
1

An Efficient Penalty-Aware Cache to Improve the Performance of Parity-based Disk
Arrays under Faulty Conditions

Shenggang Wan, Xubin He, Senior Member, IEEE , Jianzhong Huang, Qiang Cao, Member, IEEE,
Shiyi Li, and Changsheng Xie, Member, IEEE

Abstract—The buffer cache plays an essential role in smoothing the gap between the upper-level computational components and the
lower-level storage devices. A good buffer cache management scheme should be beneficial to not only the computational components,
but also the storage components by reducing disk I/Os. Existing cache replacement algorithms are well optimized for disks in normal
mode, but inefficient under faulty scenarios, such as a parity-based disk array with faulty disk(s).
To address this issue, we propose a novel penalty-aware buffer cache replacement strategy, named Victim Disk(s) First (VDF) cache,
to improve the reliability and performance of a storage system consisting of a buffer cache and disk arrays. VDF cache gives higher
priority to cache the blocks on the faulty disks when the disk array fails, thus reducing the I/Os addressed directly to the faulty disks.
To verify the effectiveness of the VDF cache, we have integrated VDF into the popular cache algorithms LFU and LRU, named VDF-
LFU and VDF-LRU, respectively. We have conducted intensive simulations as well as a prototype implementation for disk arrays to
tolerate one disk failure (RAID-5) and two disk failures (RAID-6). The simulation results have shown that VDF-LFU can reduce disk
I/Os to surviving disks by up to 42.3% in RAID-5 and 50.7% in RAID-6, and VDF-LRU can reduce those by up to 36.2% in RAID-5 and
48.9% in RAID-6. Our measurement results also show that VDF-LFU can speed up the online recovery by up to 46.3% in RAID-5 and
47.2% in RAID-6 under spare-rebuilding mode, or improve the maximum system service rate by up to 47.7% in RAID-5 under degraded
mode without a reconstruction workload. Similarly, VDF-LRU can speed up the online recovery by up to 34.6% in RAID-5 and 38.2%
in RAID-6, or improve the system service rate by up to 28.4% in RAID-5.

Index Terms—Buffer Cache Replacement Algorithm, Reconstruction, Reliability, Performance.

F

1 INTRODUCTION
To reduce the number of I/O requests to the low level storage
device, such as disk arrays, a cache is widely used and many
cache algorithms exist to hide the long disk latencies. These
cache algorithms work well for disk arrays under normal fault-
free mode. However, when some disks in a disk array fail, the
RAID may still work under this faulty scenario, either a spare-
rebuilding mode with online reconstruction or a degraded
mode without online reconstruction. The cost of a miss to
faulty disks might be dramatically different compared to the
cost of a miss to surviving disks. Existing cache algorithms
cannot capture this difference because they treat the underlying
(faulty or surviving) disks in an array the same.

We take an example as shown in Figure 1, which illustrates
two different cache miss situations in a storage subsystem
composed of a parity-based RAID with one faulty disk in
degraded mode. As shown in Figure 1(a), the missed data
resides in the faulty disk. The RAID controller accesses the
surviving disks to fetch all data and parity in the same stripe
to regenerate the lost data. Therefore, to service one cache
miss, several read requests are needed depending on the RAID

• S. Wan, J. Huang∗, Q. Cao, S. Li, and C. Xie are with the School
of Computer Science and Technology, Huazhong university of science
and technology, Wuhan,Hubei 430074, China. E-mail: swan3@vcu.edu,
∗corresponding author: hjzh@hust.edu.cn, caoqiang@hust.edu.cn,
lsy011025@gmail.com, cs xie@hust.edu.cn.

• X. He is with the Department of Electrical and Computer Engineering,
Virginia Commonwealth University, 601 West Main St.,Richmond, VA
23284, USA. Email: xhe2@vcu.edu. S. Wan is currently a visiting scholar
at VCU working with X. He.

organization. However, if the missed data is in a surviving
disk as shown in Figure 1(b), only one read request to the
corresponding surviving disk is generated. Similar situations
are observed in spare-rebuilding mode. A simple analysis
shows that in a RAID-5 system consisting of n disks, when a
disk fails, the cost to fetch data from a faulty disk might be
n−1 times higher than the cost to access data from a surviving
disk. This extra disk I/O activity will reduce the effective array
bandwidth available for reconstruction or user access.

When a disk array starts online reconstruction, it uses
up regular bandwidth. Compared to offline reconstruction,
during the process of online reconstruction, the user workflow
interferes with the reconstruction workflow. As a result, the
online reconstruction duration grows significantly compared to
offline reconstruction. Wu et al. [1] point out that, in a heavy
user workflow, the duration of online reconstruction would
grow as much as 70 times as that of the offline reconstruction.
In this case, more requests to the surviving disks, caused by
user requests, reduce the available reconstruction bandwidth
and lengthen the reconstruction duration, which reduces the
reliability of the storage system.

On the other hand, in a degraded mode without a recon-
struction workflow, a miss to faulty disks would cause all the
surviving data in the same parity chain (stripe in RAID-5) to
be read and add additional workflow to surviving disks. With
a decreasing serviceability and an increasing user workflow
caused by misses to faulty disks, the storage subsystem might
be overloaded under a heavy user workflow.

Furthermore, considering the critical cases in disk arrays
tolerating two or more concurrent failures, such as RAID-
6, with the increased number of faulty disks, the misses of

2

(a) A read miss to a faulty disk might result in several
additional read requests to the surviving disks.

(b) A read miss to a surviving disk would result in only one
request to the corresponding surviving disk.

Fig. 1. Two typical cache-miss situations in a storage subsystem composed of a parity-based RAID in degraded mode.

requests to faulty disks grow accordingly. Thus, the disk arrays
would suffer from much more additional requests than that
under the case of single disk failure. As a result, the reliability
and the performance problems would be more significant.

Therefore, in parity-based disk arrays under faulty condi-
tions, a miss to faulty disks is much more expensive than
a miss to surviving disks. Based on this observation, we
propose a penalty-aware buffer cache replacement strategy,
named Victim (or faulty) Disk(s) First cache, or VDF for short,
to improve the performance of storage subsystem composed
of a parity-based disk array and its buffer cache. The basic
idea is to design a cache scheme to treat the faulty disks more
favorably, or give higher priority to cache the data associated
with the faulty disks. The goal of this scheme is to reduce the
cache miss directed to the faulty disk, and thus to reduce the
I/O requests to the surviving disks overall. Reduced disk I/O
caused by the user workflow will (1) improve the performance
of the disk array, and (2) allow more bandwidth for online
reconstruction which in turn speeds up the recovery, and thus
improves the reliability.

We make the following four contributions in this paper:

1) We propose a new metric, Requests Generation Ratio
or RGR, to capture the disk I/O activities of user
workflows on the surviving disks when a storage system
is under faulty conditions. This would directly influence
the maximum bandwidth for reconstruction in spare-
rebuilding mode and the bandwidth available to user
workflows in degraded mode.

2) We develop a novel cache replacement scheme, VDF, by

giving higher priority to cache the data associated with
the faulty disks, to minimize the RGR. VDF is flexible,
and could be integrated into existing cache algorithms
such as LRU and LFU.

3) We conduct intensive simulation to verify the effective-
ness of VDF under different workloads and different
RAID levels. The simulation results show that VDF-
LRU can reduce overall disk I/Os to surviving disks by
up to 36.2% in RAID-5 and 48.9% in RAID-6. VDF-
LFU can reduce those by up to 42.3% in RAID-5 and
50.7% in RAID-6.

4) We build a prototype of VDF to evaluate its effectiveness
in the Linux software RAID system. As a result, VDF-
LFU can speed up the online recovery by up to 46.3%
in RAID-5 and 47.2% in RAID-6 under spare-rebuilding
mode, or improve the maximum system service rate by
up to 47.7% in RAID-5 under degraded mode. Similarly,
VDF-LRU can speed up the online recovery by up to
34.6% in RAID-5 and 38.2% in RAID-6, or improve
the system service rate by up to 28.4% in RAID-5.

The rest of the paper is organized as follows: Section 2
gives a brief overview of the background and related work.
In Section 3, we describe our new metric, RGR, and the
design of VDF. Detailed case studies of VDF cache for disk
arrays tolerating single and concurrent failures are given in
Section 4; we describe integrating VDF into two typical cache-
replacement algorithms, LRU and LFU. We provide our sim-
ulation results in Section 5, and prototyping and measurement
results in Section 6. We conclude our paper in Section 7.

3

2 BACKGROUND AND RELATED WORK

In this section we briefly overview some background materials
and related work.

2.1 Optimizations of Disk Arrays under Faulty Con-
ditions
Redundant Arrays of Independent Disks RAID [2] are popular
solutions to provide high performance and reliability for
today’s storage systems. Depending on its organizations, RAID
could prevent data loss incurred by disk failures and even offer
online services under faulty conditions. With faulty disk(s),
these RAIDs would work in a spare-rebuilding mode to
support online reconstruction, or in a degraded mode without
reconstruction.

RAID can offer continuous online services even in faulty
mode. However, the recovery workload and user request can
interfere with each other, and lead to longer recovery times.
Many solutions are proposed to solve this problem, such as op-
timizations of data/parity/spare layout [3]–[7], reconstruction
workload [8]–[12], and user workload [1], [13], [14].

Menon et al. present a method to distribute spares to all
disks, which would not only reduce the lost data per disk
but also parallelize the reconstruction [4]. Holland et al. [3]
propose a trade-off between RAID-1 (mirror) and RAID-5,
named parity declustering, to balance the storage efficiency
and the recovery performance. Xin et al. use a RUSH-like hash
algorithm to evenly distribute data, parity, and spares among
the nodes in a distributed environment [5].

The track-based recovery (TBR) [8] algorithm provides a
trade-off between block-based recovery and cylinder-based
recovery, and balances the user response time and the recovery
duration. However, TBR requires much more buffer space
compared to block-based recovery. The pipelined recovery
(PR) scheme [9] addresses this problem, and significantly
reduces the buffer requirements close to that of the block-
based recovery algorithms. The disk-oriented recovery (DOR)
algorithm [10] rebuilds the array at the disk-level instead of
the stripe-level. With this approach, DOR could absorb the
bandwidth of the array as much as possible. The popularity-
based recovery (PRO) algorithm [11], [12], builds upon the
DOR algorithm, further improving the recovery performance
by utilizing the spatial locality of user requests.

Two techniques named redirection of reads and piggyback-
ing of writes [13] are proposed to reduce the user workflow
by employing the reconstructed spare disk to absorb parts of
the requests to the faulty disk. However, they need to maintain
a bitmap in the dedicated cache in the RAID device to record
the reconstruction status; as the increasing of disk size, a
fine-granularity bitmap would consume too much memory,
and increase synchronization costs. For example, a bitmap
with granularity of 4KB for a 2TB disk would require 64MB
of memory, which limits the use of piggybacking of writes.
During the reconstruction, at most a coarse-granularity bitmap
could be used only to redirect reads. MICRO [14] achieves im-
proved recovery performance by writing back the in-memory
surviving data of the faulty disks into a spare disk first and
using a file popularity table to find the hotspot. MICRO treats

all the blocks in the cache equally, which is similar to the
general cache-replacement algorithms and has the same lim-
itations. WorkOut [1], an array-cache-array method, offloads
the write requests and popular read requests to another disk
array. As a result, WorkOut speeds up the recovery process and
improves the user response time. However, WorkOut requires
another disk array to help with the reconstruction and need
maintain an addressing translation map, which might be much
larger than a fine-granularity bitmap, in the dedicated cache
on the RAID device. This suffers from the same problem as
redirection of reads and piggybacking of writes.

2.2 Buffer Cache Replacement Algorithms
RAID-based storage systems usually work together with the
buffer cache. To improve the efficiency of the buffer cache, re-
searchers have proposed many cache-replacement algorithms,
such as LRU [15], LFU, FBR [16], LRU-k [17], [18], 2Q
[19], LRFU [20], [21], MQ [22], [23], LIRS [24], [25],
ARC [26], DULO [27], DISKSEEN [28] and more. Each
cache-replacement algorithm weigh the cached blocks with
a different method, such as access interval, access frequency
and so on, then decide which to evict.

The LRU (Least-Recently-Used) algorithm is one of the
most popular and effective policies for buffer cache manage-
ment. When a block needs to be inserted into the cache, the
candidate to be evicted is the block which is least recently
used. That is to say, the weight of the cached blocks in LRU
is its last access timestamp. The block with the smallest last ac-
cess timestamp is evicted. The LFU (Least-Frequently-Used)
algorithm replaces the least frequently used block. In other
words, the weight of the cached blocks in LFU is its number
of accesses. The block with the smallest number of accesses
is evicted. Other algorithms, such as LRU-k, 2Q, LRFU, MQ,
LIRS, and ARC, integrate LRU and LFU algorithm together
and demonstrate good performance under various scenarios.
DULO and DISKSEEN consider both temporal and spatial
locality when a block need to be replaced.

However, the above cache-replacement algorithms work
well when the RAID system is under normal operating mode.
When some disks in the RAID system fail, it runs under
faulty condition, but the buffer cache layer is not aware of
the underlying failures in RAID and thus the existing cache
algorithms do not work well as explained in Section 1. This
motivates us to propose VDF: a cache scheme to treat the
faulty disks more favorably, or give a higher priority to cache
the data associated with faulty disks. The goal is to reduce
the cache misses directed to the faulty disk and thus to
reduce the I/O requests to the surviving disks overall. As our
VDF only increases the weight of blocks in the faulty disks,
theoretically it could work with the above-mentioned general
cache replacement algorithms.

2.3 RAID-6 Codes
According to the Storage Networking Industry Association
(SNIA), A RAID-6 is ”any form of RAID that can continue
to execute read and write requests to all of an array’s virtual
disks in the presence of two concurrent disk failures” [29].

4

TABLE 1
Variables and Definitions

Symbols Definition
C Total number of blocks in the buffer cache
T Total number of data blocks in a disk array
Bi Data block i
pi Access probability of each block Bi

MPi Miss penalty of each block Bi

BW Total serviceability of all surviving disks in terms of I/O bandwidth
BWU I/O bandwidth available to user workload, or service rate of the system from the user’s point of view
BWR I/O bandwidth for an online reconstruction workload
RGR The ratio of the # of requested blocks to surviving disks and the # of requested blocks to buffer cache
Q Total amount of data from surviving disks to reconstruct faulty disks

Compared to the single disk failure tolerated disk arrays,
RAID-6 disk arrays are more reliable and gaining increased
popularity, particularly in large scale data centers due to the
increased possibility of multiple failures in such systems.

RAID-6 implementations can be based on various codes,
including Reed-Solomon codes [30], Cauchy Reed-Solomon
codes [31], EVENODD codes [32], RDP codes [33], Blaum-
Roth codes [34], Liberation codes [35], Cyclic codes [36],
X-codes [37], P-codes [38], DFDP [39], HoVer codes [40],
Code-M [7], H-Code [41], and HDP-Code [42].

Reed-Solomon codes are based on addition and multiply
operations over certain finite fields GF(2w). The addition
operation over GF(2w) can be implemented by exclusive-
OR operation. However, the multiply operation should be
implemented using tables with much more complex. Cauchy
Reed-Solomon codes address this problem and improve Reed-
Solomon codes by changing the complex multiply operation
into additional XOR operations.

EVENODD is a special erasure coding technology only for
the case of RAID-6. It contains two types of parity: the P
parity, which is just like the horizontal parity in RAID-4,
and the Q parity, which is generated by the elements on the
diagonal. RDP is another special erasure coding technology
only for the case of RAID-6. The P parity of RDP is the
same as EVENODD, but a different construction of the
Q parity brings the optimal construction and reconstruction
computational complexity.

A special class of erasure coding technologies called
Minimum Density (MD) codes are proposed to achieve op-
timal short write/update performance. Blaum et al [34] point
out in a typical horizontal code defined by an m-row-k-column
matrix of data elements for RAID-6, if the P parity is fixed to
be horizontal parity, then there must be at least mk + k − 1
elements joining in the generation of the Q parity in order
to make the code be lowest density. Blaum-Roth, Liberation,
and Liber8tion codes are all minimum density. Compared with
other horizontal codes for RAID-6, minimum density codes
share a common advantage that they have the near-optimal
short write/update complexity.

X-codes, Cyclic codes, and P-codes are vertical codes, for
their parities are not in the individual redundant disk drives,
but dispersed over all the disk drives. This fact gives the two
codes optimal computational and update complexity [38]. H-
Code and HDP-Code are hybrid codes, taking advantages of

both horizontal codes and vertical codes. HoVer codes and
Code-M are non-MDS codes to tradeoff the spatial utilization
for reconstruction/decoding cost.

Although Reed-Solomon codes have some significant flaws,
they are still widely used in many systems, such as the RAID-
6 implementation in Linux kernel. And our evaluations on
RAID-6 are based on the RS codes.

3 DESIGN OF VDF
In this section, we propose a new metric to describe the
cache efficiency of disk I/O activities. We show how to use
it to evaluate disk arrays under faulty conditions, and then
we describe our VDF scheme. Before our discussion, we
summarize the symbols in Table 1.

3.1 RGR: A New Metric to Evaluate Cache Perfor-
mance with Various Miss Penalty
Traditional cache replacement algorithms are essentially eval-
uations on blocks access probability, which is typically the
frequency of accesses to certain blocks in I/O workloads [17],
[18], [24], [25], assuming that the penalty of each miss at
the same level is the same. However, in parity-based RAID
with faulty disk(s), the penalty of a miss to the lost data in
the faulty disks might be much more expensive than that of a
miss to surviving data. Therefore, from the aspect of a RAID
device, the buffer cache performance should not be simply
evaluated by the traditional metrics such as Hit Ratio or Miss
Ratio, particularly when the RAID is under faulty conditions.
To address this issue, we propose a new metric called Requests
Generation Ratio or RGR to evaluate the cache performance
from the view point of a faulty RAID device. RGR is defined
in Equation 1, It represents the disk activities to service an
I/O request to the buffer cache. Ideally, if all I/O requests
are serviced by the buffer cache, RGR will be 0 (no disk
I/Os are generated). For missed I/O requests, RGR will be
different depending on the penalty to each underlying disk.
For example, in Figure 1(a) the RGR of a miss to the faulty
disk is 4 because 4 disk I/Os are generated to service the
missed I/O request, and in Figure 1(b), the RGR of a miss to
surviving disks is 1.

RGR =
of block requests to surviving disks

of block requests to buffer cache
(1)

5

To calculate the RGR, we assume a parity-based RAID of
T data blocks with a buffer cache of C blocks. The access
probability of a block Bi is pi, where 0 ≤ i ≤ T − 1, with
a miss penalty of MPi in terms of the total requested blocks
to surviving disks caused by a miss. From the viewpoint of a
certain workload, pi actually represents the ratio of the number
of request on Bi and the number of total block requests. If
block Bi is not referenced in this workload, pi should be 0. As
we have mentioned above, different cache algorithms evaluate
pi with different approaches in runtime environments. If a
block is serviced by the cache, the corresponding miss penalty
MPi = 0. Therefore, the RGR of the next block request can
be described by the following Equation 2.

RGR =

T−1∑
i=0

(pi ×MPi) (2)

3.2 Use RGR to Evaluate the Cache Efficiency in
Faulty Mode

Consider a system composed of a buffer cache and a RAID
in faulty mode which service a certain user workload. We
have the following symbols. First, the total serviceability of all
surviving disks is BW in terms of I/O bandwidth. Second, the
unfiltered user workload would take BWU bandwidth, which
is the service rate of the system from a user’s perspective.
The average RGR of the buffer cache is RGR. Therefore,
the filtered user workload should take about BWU × RGR
bandwidth. Third, all the remaining bandwidth BWR of all
surviving disks could be utilized for reconstruction. Lastly,
the total amount of surviving data for reconstruction is Q.
Equation 3 describes the relationships among BW , BWU ,
RGR, and BWR.

BW = BWU ×RGR+BWR (3)

We first consider the spare-rebuilding mode. The surviving
disks would suffer from more requests as explained in Section
1. It means the I/O bandwidth available for reconstruction on
the surviving disks would be less than the I/O bandwidth for
reconstruction on the spare disk. The total amount of requested
data for reconstruction on each disk (including the surviving
disks and the spare disks) is the same. Therefore, to the online
recovery process, the I/O bandwidth for reconstruction on the
surviving disks is the bottleneck. The reconstruction duration
RD could be described with Equation 4.

RD =
Q

BW −BWU ×RGR
(4)

From Equation 4, we can find that, if Q, BW , and BWU are
fixed, with the decreasing RGR, the reconstruction duration
RD (and thus MTTR) decreases. Therefore, to minimize the
MTTR, we should minimize the RGR.

We next consider the degraded mode without reconstruction.
Each surviving disk would suffer from the extra requests
caused by the access to faulty disks. The filtered user workload
should not exceed the total serviceability of all surviving disks.
In another words, the maximum unfiltered user workload

BWU should not exceed BW
RGR . Therefore, we should minimize

the RGR to maximize the system serviceability, which is
described with a maximum BWU .

From the above discussion, we notice that compared to the
traditional metrics on cache evaluation, such as miss ratio,
RGR is useful to demonstrate two important indicators of
a faulty disk array more clearly and directly. One is the
reconstruction time which is directly related to MTTR and
affects the system reliability. The other is the throughput that
indicates the performance of the storage system.

3.3 VDF Cache

Based on above analysis, we propose our VDF cache aiming
at reducing the RGR for parity-based RAID under faulty
conditions, either to enhance the system reliability by speeding
up the reconstruction process in spare-rebuilding mode, or
to improve the system performance by increasing the system
serviceability in degraded mode without reconstruction work-
loads. As it works in the buffer cache level, VDF is practical
and will not suffer from the problems of the small dedicated
cache in a RAID controller.

Cache replacement algorithms are essentially evaluations
on access probability of cached blocks. Once a miss occurs,
typically a block should be evicted from cache, and the missed
block would be loaded to the free space. General replacement
algorithms evict the block with the smallest access probability
to reduce the total access probability of the remaining blocks
out of buffer cache. However, to minimize the RGR, the
eviction of a block should not only be determined by the
access probability but also by the miss penalty. To integrate
VDF into any cache replacement algorithms, we take the same
evaluation approach of access probability (pi) for each cached
block as the original algorithm. A cache replacement operation
indicates a block is evicted from cache and another block
is fetched to cache. Since the block fetched to the cache is
known (the missing block), the influence on RGR will be
determined by which block is evicted. When a block resides
in cache, its MPi is zero. If it is evicted from cache, its MPi

increases depending on where it is (in a faulty or surviving
disk). The eviction of a block will increase the total RGR by
(MPi−0)×Pi. Therefore if we choose a block with minimum
pi ×MPi to evict, it has the least impact on increasing RGR
and thus to keep RGR minimal.

4 CASE STUDIES OF VDF

To verify the effectiveness of VDF, we apply VDF in disk
arrays of n disks to tolerate one disk failure (RAID-5) and
two concurrent disk failures (RAID-6). We focus on read
operations for two reasons: first, in many applications, users
are typically sensitive to read latency, particularly in a disk
array under faulty conditions; second, in many storage sys-
tems, independent non-volatile memory is deployed as a write
cache to enhance the reliability and this cache uses a dedicated
write cache algorithm. For cache replacement algorithms, we
consider the simple while popular LRU and LFU algorithms.

6

Fig. 2. VDF implementation with two types of stacks.

4.1 Integrate VDF into LRU and LFU

Although VDF cache can cooperate with caches at other levels
by adjusting the miss penalty of blocks, for demonstration
purposes we just consider a one level buffer cache above the
disk array. Therefore, the miss penalty of blocks on the faulty
disk would be n − 1 for RAID-5 and n − 2 for RAID-6 in
our following discussion, which means one cache miss to the
faulty disk will result in n − 1 or n − 2 I/O requests to the
surviving disks, respectively. To integrate VDF with any cache
algorithm, the access probability should be evaluated with a
quantitative approach. Different cache replacement algorithms
evaluate the access probability of blocks using different ap-
proaches. Most existing cache management algorithms can be
categorized into LRU-like and LFU-like algorithms. In LRU-
like algorithms, the weight of blocks is often evaluated by
the access time interval. As it is costly to record the real
access timestamp, a straight alternative is to record the access
sequence number, and use the reciprocal of the interval access
sequence number as the access probability. This approach is
widely used in many LRU-like algorithms [17], [18], [20],
[21]. In LFU-like algorithms, the weight of blocks is majorly
evaluated by the access frequency. Thus, to integrate VDF into
these LFU-like algorithms, it needs only to keep the original
evaluation approach. Furthermore, different from the access
sequence number, the access frequency of two blocks might be
the same. Therefore, in VDF based LFU-like algorithms, the
access sequence number is also employed for choosing which
block to evict with the same access frequency. In VDF cache
the access probability of a block would not be the absolute but
the relative value, because both the reciprocal of interval of
access sequence number and the access frequency are actually
the relative values.

The conversion from the original cache algorithms to the
VDF-based algorithms should be smooth, because VDF takes
effect in faulty mode. In other words, the buffer cache should
be managed with the original algorithms in fault-free mode,
and the VDF policy becomes effective when disk failures
occur. Thus, a smooth runtime conversion between the original
algorithm and the VDF-based algorithm is needed, which is

quite different from the general cache algorithms. Therefore,
in VDF-based algorithm, two types of stacks are employed
to achieve the smooth runtime conversion: one is the global
stack (GS) which is similar to the stack in a general algorithm
such as global LRU stack, and the other is the local stack
(LS) holding the blocks on the same disk in cache. All blocks
should be in two types of stacks concurrently as shown in
Figure 2. When the system works in fault-free mode, it evicts
the block with the smallest access probability (pi) at the
bottom of the GS stack. Once a disk array drops to a faulty
mode, it evicts the block with the smallest pi × MPi at the
bottom of each LS stack instead of evicting the block at the
bottom of the GS stack.

Algorithm 1: VDF-LRU for disk arrays of n disks toler-
ating one or two failures

Input: The request stream x1, x2, x3, ..., xi, ...
VDF LRU Replace(xi){
/*For every i ≥ 1 and any xi, one and only one of the following cases must
occur.*/
if xi is in LSk ,0 ≤ k < n then

/*A cache hit has occurred.*/
Update TS of xi, by TS = GTS;
Move xi to the heads of LSk and GS.

else
/*A cache miss has occurred.*/
if Cache is full then

foreach block at the bottom of LSj , 0 ≤ j < n do
if LSj is a corresponding stack to a faulty disk then

Its weight W=GTS − TS;
else

if It’s in RAID-4 or RAID-5 then
Its weight W=(GTS − TS) ∗ (n− 1);

else
/*Case of RAID-6*/
Its weight W=(GTS − TS) ∗ (n− 2);

Delete the block with maximum W to obtain a free block;
else

/*Cache is not full.*/
Get a free block.

Load xi to the free block.
Update TS of xi, by TS = GTS;
Add xi to the heads of GS and the corresponding LS.

Update GTS, by GTS = GTS + 1;
}

4.2 Detailed Description of VDF-LRU and VDF-LFU
Detailed descriptions of VDF-LRU and VDF-LFU for disk
arrays of n-disk tolerating one or two disk failures are given in
Algorithm 1 and Algorithm 2, respectively, using the variables
summarized in Table 2.

5 SIMULATION RESULTS AND ANALYSIS

To evaluate the effectiveness of VDF, we conducted simu-
lations under three typical workloads: SPC-1-web, LM-TBE,
and DTRS.

SPC-1-web, a trace used in the SPC-1 benchmark suites,
was collected in a search engine, which is widely used in
the evaluation of storage systems [1], [11], [14]. LM-TBE
and DTRS are provided by Microsoft Corporation collected in
2008. The LM-TBE trace was collected in back-end servers
supporting a front-end Live Maps application. The DTRS trace
was collected in a file server accessed by more than 3000 users
to download various daily builds of Microsoft Visual Studio.

7

TABLE 2
Variants in VDF and Explanation

Variants Explanation
x A block request to buffer cache
LS The local stack holding the blocks on one certain disk in the buffer cache
GS The global stack holding all the blocks on all the disks in the buffer cache
n The total number of disks including the faulty disk and surviving disks
TS The timestamp of a block: records the access sequence number
F The access frequency of a block

GTS The global timestamp: it is equal to the timestamp of currently accessed block
W The weight of a block

Algorithm 2: VDF-LFU for disk arrays of n disks toler-
ating one or two failures

Input: The request stream x1, x2, x3, ..., xi, ...
VDF LFU Replace(xi){
/*For every i ≥ 1 and any xi, one and only one of the following cases must
occur.*/
if xi is in LSk ,0 ≤ k < n then

/*A cache hit has occurred.*/
Update F and TS of xi, by F = F + 1;
Move xi to right place of LSk and GS according to F and TS.

else
/*A cache miss has occurred.*/
if Cache is full then

foreach block at the bottom of LSj , 0 ≤ j < n do
if LSj is a corresponding stack to a faulty disk then

if It’s in RAID-4 or RAID-5 then
Its weight W=F ∗ (n− 1);

else
/*Case of RAID-6*/
Its weight W=F ∗ (n− 2);

else
Its weight W=F ;

Delete the block with minimum W and GTS − TS to obtain a free
block;

else
/*Cache is not full.*/
Get a free block.

Load xi to the free block.
Initialize the frequency F and TS of xi, by F = 1 and TS = GTS;
Move xi to right place of LSk and GS according to F and TS.

Update GTS, by GTS = GTS + 1;
}

Both traces were taken in a period of 24 hours and broken into
pieces with 1-hour intervals [43]. We choose only the piece
with most intensive I/O activities. For fairness and simplicity,
we consider only the read operations and all block sizes are
4KB. Critical situation is only considered here that in our
simulation we only focus on single disk failure in RAID-5 and
concurrent double disk failures in RAID-6. We report RGR of
LRU, LFU, VDF-LFU, and VDF-LRU under these workloads
as shown in Figures 3, 4, 5, 6, 7, and 8, respectively.

Our simulator, named VDF-Sim, is written in C and the
source code is approximately 3000 lines. It slices/splits the
trace records into block requests as the input. Data blocks in
a stack or blocks with the same hash values are linked via
double circular lists. For a certain block in our simulator, we
record its logical offset as the unique ID as the disk array is
transparent to the upper level systems such as a file system.
According to the data/parity distribution of the disk array and
the logical offset of a block, it is easy to identify which disk
the block resides on. The arriving timestamps of the requests
are also recorded to evaluate pi as we mentioned in Section

4, and to generate the misses trace in the next section.
The results show that, compared to the original LRU and

LFU algorithms, VDF optimized algorithms achieved better
performance consistently by reducing the RGR. Compared to
LRU, VDF-LRU reduces the RGR by up to 31.4%, 36.2%, and
22.7% for RAID-5, and by up to 42.9%, 48.9%, and 28.3%
for RAID-6 under SPC-1-web, LM-TBE, and DTRS traces,
respectively. Compared to LFU, VDF-LFU reduces the RGR
by up to 42.3%, 39.4%, and 24.4% for RAID-5, and by up to
50.2%, 50.7%, and 28.3% for RAID-6 respectively.

We find that the efficiency of VDF grows with the increased
number of disks under the same number of cache-resident
blocks in most cases. The efficiency of VDF is more significant
with a moderate number of cache-resident blocks than that
with a too small or too large number of cache-resident blocks.
This can be explained as follows. The cache-resident blocks of
a faulty disk in the original algorithm would occupy 1/n cache
space with total n disks. With the fixed cache-resident blocks
and the increased n, the number of cache-resident blocks of
the faulty disk would be smaller. From the aspect of cache
management, the impact of the marginal utility of blocks on
hit ratio tends to decrease with the increased cache size. For
example, adding P1 blocks to a cache with P2 blocks might
improve the hit ratio with a larger gain compared to adding
P1 blocks to cache with P3 blocks when P2 < P3. Thus,
the marginal utility of blocks would be more obvious with
more disks and thus the efficiency of VDF grows accordingly.
However, if the number of cache-resident blocks is too small,
it is hard to find hot blocks even with an extended period due
to the large access interval. On the other hand, if the number of
cache-resident blocks is too large, most of the requested blocks
from the faulty disks would be cached, and the marginal utility
of blocks becomes insufficient.

We also find that the VDF strategy becomes more efficient
with LFU than LRU under the three workloads. One possible
reason is that the temporal locality of these traces is weak
as they are server-end traces and already filtered by upper
level caches. Thus, the Stack Depth Distribution property of
these traces is weak. As a result, the Independent Reference
Model property of these traces would be relatively improved.
Although we improve the weight of the blocks on faulty disk
to n − 1 times for RAID-5 and n − 2 times for RAID-6
in both VDF-LRU and VDF-LFU, the efficiency is not the
same. Mostly, the caching duration of blocks from a victim
disk in VDF-LFU is longer than that in VDF-LRU, especially
when the total number of cache-resident blocks is not large.

8

Simulation Results of the Web Trace for RAID 5
R
G
R

Fig. 3. Simulation results for a RAID-5 under the SPC-1-web trace. The number of disks ranges from 5 to 8, and the
number of cache blocks varies from 64K or 65536 to 2M or 2097152 with the block size of 4KB.

Simulation Results of the LM TBE Trace for RAID 5

R
G
R

Fig. 4. Simulation results for a RAID-5 under the LM-TBE trace with various number of disks and cache blocks. The
block size is 4KB.

Simulation Results of the DTRS Trace for RAID 5

R
G
R

Fig. 5. Simulation results for a RAID-5 under the DTRS trace with various number of disks and cache blocks. The
block size is 4KB.

9

Simulation Results of the Web Trace for RAID 6
R
G
R

Fig. 6. Simulation results for a RAID-6 under the SPC-1-web trace. The number of disks ranges from 6 to 9, and the
number of cache blocks varies from 64K or 65536 to 2M or 2097152 with the block size of 4KB.

Simulation Results of the LM-TBE Trace for RAID-6

R
G

R

Fig. 7. Simulation results for a RAID-6 under the LM-TBE trace with various number of disks and cache blocks. The
block size is 4KB.

Simulation Results of the DTRS Trace for RAID-6

R
G

R

Fig. 8. Simulation results for a RAID-6 under the DTRS trace with various number of disks and cache blocks. The
block size is 4KB.

10

Therefore, VDF-LFU works better than VDF-LRU in these
traces in most cases.

From the simulation results, VDF cache seems to be more
effective under the case of concurrent disk failures in RAID-6
than the case of single disk failure RAID-5. To our analysis,
the reason is there are much more misses on faulty disks in
cases of RAID-6 with concurrent double disk failures than that
of RAID-5 with single disk failure. It would bring a higher
RGR and leave a larger room for optimization.

6 PROTOTYPING OF VDF
To further evaluate VDF, we implemented a prototype of VDF
in a software RAID system in Linux known as MD. In this
section, we present our measurement results for both RAID-
5 and RAID-6, including the efficiency of online recovery
duration in full-bandwidth reconstruction mode and system
service rate under the degraded mode without reconstruction.

6.1 Evaluation Methodology
Measurements on real world systems are welcome in research
of computer systems. However, implementation in a real sys-
tem is a lengthy process and always complex and challenging.
Here, we use a straightforward and accurate measurement
approach to evaluate the efficiency of VDF. The architecture
of our prototype is described in Figure 9. First, we collect the
cache miss information during our simulation in Section 5,
which includes not only the block ID but also the real access
timestamps. Then, we treat the RAID as a file device, and
use an application in user mode to play the traces we have
collected from our simulations which is similar to RAID-
meter [1], [11]. However, the difference is that our application
uses direct I/O (available in Linux -2.6 and up) instead of
buffered I/O to avoid the requests being re-cached by the file
system buffer cache. All missed I/O requests sent to the MD
layer directly. Thus our simulation and the application join
together to exploit the buffer cache and replacement algorithm.
The trace player is also written in C and the source code is
approximately 500 lines.

In our experiment, we evaluated the effectiveness of VDF,
including the online reconstruction duration in full-bandwidth
reconstruction mode, and the system serviceability in the de-
graded mode without reconstruction. For online reconstruction
in full-bandwidth reconstruction mode, an open-loop measure-
ment approach is adopted, where all filtered traces are played
according to their timestamps as recorded in the original trace
file. For degraded mode, a closed-loop measurement approach
is adopted, where all filtered traces are played only according
to their original sequence one by one and without any interval,
to find the system serviceability.

6.2 Experimental Environment
In our experiment, we employ a SuperMicro storage server
with two Intel(R) Xeon(R) X5560 @2.67GHz (6 cores) CPUs,
12GB DDR3 main memory. All disks are Western Digital
WD10EALS Caviar Blue SATA2, which are connected by an
Adaptec 31605 SAS/SATA RAID controller with a 256MB

Fig. 9. Architecture of VDF prototype.

dedicated cache. We disabled the RAID function of the con-
troller and only used the direct I/O mode to connect each
disk. The operating system is Linux Fedora 12 X86 64 with
the kernel version of 2.6.32.

In Linux, there is a software implementation of RAID called
Multiple Devices MD, which is popular in verification of
RAID optimization scheme [1], [11]. To facilitate the analysis
and verification of VDF cache, we also used MD as our
experimental platform. We used the default settings of MD:
the chunk size is 64KB, the number of stripe-heads is 256
and the data layout is left-symmetric. In our open-loop testing,
the minimum reconstruction bandwidth is set to 100MBps to
utilize all remaining bandwidth for reconstruction besides the
bandwidth taken by user workloads.

As VDF targets the storage server consisting of disk arrays
which run under faulty conditions, we chose the server-end
trace SPC-1-web as our experimental material, which spans a
60GB dataset. The workload is filtered by 131072 to 524288
blocks in our simulation to generate the experimental inputs.
In the open-loop measurement, we test VDF with 5 to 8 disks.
The results are reported in terms of reconstruction speed. The
improvements of VDF over the original LRU and LFU are
calculated. In the close-loop measurement, we used a multi-
threaded application to play the filtered trace to measure the
service rate. We also evaluated the impact of thread number
to service rate, in addition to the impact of the number of
blocks and the number of disks. The results are reported as
system service rate improvement by VDF cache compared to
original LFU and LRU. We ran each test three times and report
the average. The results are very stable and consistent as the
difference among all three rounds was very small (less than
5%).

11

TABLE 3
Experimental Results of an Open-loop Testing for RAID-5 of 5-8 Disks

Disks Blocks LRU (s) VDF-LRU (s) Improvement LFU (s) VDF-LFU (s) Improvement

5 disks
131072 2662 2543 4.5% 2710 1929 28.8%
262144 2958 1935 34.6% 2851 1531 46.3%
524288 1845 1407 23.7% 1786 1310 26.7%

6 disks
131072 1176 1147 2.5% 1175 964 18.0%
262144 1234 943 23.6% 1226 921 24.9%
524288 1027 818 20.4% 1005 806 19.8%

7 disks
131072 730 685 6.2% 733 652 11.1%
262144 758 659 13.1% 761 657 13.7%
524288 691 599 13.3% 687 598 13.0%

8 disks
131072 504 485 3.8% 509 485 4.7%
262144 558 501 10.2% 560 501 10.5%
524288 527 483 8.4% 526 479 8.9%

TABLE 4
Experimental Results of an Open-loop Testing for RAID-6 of 6-9 disks.

Disks Blocks LRU (s) VDF-LRU (s) Improvement LFU (s) VDF-LFU (s) Improvement

6 disks
131072 4667 4269 8.5% 4796 3843 19.8%
262144 4447 2750 38.2% 4399 2323 47.2%
524288 2567 1744 32.1% 2499 1623 35.1%

7 disks
131072 2180 2131 2.2% 2188 2024 4.9%
262144 2168 1905 12.1% 2111 1676 20.6%
524288 1773 1544 12.9% 1710 1470 14.0%

8 disks
131072 1510 1450 4.0% 1492 1340 10.2%
262144 1504 1233 18.0% 1508 1106 26.7%
524288 1305 1053 19.3% 1297 1038 20.0%

9 disks
131072 1103 1079 2.2% 1097 1056 3.7%
262144 1102 1010 8.3% 1100 998 9.3%
524288 1015 970 4.4% 1006 969 3.7%

6.3 Open-loop Measurement Results and Analysis

Table 3 and Table 4 describes the results under an open-loop
testing using the SPC-1-web trace for RAID-5 and RAID-6
respectively, where the number of disks ranges from 5 to 8 in
RAID-5 and from 6 to 9 in RAID-6, and the number of blocks
ranges from 131072 to 524288. The experimental results of the
open-loop testing show that compared to the original LRU and
LFU algorithms, the VDF-optimized algorithm speeds up the
online reconstruction process. The speedup of VDF-LFU is
up to 46.3% in RAID-5 and 47.2% in RAID-6 compared to
LFU. VDF-LRU speeds up the online reconstruction by up to
34.6% in RAID-5 and 38.2% in RAID-6 compared to LRU.

With the same number of cache-resident blocks, the exper-
imental results show that the improvement of reconstruction
durations of VDF-LFU to LFU decreases with the increased
number of disks in most cases. Similar trend is also observed
for the improvement of VDF-LRU over LRU, except for
seven to eight disks in RAID-6 and low improvement of
RGR using VDF when the number of blocks is 131072.
These trends are in contrast to our previous simulation results
where the efficiency of VDF tends to be more sufficient with
increased number of disks. From Equation 4, the improvement
of reconstruction durations of VDF-LFU to LFU, which is
presented by Imprv, could be described with Equation 5.
BWU × RGRV DF is always less than BW otherwise the
system would be overloaded, so BW

RGRV DF
is larger than BWU .

VDF works in most cases where RGRORI

RGRV DF
is larger than

1, thus BWU∗RGRORI

RGRV DF
is larger than BWU . Therefore, the

changing rate of improvement according to the number of
total disks should only be determined by the changing rates of

BWU×RGRORI

RGRV DF
−BWU and BW

RGRV DF
−BWU . Obviously, BW

grows linearly with the total number of disks. The changing
rate of the latter is larger than the change rate of BW . From
the simulation result, we can find that the changing rate of
the former is much smaller than that of BW with the number
of disks from 5 to 8 in RAID-5. Therefore, in most cases
shown above, the improvement of reconstruction durations of
VDF cache to the original cache decreases with the increased
number of disks. However, in case of RAID-6 with seven to
eight disks, the changing rate increases to more than 20%. As
a result, the improvement increases in such case.

RDImprv =
BWU∗RGRORI

RGRV DF
−BWU

BW
RGRV DF

−BWU

(5)

With the same number of disks, we notice that the recon-
struction duration of the trace filtered by 131072 blocks is less
than the reconstruction duration of trace filtered by 262144
blocks in many cases. On one hand, as we use a number of
blocks to warm up the cache, this part of the miss information
is not recorded in our filtered trace file. The first 131072
block misses in the trace filtered by 262144 blocks has a
lower average arrival rate than the remaining part. On the other
hand, when the number of blocks in the cache is 131072 or
262144, the cache is too small to find the hot blocks, which
implies fewer hits in those cases and the RGRs are similar.
Therefore, the reconstruction duration of the trace filtered by
131072 blocks might be less than that of the trace filtered by
262144 blocks in those cases.

12

Fig. 10. Service rate improvement of VDF in degraded
mode of a RAID-5 of 8 disks. The number of blocks is
524288 and the number of threads ranges from 20 to 80.

Fig. 11. Service rate improvement of VDF in degraded
mode of a RAID-5 of 8 disks. The number of blocks is
from 131072 to 524288 and the number of threads is 60.

6.4 Close-loop Measurement Results and Analysis

Figures 10, 11, and 12 present the close-loop testing results
under different scenarios with various numbers of threads,
disks, and data blocks. The results are reported as service
rate improvement, which is inversely proportional to the Play
Duration (PD) of a whole filtered trace. For example, the
corresponding service rate improvement of VDF-LRU to LRU
should be calculated by PDLRU−PDV DF−LRU

PDV DF−LRU
.

From the experimental results, we find that VDF is effective
in improving the system service rate. Compared to LFU, VDF-
LFU improves the system service rate up to 46.8% with 60
threads under 8 disks and 262144 blocks. Compared to LRU,
VDF-LRU improves the system service rate by up to 28.4%
with 80 threads under 8 disks and 524288 blocks.

With the increasing number of I/O threads, the service
rate improvement increases accordingly and gets close to the
theoretical value calculated by the simulation results. Although
the whole trace would be evenly distributed on all disks due
to the round-robin addressing in RAID, the incoming user
requests might not be evenly distributed on all the disks during
a short period. Therefore, with a larger number of threads,
which implies a longer scheduling window, the distribution of
incoming user requests is more balanced and the user service
rate is closer to the maximum system service rate.

Fig. 12. Service rate improvement of VDF in degraded
mode of a RAID-5 of 5 to 8 disks. The number of blocks
is 524288 and the number of threads is 60.

With the same number of blocks and a fixed number of
threads, the service rate improvement of VDF-LRU to LRU
is consistent with the trend of the simulation result. However,
to our surprise, the results of VDF-LFU to LFU were just
opposite with the trend of the simulation result. As per our
analysis, this was primarily due to two reasons. First, from
the simulation result, the relative RGR reduction of VDF-
LFU to LFU with 524288 blocks is in a small area from
33.7% to 35.6%. Second, the number of concurrent threads is
fixed, which means that the number of threads per disk would
increase with the decreased total number of disks. Thus, based
on the above analysis, when the total number of disks is small,
the improvement is closer to the theoretical value. Therefore,
under close to theoretical peak service rates and more I/O
threads per disk, the trend of service rate improvement of
VDF-LFU to LFU is very possibly opposite with the trend
of the simulation result. As a result, with the same number
of disks and a fixed number of threads, which means a fixed
number of I/O threads per disk, the service rate improvement
is quite consistent with the trend of the simulation results.

6.5 Further Discussion

Several more issues deserve further discussion. The first issue
is the implementation cost of VDF. As we mentioned in
Section 4, to make the smooth conversion between the original
cache algorithms and the VDF-based algorithms, two types
of stacks should be employed to implement VDF cache. This
adds both spatial and temporal overhead. The spatial overhead
include the extra information in each block head such as
the timestamp and the extra stack pointer of the local stack.
Compared to the buffer cache size, this overhead is very
small. The temporal overhead is the computation of the weight
of block at the bottom of each LS stack. Due to the high
computation ability of today’s CPU, this should not influence
the overall system performance.

Second, can we integrate VDF into other optimizations
in faulty mode? As the VDF cache essentially reduces the
user requests to the surviving disks, it can be integrated with
other optimizations in faulty mode, such as optimization on
data/parity/spare layout and reconstruction workloads. The

13

approach of redirection of reads utilizes the reconstructed data
in a spare disk to serve part of the reads to the faulty disk. Thus
the miss penalty of these reconstructed data block is zero in
terms of extra requests to the surviving disks. There still exist
hot data with large miss penalty on faulty disks. Therefore,
VDF can still help.

Third, could RGR be suitable to describe the status of
write operation? From its definition, RGR is determined by
MPi and pi. The calculation of pi in write operations is
similar to read operations. However, the calculation of MPi

in write operations is quite different from read operations, as
they might be done with two approaches based on the parity
distribution in RAID with faulty disk(s). One is the Read
Modify Write, and the other is Parity-Reconstruction-Write.
Here, we take an example of short writes on an n-disk RAID-
5 with one faulty disk to demonstrate the MPi calculation for
write operations. Once a short write is sent to the surviving
disks and the corresponding parity is not on the faulty disk,
the Read-Modify-Write should be performed which results in
two reads and two writes on the surviving disks, and thus the
MPi is 4. Otherwise, the Parity-Reconstruction-Write should
be performed which results in n − 1 reads and one write on
the surviving disks, and thus the MPi is n.

7 CONCLUSIONS

In this paper, we present a penalty-aware buffer cache replace-
ment strategy, named Victim (or faulty) Disk(s) First (VDF)
cache, to improve the reliability and performance of a RAID-
based storage system, particularly under faulty conditions. The
basic idea of VDF is to treat the faulty disks more favorably,
or give a higher priority to cache the data associated with the
faulty disks. The benefit of this scheme is to reduce number of
the cache miss directed to the faulty disk, and thus to reduce
the I/O requests to the surviving disks overall. Less disk I/O
activity caused by the user workflow will (1) improve the
performance of the disk array, and (2) allow more bandwidth
for online reconstruction which in turn speeds up the recovery,
and thus improves the reliability. Our results based on both
simulation and prototyping implementation has demonstrated
the effectiveness of VDF in terms of reduced disk I/O activities
and a faster recovery.

ACKNOWLEDGMENTS

A preliminary version of this work was presented at the
USENIX Annual Technical Conference [44] and we have
made substantial changes in this manuscript. We are grateful
to anonymous reviewers for their helpful comments and sug-
gestions. This research is sponsored by the National Basic Re-
search 973 Program of China under Grant No. 2011CB302303
and the National Natural Science Foundation of China under
Grant No. 60933002. The work at VCU is partially supported
by the U.S. National Science Foundation (NSF) under grants
CCF-1102605, CCF-1102624, and CNS-1218960. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the funding agencies.

REFERENCES

[1] S. Wu, H. Jiang, D. Feng, L. Tian, and Bo Mao. WorkOut: I/O
workload outsourcing for boosting RAID reconstruction performance.
In Proceedings of the 7th USENIX FAST Conference, USA, 2009.

[2] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In Proceedings of the 1988 ACM
SIGMOD international conference, Chicago, Illinois, USA, June 1988.

[3] M. Holland and G. A. Gibson. Parity declustering for continuous
operation in redundant disk arrays. In Proceedings of the 5th Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 23–35, Boston, Massachusetts, USA, October 1992.

[4] J. Menon and D. Mattson. Distributed sparing in disk arrays. In
Proceedings of the 37th international conference on COMPCON, pages
410–421, USA, 1992.

[5] Q. Xin, P. L. Miller, and T. J. E. Schwarz. Evaluation of distributed
recovery in large-scale storage systems. In Proceedings of 13th IEEE
International Symposium on High Performance Distributed Computing,
pages 172–181, June 2004.

[6] G. K.M, X. Li, and J. J. Wylie. Flat XOR-based erasure codes in storage
systems: Constructions, efficient recovery, and tradeoffs. In 26th IEEE
MSST Conference, USA, 2010.

[7] S. Wan, Q. Cao, C. S. Xie, B. Eckart, and X. He. Code-M: A non-
MDS erasure code scheme to support fast recovery from up to two-disk
failures in storage systems. In IEEE/IFIP DSN International Conference,
USA, 2010.

[8] R. Y. Hou, J. Meno, and Y. N. Patt. Balancing I/O response time and
disk rebuild time in a RAID5 disk array. In Proceeding of the 26th
Hawaii International Conference on System Sciences, Jan 1993.

[9] J. Y.B. Lee and J. C.S. Lui. Automatic recovery from disk failure in
continuous-media servers. The Computer Journal, 13(5), May 2002.

[10] M. Holland, G. A. Gibson, and D. P. Siewiorek. Fast, on-line failure
recovery in redundant disk arrays. In The 23rd International Symposium
on Fault-Tolerant Computing, pages 422–431, France, 1993.

[11] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang,
and Z. Song. PRO: A popularity-based multi-threaded reconstruction
optimization for RAID-structured storage systems. In Proceedings of
the 5th USENIX FAST Conference, pages 277–290, USA, 2007.

[12] L. Tian, H. Jiang, and D. Feng. Implementation and evaluation of a
popularity-based reconstruction optimization algorithm in availability-
oriented disk arrays. In 24th IEEE MSST Conference, pages 233–238,
USA, 2007.

[13] R. R. Muntz and J. C. S. Lui. Performance analysis of disk arrays
under failure. In Proceedings of the 16th International Conference on
Very Large Databases, pages 162–173, 1990.

[14] T. Xie and H. Wang. MICRO: A multilevel caching-based reconstruc-
tion optimization for mobile storage systems. IEEE Transactions on
Computers, 57(10):1386–1398, Oct 2008.

[15] A. Dan and D. Towsley. An approximate analysis of the LRU and
FIFO buffer replacement schemes. In Proceedings of the 1990 ACM
SIGMETRICS Conference, pages 143–152, USA, 1990.

[16] J. T. Robinson and M. V. Devarakonda. Data cache management
using frequency-based replacement. In Proceedings ACM SIGMETRICS
Conference, pages 134–142, USA, 1990.

[17] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page
replacement algorithm for database disk buffering. In Proceedings of the
ACM SIGMOD international Conference, pages 297–306, USA, 1993.

[18] E. J. O’Neil, P. E. O’Neil, and G. Weikum. An optimality proof of the
LRU-K page replacement algorithm. Journal of ACM, 46(1):92–112,
Jan 1999.

[19] T. Johnson and D. Shasha. 2Q: A low overhead high performance
buffer management replacement algorithm. In Proceedings of the 20th
International Conference on Very Large Databases, pages 439–450,
USA, 1994.

[20] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. On the existence of a spectrum of policies that subsumes the
least recently used (LRU) and least frequently used (LFU) policies. In
Proceedings of the ACM SIGMETRICS Conference, USA, 1994.

[21] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim.
LRFU: A spectrum of policies that subsumes the least recently used
and least frequently used policies. IEEE Transactions on Computers,
50(12):1352–1361, 2001.

[22] Y. Zhou, J. F. Philbin, and K. Li. The multi-queue replacement algorithm
for second level buffer caches. In Proceedings of 2001 USENIX Annual
Technical Conference, USA, 2001.

14

[23] Y. Zhou, J. F. Philbin, and K. Li. Second-level buffer cache management.
IEEE Transactions on Parallel and Distributed Systems, 15(6):505–519,
June 2004.

[24] S. Jiang and X. Zhang. LIRS: An efficient low inter-reference recency set
replacement policy to improve buffer cache performance. In Proceedings
of the 2002 ACM SIGMETRICS Conference, pages 31–42, USA, 2002.

[25] Song Jiang and Xiaodong Zhang. Making LRU friendly to weak
locality workloads: a novel replacement algorithm to improve buffer
cache performance. IEEE Transactions on Computers, 54(8):939–952,
Aug 2005.

[26] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead re-
placement cache. In Proceedings of the 2nd USENIX FAST Conference,
pages 115–130, USA, 2003.

[27] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. DULO: An effective
buffer cache management scheme to exploit both temporal and spatial
localities. In Proceedings of the 4th USENIX FAST Conference, San
Francisco, CA, USA, 2005.

[28] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. DiskSeen:
Exploiting disk layout and access history to enhance I/O prefetch. In
Proceedings of the 2007 USENIX Annual Technical Conference, USA,
2007.

[29] SNIA. Raid6 definition in dictionary r. http://www.snia.org/education/
dictionary/r, 2007.

[30] Irving S Reed and G. Solomon. Polynomial codes over certain finite
fields. Journal of the Society for Industrial and Applied Mathematics,
8:300–304, June 1960.

[31] Johannes Blomer, Malik Kalfane, Richard Karp, Marek Karpinski,
Michael Luby, and David Zuckerman. An XOR-based erasure-resilient
coding scheme. Technical Report TR-95-048, International Computer
Science Institute, Berkeley, California, August 1995.

[32] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon. EVENODD:
An efficient scheme for tolerating double disk failures in raid architec-
tures. IEEE Transactions On Computers, 44(2):192–202, February 1995.

[33] Peter Corbett, Bob English, Atul Goel, Tomislav Grcanac, Steven
Kleiman, James Leong, and Sunitha Sankar. Row-diagonal parity for
double disk failure correction. In Proceedings of the 3rd USENIX FAST
Conference, pages 1–14, USA, March 2004.

[34] Mario Blaum and Ron M. Roth. On lowest density MDS codes. IEEE
Transactions on Information Theory, 45(1):46–59, January 1999.

[35] James S. Plank. The RAID-6 liberation codes. In Proceedings of the
6th USENIX FAST Conference, pages 97–110, San Jose, February 2008.

[36] Yuval Cassuto and Jehoshua Bruck. Cyclic lowest density MDS array
codes. IEEE Transactions on Information Theory, 55(4):1721–1729,
April 2009.

[37] Lihao Xu and Jehoshua Bruck. X-Code: MDS array codes with optimal
encoding. IEEE Transactions on Information Theory, 45(1):272–276,
January 1999.

[38] Chao Jin, Hong Jiang, Dan Feng, and Lei Tian. P-code: A new RAID-
6 code with optimal properties. In ICS-2009: Proceedings of the 23rd
International Conference on Supercomputing, pages 360–369, Yorktown
Heights, NY, USA, June 2009.

[39] ChanIk Park. Efficient placement of parity and data to tolerate two
disk failures in disk array systems. IEEE Transactions on Parallel and
Distributed Systems, 6(11):1177–1184, November 1995.

[40] James Lee Hafner. HoVer erasure codes for disk arrays. In In DSN-
2006: the 36th Annual IEEE/IFIP DSN International Conference, pages
217–226, PA, June 2006.

[41] C. Wu, S. Wan, X. He, Q. Cao, and C. Xie. H-Code: A hybrid MDS
array code to optimize partial stripe writes in raid-6. In 25th IEEE
International Parallel and Distributed Processing Symposium, USA,
2011.

[42] C. Wu, X. He, G. Wu, S. Wan, X. Liu, Q. Cao, and C. Xie. HDP
code: A horizontal-diagonal parity code to optimize I/O load balancing
in raid-6. In Proceeding of 41th IEEE DSN International, China, June
2011.

[43] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda. Character-
ization of storage workload traces from production windows servers.
In IEEE International Symposium on Workload Characterization, USA,
2008.

[44] Shenggang Wan, Qiang Cao, Jianzhong Huang, Shiyi Li, Xin Li,
Shenhui Zhan, Changsheng Xie, Li Yu, and Xubin He. Victim disk
first: An asymmetric cache to boost the performance of disk arrays
under faulty conditions. In Proceedings of the USENIX Annual Technical
Conference 2011, Portland, OR, USA, June 2011.

Shenggang Wan received his PhD and BS de-
grees in computer science and technology in
2010 and 2003, MS degree in software engi-
neering in 2005, all from Huazhong University
of Science and Technology (HUST), China. He
is currently a Post Doctoral researcher in the
Department of Electronics and Information En-
gineering at HUST and a visiting scholar at
Virginia Commonwealth University. His research
interests include dependable storage systems
and coding theory.

Xubin He received the PhD degree in elec-
trical engineering from University of Rhode Is-
land, USA, in 2002 and both the BS and MS
degrees in computer science from Huazhong
University of Science and Technology, China, in
1995 and 1997, respectively. He is currently an
associate professor in the Department of Electri-
cal and Computer Engineering at Virginia Com-
monwealth University. His research interests in-
clude computer architecture, storage systems,
virtualization, and high availability computing.

He received the Ralph E. Powe Junior Faculty Enhancement Award in
2004 and the Sigma Xi Research Award (TTU Chapter) in 2005 and
2010. He is a senior member of the IEEE, a member of the IEEE
Computer Society, ACM, and Sigma Xi.

Jianzhong Huang received the PhD degree in
computer architecture in 2005 and completed
the Post Doctoral research in information en-
gineering in 2007 from Huazhong University of
Science and Technology(HUST). He is currently
an associate professor in the Department of
Computer Engineering at HUST. His research
interests include computer architecture and net-
worked storage systems. He is a member of
China Computer Federation (CCF).

Qiang Cao received the PhD degree in com-
puter architecture and MS degree in computer
technology in 2003 and 2000, and BS in applied
physics in 1997. He is currently a professor
at Huazhong University of Science and Tech-
nology. His research interests include computer
architecture, large scale storage systems, and
performance evaluation on computer systems.
He is a senior member of China Computer Fed-
eration (CCF) and a member of the IEEE.

Shiyi Li received the BS in mathematics in 2009.
He is currently a PHD student at Huazhong Uni-
versity of Science and Technology. His research
interests include dependable storage systems
and coding theory.

Changsheng Xie received the BS and MS de-
grees in computer science both from Huazhong
University of Science and Technology, in 1982
and 1988, respectively. He is currently a profes-
sor in the Department of Computer Engineering
at HUST. He is the deputy director of the Wuhan
National Laboratory for Optoelectronics. His re-
search interests include computer architecture,
disk I/O system, networked data storage system
and digital media technology. He is the vice chair
of the expert committee of Storage Networking

Industry Association (SNIA), China. He is a member of the IEEE.

http://www.snia.org/education/dictionary/r
http://www.snia.org/education/dictionary/r

	Introduction
	Background and Related Work
	Optimizations of Disk Arrays under Faulty Conditions
	Buffer Cache Replacement Algorithms
	RAID-6 Codes

	Design of VDF
	RGR: A New Metric to Evaluate Cache Performance with Various Miss Penalty
	Use RGR to Evaluate the Cache Efficiency in Faulty Mode
	VDF Cache

	Case Studies of VDF
	Integrate VDF into LRU and LFU
	Detailed Description of VDF-LRU and VDF-LFU

	Simulation Results and Analysis
	Prototyping of VDF
	Evaluation Methodology
	Experimental Environment
	Open-loop Measurement Results and Analysis
	Close-loop Measurement Results and Analysis
	Further Discussion

	Conclusions
	References
	Biographies
	Shenggang Wan
	Xubin He
	Jianzhong Huang
	Qiang Cao
	Shiyi Li
	Changsheng Xie

