
distrib.
thread.

Spark

Flags 5.53E-01 5.03 0.12 0.09 0.05

Emotions 2.23E+00 4.09 0.29 0.25 0.16

Birds 9.83E+00 4.14 0.55 0.53 0.35

Genbase 3.94E+00 2.44 0.46 0.35 0.26

Medical 6.71E+01 4.1 4.61 4.01 1.66

Plant978 9.04E+01 4.27 2.53 2.92 2.63

Enron 1.18E+03 3.9 5.15 5.17 19.9

Scene 3.47E+01 4.07 1.52 1.29 2.41

Yeast 3.64E+01 3.84 1.89 1.54 1.19

Human3106 4.40E+02 3.73 6.31 7.08 8.38

Rcv1 (subset1) 1.70E+03 4.83 16.67 18.24 13.47

Bibtex 4.24E+03 4.96 38.97 38.6 26.8

Arts 7.48E+03 4.41 15.53 15.96 100.5

Health 7.80E+03 4.47 15.05 15.13 90.68

Business 1.22E+04 3.81 9.68 12.67 112.37

Social 1.24E+04 3.83 16.87 21.87 131.89

Entertainment 1.21E+04 3.65 10.92 13.89 170.04

Corel16k 8.92E+03 3.71 13.3 13.11 28.08

Society 2.90E+04 3.25 14.67 21.84 369.42

Delicious 1.95E+05 4.59 18.47 19.08 100.91

20NG 4.75E+04 4.05 15.19 31.96 525.04

EUR-Lex (dc) 9.62E+04 4.06 70.46 75.17 111.32

EUR-Lex (ed) 7.89E+05 4.03 96.71 54.88 48.93

EUR-Lex (sm) 3.33E+04 1.97 81.46 77.78 165.5

Tmc2007 2.66E+03 2.94 8.1 12.96 28.83

Mediamill 7.27E+03 3.43 32.72 34.23 40.07

Bookmarks 2.80E+05 4.32 74.04 76.17 513.56

IMDB 1.38E+06 3.73 24.07 27.7 729.07

NUS-WIDE 1.26E+05 4.12 28.47 30.11 437.27

Mulan Threading
Mulan Distributed
Mulan Distributed Threading
Spark

Figure 4: Speedup comparison on each proposed implementation
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distribute the data than directly run the computation (achieving

speedups less than one). However, this is compensated when

the datasets are large enough in terms of instances, which is

when the distribution of the data truly makes sense. Now, the

bigger the dataset the better speedups achieved.

Interestingly, we noticed that the results for Mulan dis-

tributed and Mulan distributed threading are very similar,

with a small advantage towards the threading version. The

difference between both methods is how the parallelism in

each node of the distributed environment is handled. Mulan

distributed delegates the parallelization to Spark and Mulan

distributed threading creates the threads manually, avoiding

multiple reads from the same data. The small difference

indicates that the multiple reads from the data do not have

a big impact over the performance, this is expected since

the datasets take less than a few seconds of long execution

times. However, this could change in an scenario of millions

of instances. Additionally, bigger data takes more space in

memory, which eventually can lead to running out of memory

sooner in the Mulan distributed implementation. Furthermore,

this small difference indicate that the overhead introduced by

Spark to handle the parallelization is considerably small.

The Spark implementation outperforms the Mulan-based

distributed approaches whenever the dataset has at least 7,000

instances (arts). This indicates that the overhead introduced

to distribute the data among the workers and aggregate the

results of the different tasks is only recommended for the large

datasets. Again, this implementation achieves the best results

for datasets with a large number of instances and/or labels,

reducing the time to train the ensembles hundreds of times

with respect of the original implementation.

Another important aspect is to consider the evolution of

the execution time with regards of the size of the data.

Figure 4 presents the speedup of the proposed implementations

together for all the datasets sorted by increasing the number

of instances.

First, the scalability of the Mulan threading implementation

is linear, achieving speedup values limited to the number of

cores available in a single node, which is relatively small.

Second, the speedup of the distributed implementations scales

better the more instances in the dataset. Third, the increase

on the number of labels also affects the scalability of the

models. Mulan distributed implementations use a single core

on the distributed environment to train a given decision tree,

which means that when there are more labels than cores in

the cluster the behavior will be similar to the Mulan threading

implementation. Hence, they are limited by the number of

cores in the cluster.

On the other hand, Spark achieves better speedup as soon

as the data size grows enough to justify the distribution. Spark

distributes the partitioned data and uses all the available cores

to train for the partitioned data. This approach is more efficient

and allows to handle larger datasets since the limit is set by the

memory available, allowing eventually to execute using data

from secondary storage. This sets a limit considerably larger

than the ones established by the other implementations.

VI. CONCLUSION

In this paper we have presented and evaluated five alterna-

tives on the scalability of multi-label ensemble classification.

RAkEL was selected as a reference model to evaluate benefits

of parallel and distributed building of the components of

the ensemble. Parallel and distributed approaches have been

proposed and compared to the reference classification model

in Mulan in order to evaluate classification performance and

execution time differences.

The experimental study evaluated and compared the per-

formance of the models with regards to the quality of the

results and the execution time considering the data size as

measured by the number of instances and labels. The results

evaluating the prediction performance indicate that there is

not statistical differences between using a single-node and a

distributed approach, although in practice Spark produced bet-

ter results. Regarding the scalability and overall performance,

the distributed approaches significantly outperform the single-

node version. The native Spark implementation that used the

distributed construction of classifiers proved to be the most

scalable, maximizing the use of all the available resources

in the cluster, especially for large datasets. Spark performed

hundreds of times faster than the Mulan implementations.

These results enhance the value of Spark as a solid frame-

work to distribute the workload of large computational tasks,

such as multi-label ensembles and presents an open challenge

demanding further research.
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