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Abstract 

 
 In this paper we propose a high performance parallel file 
system over iSCSI (iPVFS) for cluster computing.  iPVFS 
provides a cost-effective solution for heterogeneous cluster 
environments by dividing a set of I/O servers into two groups.  
One group, with higher performance, serves as I/O nodes, while 
the other group, with relatively lower performance, serves as 
storage target nodes.  This combination provides a higher 
aggregate performance because of the cooperative cache among 
different target nodes.  We have developed a model to analyze 
iPVFS.  Our simulation results show that using the same 
number of nodes, iPVFS outperforms PVFS for both small and 
large requests under most cases.  
 Key Words:  Parallel file system, iSCSI, distributed I/O, 
cluster computing, cache. 
 

1 Introduction 
 
 Cluster computing [20] has become one of the most popular 
platforms for high-performance computing today.  Similar to 
traditional parallel computing systems, the I/O subsystems of 
clusters are a bottleneck to overall system performance.  An 
efficient way to alleviate the I/O bottleneck is to deploy a 
parallel file system, which utilizes the aggregate bandwidth and 
capability of existing I/O resources on each cluster node, to 
provide high performance and scalable storage service for 
cluster computing platforms.  
 The Parallel Virtual File System (PVFS) [4], developed at 
Clemson University and Argonne National Lab, provides a 
starting point for I/O solutions in Linux cluster computing.  
Several recent works have studied how to improve parallel I/O 
performance of PVFS.  A kernel level cache is implemented in 
[24] to reduce response time.  In [14, 18] several scheduling 
schemes are introduced in I/O nodes to reduce disk seek times.  
A better interface is presented in [6] to optimize noncontiguous 
I/O access performance.  CEFT-PVFS [28] increases the 
availability of PVFS, while still delivering a considerably high 
throughput.  In [10] software and hardware RAIDs are adopted 
in PVFS I/O nodes to achieve higher aggregate I/O bandwidth.  
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 In this paper we propose a parallel file system, iPVFS, based 
on PVFS [4] and iSCSI (Internet SCSI) [1, 15], for cluster 
computing platforms.  We have designed the iPVFS and 
developed a model to simulate it.  We compare the I/O response 
time of iPVFS with the original PVFS under various 
configurations.  The results show a considerable performance 
gain of iPVFS over PVFS.  
 The rest of this paper is organized as follows.  Background 
information is presented in Section 2.  Section 3 gives the 
architecture of iPVFS.  In Section 4, we describe a queuing 
model for iPVFS.  Simulation and I/O response time analysis 
are presented in Section 5.  We examine related work in Section 
6.  Section 7 concludes the paper. 
 

2 Background Review 
 

2.1 PVFS  
 
 PVFS [4] is a popular parallel file system for Linux cluster 
computing.  It provides high-speed access to file data for 
parallel applications.  Figure 1 [4] shows a typical PVFS 
architecture and the main components.  There are three types of 
nodes in PVFS.  The metadata node maintains the metadata of 
the file system.  I/O nodes store file data on local storage 
devices.  Clients, or compute nodes, read or write file via 
sending requests to the metadata server and I/O servers. 
 
 

 
 
Figure 1: PVFS system diagram.  The number of I/O nodes is N.  

Since all storage nodes are used as I/O nodes, the total 
number of nodes is N.  
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2.2 iSCSI and iRAID  
 
 iSCSI [1, 15] is a newly emerging protocol with the goal of 
implementing the storage area network (SAN) technology over 
the better-understood and mature network infrastructure:  the 
Internet (TCP/IP).  iSCSI encapsulates SCSI commands/data 
within TCP/IP connections using Ethernet, which brings 
economy and convenience, as SANs now can be implemented 
using less expensive, easily manageable components.  iSCSI 
provides a block level data interface which is independent of 
any file systems.  
 iRAID [9] is introduced to improve the performance and 
reliability of iSCSI storage systems by organizing the iSCSI 
storage targets in such a way similar to RAID [5], using striping 
and rotated parity techniques.  In iRAID, each iSCSI storage 
target is a basic storage unit in the array.  All the units in the 
array are connected through a high-speed network.  iRAID 
provides a direct and immediate solution to boost iSCSI 
performance and improve reliability.  
 

3 Architecture of iPVFS 
 
 In a typical cluster environment nodes can be used as 
block-level storage providers and be grouped together to form 
distributed RAID system [21].  Combining iRAID and PVFS 
together improves parallel I/O performance because iRAID 
provides high bandwidth storage level services for parallel file 
systems.  
 The above observations motivate us to propose iPVFS to 
improve I/O performance by utilizing iRAID to provide local 
storage for the I/O nodes of PVFS.  In iPVFS, each I/O node 
includes an iSCSI Initiator, which is supported by multiple 

target nodes to form an iRAID group (Figure 2).  With iRAID, 
the I/O nodes stripe PVFS data across multiple target nodes.  
The local I/O performance of I/O nodes is improved because of 
possible parallel accesses to data blocks.  In iPVFS, all nodes, 
except the compute nodes and metadata nodes, are divided in 
two groups.  The nodes in the first group are configured as I/O 
nodes of a PVFS system, providing file level services for cluster 
computing platforms.  The others are used as target nodes of the 
iRAID system, exposing block level services to upper-level I/O 
nodes. 
 In traditional iSCSI design, the I/O requests are serialized by 
the SCSI scheduler of the operating system kernel.  This is 
reasonable for traditional hard disks, because internally such 
devices cannot support concurrent accesses.  In iPVFS, since 
several target nodes within an iRAID group are exclusively 
designated for one I/O node, we modified the scheduler in the 
I/O nodes, so the multiple requests directed to different targets 
could be concurrently submitted by the SCSI drivers.  Since all 
requests from an iSCSI initiator have to be sent to targets 
through a single network card (in the current design), the 
requests will be queued at the sending buffer of the network 
interface, no matter how many requests are submitted 
concurrently through the SCSI driver.  Even with the queuing 
overhead of the network interface, the throughput of new 
scheduler is better than the old one, because it makes the 
network and targets as busy as possible and thus utilizes the 
potential of the iRAID system.  Parts of the requests may be 
quickly satisfied by the buffer caches of the target nodes.  If the 
requests must be sent to the disks of the target nodes, a local 
scheduler is used to serialize the concurrent accesses.  
 In iPVFS, buffer caches are organized as two-level cache 
hierarchies:  the upper level caches reside in I/O nodes, and 
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Figure 2: iPVFS Architecture.  The number of I/O nodes is ioN , the number of target nodes of each iRAID group serving for one 
I/O node is tN , and the total number of nodes is )1( tio NNN += .  
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the lower level caches reside in target nodes.  We refer to the 
upper level storage client caches as L1 buffer caches and the 
lower level storage caches as L2 buffer caches [27].  L1/L2 
buffer caches are very different from L1/L2 processor caches 
because L1/L2 buffer caches refer to main-memory caches 
distributed in multiple machines.  The access patterns of L2 
caches show weak temporal locality [3, 8, 27] after filtering 
from L1 caches, which implies that a cache replacement 
algorithm, such as LRU, may not work well for L2 caches.  
Additionally, local management algorithms used in L2 caches 
are inclusive [25], which try to keep blocks that have been 
cached by L1 caches, and waste aggregate cache space.  Thus, 
in iPVFS, we introduce a Unified Multiple-Level Cache 
(uCache) algorithm [16] to manage aggregate cache space 
efficiently and increase cumulative hit ratios.  
 The uCache algorithm unified together the cache spaces of 
the I/O node and the corresponding target nodes.  The LRU 
algorithm is used in the L1 cache of an I/O node.  The FBER 
algorithm [16] is deployed in the L2 caches of the target nodes 
to make them exclusive to the L1 cache.  There is no built-in 
cache consistency mechanism for the I/O nodes and 
corresponding target nodes.  In iPVFS, a group of target nodes 
are exclusively used by one I/O node, and it is impossible for 
two cache lines in different I/O nodes to map to the same disk 
block.  We keep the consistency semantics of PVFS for the 
client caches.  It does not implement POSIX semantics, but in 
typical parallel I/O applications, each client is responsible for 
reading and writing part of the non-overlapping I/O data (for 
example, stride I/O), and simple consistency semantics improve 
system performance.  In the case that multiple clients really 
need to read and/or modify the same data blocks, applications 
may implement their own consistency semantics, for example, 
using the synchronization mechanisms of MPI [22].  
 

4 A Queuing Model for iPVFS 
 
 In a cluster environment, if the number of servers is given, the 
utilizations of servers of PVFS and iPVFS are different.  In 
PVFS all servers, except the metadata server, are used as I/O 
nodes, but in iPVFS, as mentioned in Section 3, some nodes are 
configured as target nodes to speed up performance of I/O 
nodes.  With a given number of nodes, which design could 
deliver better I/O performance?  
 We develop a queuing model to analyze the performance of 
PVFS and iPVFS with respect to average I/O response time 
(Figure 3).  The model includes two queues:  one for I/O nodes 
and the other for target nodes.  We use some assumptions made 
by [7].  The number of I/O requests follows a Poisson process 
with a mean arrival rate of λ .  The loads on I/O nodes and 
target nodes are balanced. 
 We assume that there are N storage nodes in a cluster.  The 
number of I/O nodes is ioN .  The number of target nodes in an 
iSCSI group serving one I/O node is tN .  In PVFS, ioNN = .  In 
iPVFS, )1( tio NNN += , since there are ioN  groups, with each 
group consisting of one I/O node and tN  target nodes.  For 
each I/O node, the arrival request rate is λiP , where iP  is the 

probability that the request is redirected to I/O node i .  When 
the request data size ipL  is smaller or equal to the striping 

size B , iP  is equal to ioN/1 .  
 When the request data size is larger than BNio , the request is 
sent to all I/O nodes and iP  is equal to 1.  Thus, the typical 
range of iP  is [ ]1,/1 ioN , and we calculate iP  by 

[ ] )1,//min( ioipi NBLP = .  If a request is not satisfied by the 
I/O node cache, it is redirected to the iRAID initiator hosted in 
the I/O node, and the effective arrival rate to each iRAID system 
is λ−=λ **)1( iioci Ph , where ioch a cache hit ratio for an I/O 
node.  
  After requests arrive to the iRAID system, the initiator 
redirects them to target nodes.  For each target node, the arrival 
rate is iijP λ , where ijP  is the probability that the request is sent 
to a target node j , which belongs to the iRAID system of I/O 
node .i   Similar to the probability that requests are redirected to 
I/O nodes, the typical range of ijP  is [ ]1,/1 tN , and we calculate 

ijP  by [ ] )1,//min( tirij NBLP = , where irL  is the request data 
size from the I/O node to the target node.  If the request is not 
satisfied by the target node cache, it is redirected to the local 
disks, and the effective arrival rate to each disk is 

iijtcij Ph λ−=λ **)1( , where tch  is the cache hit ratio for the 
target node.  
 Request delays are mainly caused by network and memory 
delays independent of cache hits and misses.  We assume that 
the network service time and the cache service time are 
exponentially distributed [7] with average times being ionetT  
and iocT , respectively.  
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where netBW  and cacheBW  are bandwidth of the network and 
memory caches, respectively.  Therefore, the request residence 
times in the network and cache are modeled using the M/M/1 
queuing model [7], and the average residence times of request in 
the network and cache of I/O nodes are modeled as: 
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 If a request is not satisfied by the memory cache, it must be 
handled by iRAID system, with a probability of ioch−1 .  Thus,
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Figure 3:  Queuing Model for iPVFS 

 
the average response time of the iPVFS system is expressed as:  
 

nodeiRAIDiociocionet WWhWWT +−++= *)1(  
 
where iRAIDW  is the request residence time in the iRAID 
system, and nodeW  is the processing overhead of each node.  
The overhead includes the time of protocol processing, and the 
time that messages go from the receiving buffer to the sending 
buffer of the network interface.  Normally an I/O node acts as a 
server with a certain service rate.  We assume that the server 
processing time is exponentially distributed with the average 
time nodeT , and the request residence time in the node, nodeW , 
is modeled using the M/M/1 queuing model.  

nodeiij

node
node TP

T
W

**1 λ−
=  

 
 Although each iRAID system is designated to one I/O node, 
additional overheads are introduced when requests travel 
through the network between I/O nodes and target nodes, 
especially at the time multiple requests from the modified SCSI 
scheduler are queued at the sending buffer of the network 
interface, as explained in Section 3.  We assume that the 
network service time of the iRAID is exponentially distributed 
with the average time tnetT , and the request residence time in 
the network, tnetW , is modeled using the M/M/1 queuing 
model.  
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Another possible overhead of iRAID is the service time of 
memory caches in the target nodes.  We assume that the cache 
service time is exponentially distributed with average times tcT , 
and the request residence time in the cache of iRAID, tcW , is 
modeled using the M/M/1 queuing model.  
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 If a cache miss occurs, the request is redirected to the hard 
disks, with a probability of tch−1 .  The real disk service times 
are generally distributed [13] so we adopt the M/G/1 model to 
analyze the disk response time.  
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where )( diskioTE  is the average disk access time for a request.  
Thus, the average response time for an iRAID system is 
expressed as:  
 

nodedisktctctnetiRAID WWhWWW +−++= *)1(  
 

5 I/O Response Time Analyses 
 
 Based on the above queuing model, we simulate and compare 
the response times of iPVFS and original PVFS under various 
workloads and application environments for both fixed and 
dynamic cache hit rates.  Some parameters are as follows:  the 
available network bandwidth is about 75MB/s and the memory 
access rate is about 500MB/s.  A 64KB data striping size is 
chosen for both PVFS and iRAID.  The disks are Seagate SCSI 
disks (model ST318452LW), with a data transfer rate of 
51MB/s, an average seek time of 3.8ms, an average latency of 
5ms, and 18,497 cylinders.  
 
5.1 I/O Response Time for Fixed Cache Hit Rates  
 
 We assume that the cache hit rates of both I/O nodes and 
target nodes are fixed, and that the read request percentage is 53 
percent, which is based on our observations of existing disk I/O 
traces and previously published data [11, 19].  

 In PVFS, all storage nodes are used as I/O nodes ioNN = .  In 
iPVFS, we have various choices.  In this section, for each I/O 
node, we configure an iRAID group with two target nodes 

2=tN .  Other choices are discussed in Section 5.1.3.  
 Given a fixed number of storage servers for both PVFS and 
iPVFS, the number of I/O nodes in iPVFS is always smaller 
than that of PVFS since some nodes are used as targets, so lower 
cache hit rates are predicted for I/O nodes in iPVFS when the 
memory sizes of each node are the same.  Since the hit ratios of 
I/O nodes are more important than those of target nodes, the 
cache sizes of I/O nodes are expected to be larger than those of 
target nodes.  In our simulation, we compensate for the hit ratios 
of I/O nodes by adding more caches for I/O nodes, but we 
maintain the same cache size for the whole system by reducing 
the cache sizes of the target nodes.  Even with the configuration, 
we still expect that the hit ratios of I/O nodes in iPVFS are lower 
than I/O nodes for PVFS in real applications, so in the following 
simulation, we set the cache ratios of iPVFS to be 0.1 lower than 
their PVFS counterparts.  
 
 5.1.1 Small I/O Requests.  Small requests have sizes of at 
most the striping block size 64KB, so that each request can be 
satisfied by a single node.  We assume that the request data size 
is equal to 64KB.  To validate the model with a large scale 
system, we set the number of storage nodes to 300 
(i.e., 300=N ).  In iPVFS, the number of I/O nodes is 100 (i.e., 

2,100 == tio NN ), and the arrival rates to an I/O node and a 
target node are ioN/λ  and )/( tio NNλ , respectively.  In PVFS, 
the arrival rate to an I/O node is N/λ .  
 Figure 4 compares the performance of iPVFS and PVFS.  It 
shows that the average I/O response time increases steadily with 
the increase of the request rate.  At the point where PVFS is 
saturated by a large number of requests, iPVFS still provides 
acceptable service.  We believe that the cache makes the 
difference, since compared to the network, the disk access time 
accounts for most of the total response time.  
 In PVFS, when cache misses occur in I/O nodes, the requests 
must be redirected to disks.  In iPVFS, in case of cache misses 
in I/O nodes, the requests are first directed to the target nodes, in 
which they may be satisfied by the target node caches.  When 
the hit ratios are high enough, the disk access time is not 
dominant because most requests are satisfied by caches.  Thus, 
the network bottleneck is the main factor affecting the 
performance.  Since the number of I/O nodes in iPVFS is 
smaller than that in PVFS, there is a point where the network is 
saturated by the requests in iPVFS. 
 
 5.1.2 Large I/O Requests.  If the data request size is much 
larger than the striping block size 64KB, each request is striped 
over several nodes.  The extreme case is that the request is large 
enough to be striped over all nodes.  For iPVFS, the arrival rates 
to an I/O node and to a target node are all λ ; for PVFS, the 
arrival rate to an I/O node is λ  too.  To ensure that the request 
is large enough to be striped over all nodes, we did not choose a 
real large scale system; otherwise, the request size did not
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 (a) Cache hit ratios of iPVFS and PVFS (b) Cache hit ratios of iPVFS and PVFS 
 are 0.2 and 0.3, respectively.   are 0.5 and 0.6, respectively. 

 
 

(c) Cache hit ratios of iPVFS and PVFS are 0.7 and 0.8, respectively. 
 

Figure 4:  I/O response times with various cache hit ratios for small requests.  The request size is 64KB, with  
 2,100 == tio NN  and 300=N  
 
choose a real large scale system; otherwise, the request size is 
too large to be real. Instead, we use a 640KB request size, 30 
storage nodes ( 30=N ), and an ioN of 10 in iPVFS (Figure 5). 
 In large I/O request situations, each node receives much more 
requests, which quickly saturate the cache; thus, most requests 
must be redirected to disks.  If the hit ratio is very low (Figure 
5(a)), the disk access is the key factor.  iPVFS is easier to 
saturate because a single server experiences a larger request rate 
than in PVFS.  When the hit ratio is high enough, the network 
bottleneck dominates the system performance (Figure 5(c)), 
similar to the simulations for small requests (Section 5.1.1). 
 
 5.1.3 Performance of Various iPVFS Configurations.  
When the number of storage nodes is fixed for iPVFS, how 
should we organize our system to achieve maximum I/O 
performance?  We may have various configurations because the 
selection of ioN  and tN  is not unique, as long as the equation 

)1( tio NNN +=  is satisfied.  We measure the saturated  

request rate at which the system cannot accept and service 
requests any more.  We choose the same simulation parameters 
(Section 5.1.1 and Section 5.1.2) for small requests and large 
requests, but compare the saturated request rates of all possible 

ioN  values in a system (Figure 6). 
 The request rates of large requests to each server are much 
higher than those of small requests.  Generally the larger 
number of I/O nodes provides better performance, since the 
request rate of an I/O node decreases with an increasing number 
of I/O nodes.  With small requests, while the request rates are 
balanced by multiple I/O servers, the hit ratios begin to 
influence the performance of different system configurations.  
Generally, performance improves with a larger number of I/O 
nodes, but the peak performance does not always occur in the 
configuration in which as many as possible storage nodes are 
configured as I/O nodes.  The extreme case is when half of the 
nodes are I/O nodes, and each I/O node is only supported by 
one target node (most right points of Figures 6(a) and 6(b)). 
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 (a) Cache hit ratios of iPVFS and PVFS (b) Cache hit ratios of iPVFS and PVFS 
 are 0.2 and 0.3, respectively.   are 0.5 and 0.6, respectively. 

 
 

(c) Cache hit ratios of iPVFS and PVFS are 0.7 and 0.8, respectively. 
 

Figure 5:  I/O response times with various cache hit ratios for large requests.  The request size is 64KB, with  
 2,10 == tio NN  and 30=N  

 

 
 

(a) Small request. The request size is 64KB and N=300 

 
 

(b) Large request. The request size is 640KB and N=30 
 
Figure 6:  Saturated I/O request rates for various iPVFS configurations under different cache hit ratios. h is the cache hit ratio 
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This configuration does not provide best performance for both 
large and small requests, because the iRAID configuration with 
only one target node could not take advantage of parallel access; 
and thus degrade the I/O performance. 
 
5.2 I/O Response Time for Dynamic Cache Hit Rate  
 
 In real application environments, cache hit rates are 
dynamically influenced by many factors.  To obtain more 
accurate performance comparisons, it is necessary to predict 
cache hit rates dynamically for both iPVFS and PVFS.  
 
 5.2.1 Simulation Methodology.  We use trace-driven 
simulations to evaluate the cumulative hit ratios of iPVFS and 
PVFS.  We have developed a simulator to simulate two-level 
buffer cache hierarchies with multiple clients and storage 
servers.  For PVFS, LRU is used as the replacement algorithm 
in the caches of I/O nodes, but for iPVFS, uCache [16] is 
implemented to manage the two-level cache hierarchy.  We 
assume a cache block size of 64KB. The striping size is 64KB.  
The traces for the simulations are described in Table 1.  The hit 
ratios generated from the simulator are used in our two-level 
queuing model to calculate average response times.  
 
Table 1:  Characteristics of traces 
Trace Clients    IOs (millions)    Volume 
Cello92 4 0.5 per day  10.4GB 
HTTPD 7  1.1  0.5GB 
DB2 8  3.7  5.2GB 
 
 The HP Cello92 trace was collected at Hewlett-Packard 
Laboratories in 1992 [19].  It captured all L2 disk I/O requests in 
Cello, a timesharing system used by a group of researchers to do 
simulations, compilation, editing, and e-mail, from April 18 to 
June 19.  The Cello92 is a serial workload.  To test a parallel file 
system, we use trace files collected within four days as the 
workload for one client, and simulate multiple clients using 
trace files collected within one month.  
 The HTTPD workload was generated by a seven-node IBM 
SP2 parallel web server [12] serving a 524MB data set.  
Multiple HTTP servers share the same set of files.  
 The DB2 trace-based workload was generated by an 
eight-node IBM SP2 system running an IBM DB2 database 
application that performed join, set and aggregation operations 
on a 5.2GB data set.  [23] used this trace in their study of I/O  
on parallel machines.  Each DB2 client accesses disjoint parts of 
the database.  No blocks are shared among the eight clients.  We 
use the DB2 workload as the low-correlated workload for the 

multiple-client simulation.  
 The cache size of HP 9000/877 server is only 10-30MB, 
which is very small by current standard.  The Cello92 trace and 
the HTTPD trace show high temporal locality, and a small client 
cache may achieve a high hit ratio.  In our simulation, the cache 
size of each client is 16MB for both traces for PVFS, providing 
a cache hit ratio of more than 70 percent. 
 The DB2 trace shows very low temporal locality, because the 
reuse distances [27] of most blocks are less than 150K.  We 
assume the cache size of each client is 128MB in PVFS, 
providing a cache hit ratio of about 45 percent. 
 To compare the average response times of PVFS and iPVFS 
under different configurations, we vary the total number of 
storage servers to be 6

 

or 12 for the HP Cello92 and HTTPD 
traces, and to be 40 or 50 for the DB2 traces.  For iPVFS, each 
I/O node is supported by two targets.  The request size is limited 
to 64KB to simulate small I/O requests.  
 In Section 5.1 we explained that a lower cache hit rate is 
predicted for I/O nodes in iPVFS when the memory size of each 
node is the same.  In our simulation, the aggregate cache sizes of 
PVFS and iPVFS are the same, but the organization of the 
caches is different.  With Cello92 and HTTPD traces, in PVFS, 
the cache size of each I/O node is 16MB.  In iPVFS, since each 
I/O node is supported by two targets, we increase the cache size 
of each I/O node to 24MB, and decrease the cache size of the 
target nodes to 12MB.  With the DB2 trace, in PVFS, the cache 
size of each I/O node is 128MB, and in iPVFS, the cache sizes 
of each I/O node and target node are 256MB and 64MB, 
respectively.  
 
 5.2.2 Simulation Results.  First we get the cache hit ratios 
using the simulator under the Cello92, HTTPD, and DB2 traces.  
The results are given in Tables 2, 3, and 4.  Although the hit 
ratios of I/O nodes in iPVFS is lower than in PVFS, the 
cumulative hit ratios provided by both the I/O nodes and targets 
in iPVFS are higher.  
 The response times of iPVFS and PVFS under the Cello92, 
HTTPD, and DB2 traces are presented in Figures 7, 8, and 9.  
With the small number of storage servers, both the PVFS the 
and iPVFS cannot sustain larger number of requests because of 
the bottleneck from disks.  The iPVFS has better performance 
(Figure 7(a), Figure 8(a), and Figure 9(a)) because the service 
rate of the I/O nodes are not the major bottleneck.  With the 
large number of storage servers, systems could handle more 
requests.  The iPVFS performs well when the number of 
requests is relatively small, but the PVFS is better than iPVFS 
with really large number of requests, because the service rate of 
the I/O nodes is truly a bottleneck in such cases (Figure 7(b), 
Figure 8(b), and Figure 9(b)).  

 
 

Table 2:  Hit ratios of PVFS and iPVFS under the Cello92 trace 
Hit Ratio of iPVFS 

Storage Servers Hit Ratio of PVFS I/O Node 
 

Target 
 

Cumulative 
 

 6 0.782 0.714 0.42 0.834 
12 0.835 0.782 0.512 0.894 
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Table 3:  Hit ratios of PVFS and iPVFS under the HTTPD trace 
Hit Ratio of iPVFS 

Storage Servers Hit Ratio of PVFS I/O Node 
 

Target 
 

Cumulative 
 

 6 0.731 0.664 0.32 0.772 

12 0.777 0.77 0.372 0.856 
 

Table 4:  Hit ratios of PVFS and iPVFS under the DB2 trace 
Hit Ratio of iPVFS 

Storage Servers Hit Ratio of PVFS I/O Node 
 

Target 
 

Cumulative 
 

40 0.42 0.22 0.38 0.51 

50 0.48 0.39 0.2 0.52 
 

 
 

(a) 6 storage servers 

 
 

(b) 12 storage servers 
 
Figure 7: I/O response times for various iPVFS configurations 

under the Cello92 trace  

 

 
 

(a) 6 storage servers 
 
 
 

 
 

(b) 12 storage servers 
 
Figure 8: I/O response times for various iPVFS configurations 

under the HTTPD trace. 
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40 storage servers 
 

 
 

50 storage servers 
 
Figure 9: I/O response times for various iPVFS configurations 

under the DB2 trace 
 
 From above simulations we found that when the number of 
storage nodes is fixed in PVFS, performance is improved by 
adding more memory to each node.  However, in our solution, if 
iPVFS is deployed, performance is improved by only increasing 
the memory of the I/O nodes, which are often small parts of the 
total storage servers.  Furthermore, memory size of target nodes 
can be reduced to decrease the entire cost, while maintaining 
performance improvement. 
 

6 Related Work 
 
Recent studies have shown how to improve the I/O performance 
of PVFS.  Kernel level client and global caching are 
implemented in [24] to improve the I/O performance of 
concurrently executing processes in PVFS.  Apon et al. [2] 
analyzed the role of sensitivity of the I/O nodes and compute  
 

nodes and concluded that the overall I/O performance is 
degraded if a node serves both as an I/O client and as a data 
server.  To reduce disk arm seek time, several scheduling 
schemes [14, 18] are introduced in I/O nodes to re-order 
requests according to their desired locations in the space of 
logical block addresses.  CEFT-PVFS [28] increases the 
availability of PVFS by adopting a RAID-10 architecture.  It 
delivers a considerably high throughput by carefully designing 
duplication protocols and utilizing mirror data in read 
operations.  In [10] software and hardware RAIDs are used in 
PVFS I/O nodes to achieve higher aggregate I/O bandwidths.  
To eliminate communication bottlenecks of networks, Wu et al. 
[26] use the RDMA features of high-performance interconnects, 
InfiniBand, to improve the performance of PVFS.  A better 
interface and related implementation is presented in [6] to 
optimize the performance of non-contiguous I/O accesses.  Our 
work in parallel file systems is different from previous studies 
because iPVFS builds a two-level I/O architecture using iSCSI 
and iRAID. 
 Researchers have used mathematical models to analyze the 
performance of I/O systems.  Feng et al. [7] built a queuing 
model to estimate the response time of CEFT-PVFS.  Using 
approximate analysis, [13] provides a simple expression for a 
maximum delay of asynchronous disk interleaving and then 
verifies it by simulation using trace data.  Our work uses a 
two-level queuing model to evaluate the performance of iPVFS.  
 

7 Conclusions 
 
 In this paper, we present a parallel file system (iPVFS), based 
on PVFS and iRAID, for cluster computing environments, and 
develop a queuing model to measure and compare the system 
response times of both iPVFS and PVFS with the same number 
of nodes for various workloads.  Our simulation results indicate 
that iPVFS improves performance under most cases.  
 In our design, all storage nodes are divided into two groups:  
one group with more powerful servers acts as the I/O nodes, 
while the other group with relatively lower performance servers 
acts as the target nodes to provide a cost effective solution.  In a 
cluster environment, iPVFS can be deployed to improve I/O 
performance, as long as we provide high performance servers 
for I/O nodes.  
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