
1

A Dynamic Performance-Based
Flow Control Method for High-Speed

Data Transfer
Ben Eckart, Student Member, IEEE, Xubin He, Senior Member, IEEE, Qishi Wu, Member, IEEE

and Changsheng Xie

Abstract—New types of specialized network applications are being created that need to be able to transmit large amounts
of data across dedicated network links. TCP fails to be a suitable method of bulk data transfer in many of these applications,
giving rise to new classes of protocols designed to circumvent TCP’s shortcomings. It is typical in these high-performance
applications, however, that the system hardware is simply incapable of saturating the bandwidths supported by the network
infrastructure. When the bottleneck for data transfer occurs in the system itself and not in the network, it is critical that
the protocol scale gracefully to prevent buffer overflow and packet loss. It is therefore necessary to build a high-speed
protocol adaptive to the performance of each system by including a dynamic performance-based flow control. This paper
develops such a protocol, Performance Adaptive UDP (henceforth PA-UDP), which aims to dynamically and autonomously
maximize performance under different systems. A mathematical model and related algorithms are proposed to describe
the theoretical basis behind effective buffer and CPU management. A novel delay-based rate throttling model is also
demonstrated to be very accurate under diverse system latencies. Based on these models, we implemented a prototype
under Linux and the experimental results demonstrate that PA-UDP outperforms other existing high-speed protocols on
commodity hardware in terms of throughput, packet loss, and CPU utilization. PA-UDP is efficient not only for high-speed
research networks but also for reliable high-performance bulk data transfer over dedicated local area networks where
congestion and fairness are typically not a concern.

Index Terms—flow control, high-speed protocol, reliable UDP, bulk transfer

F

1 INTRODUCTION

A certain class of next generation science ap-
plications needs to be able to transfer increas-

ingly large amounts of data between remote loca-
tions. Toward this goal, several new dedicated net-
works with bandwidths upwards of 10 Gbps have
emerged to facilitate bulk data transfers. Such net-
works include UltraScience Net (USN) [1], CHEE-
TAH [2], OSCARS [3], User Controlled Light Paths
(UCLP) [4], Enlightened [5], Dynamic Resource Al-
location via GMPLS Optical Networks (DRAGON)
[6], Japanese Gigabit Network II [7], Bandwidth
on Demand (BoD) on Geant2 network [8], Hybrid
Optical and Packet Infrastructure (HOPI) [9], Band-
width Brokers [10], and others.

• B. Eckart and X. He are with the Department of Electrical and Com-
puter Engineering, Tennessee Technological University, Cookeville,
TN, 38505.
E-mail: {bdeckart21, hexb}@tntech.edu

• Q. Wu is with the Department of Computer Science, University of
Memphis, Memphis, TN, 38152
E-mail: qishiwu@memphis.edu

• C. Xie is with the Data Storage Division of Wuhan National
Laboratory for Optoelectronics, Huazhong University of Science
and Technology, Wuhan, China 430074
E-mail: cs xie@hust.edu.cn

Manuscript received xx; revised xx.

The goal of our work is to present a proto-
col that can maximally utilize the bandwidth of
these private links through a novel performance-
based system flow control. As Multi-Gigabit speeds
become more pervasive in dedicated LANs and
WANs and as hard drives remain relatively stag-
nant in read and write speeds, it becomes increas-
ingly important to address these issues inside of
the data transfer protocol. We demonstrate a mathe-
matical basis for the control algorithms we use, and
we implement and benchmark our method against
other commonly used applications and protocols. A
new protocol is necessary, unfortunately, due to the
fact that the de facto standard of network commu-
nication, TCP, has been found to be unsuitable for
high-speed bulk transfer. It is difficult to configure
TCP to saturate the bandwidth of these links due
to several assumptions made during its creation.

The first shortcoming is that TCP was made to
distribute bandwidth equally among the current
participants in a network and uses a congestion
control mechanism based on packet loss. Through-
put is halved in the presence of detected packet loss
and only additively increased during subsequent
loss-free transfer. This is the so-called Additive
Increase Multiplicative Decrease algorithm (AIMD)
[13]. If packet loss is a good indicator of network

2

congestion, then transfer rates will converge to
an equal distribution among the users of the net-
work. In a dedicated link, however, packet loss
due to congestion can be avoided. The partition-
ing of bandwidth therefore can be done via some
other, more intelligent bandwidth scheduling pro-
cess, leading to more precise throughput and higher
link utilization. Examples of advanced bandwidth
scheduling systems include the centralized control
plane of USN and GMPLS (Generalized Multiple
Protocol Label Switching) for DRAGON [11] [38].
On a related note, there is no need for TCP’s
slow-start mechanism because dedicated links with
automatic bandwidth partitioning remove the risk
of a new connection overloading the network. For
more information, see [12].

A second crucial shortcoming of TCP is its con-
gestion window. To ensure in-order, reliable deliv-
ery, both parties maintain a buffer the size of the
congestion window and the sender sends a burst
of packets. The receiver then sends back positive
acknowledgments (ACK’s) in order to receive the
next window. Using timeouts and logic, the sender
decides which packets are lost in the window and
resends them. This synchronization scheme ensures
that the receiver receives all packets sent, in-order,
and without duplicates; however, it can come at a
price. On networks with high latencies, reliance on
synchronous communication can severely stunt any
attempt for high-bandwidth utilization because the
protocol relies on latency-bound communication.
For example, consider the following throughput
equation relating latency to throughput. Disregard-
ing the effects of queuing delays or packet loss, the
effective throughput can be expressed as

throughput =
cwin×MSS

rtt
(1)

where cwin is the window size, MSS the max-
imum segment size, and rtt the round-trip time.
With a congestion window of 100 packets and a
maximum segment size of 1460 bytes (the differ-
ence between the MTU and TCP/IP header), a
network with an infinite bandwidth and 10 ms
round-trip time would only be able to achieve
approximately 120 Mbps effective throughput. One
could attempt to mitigate the latency bottleneck by
letting cwin scale to the bandwidth-delay product
(BW × rtt) or by striping and parallelizing TCP
streams (see BBCP [15]), but there are also difficul-
ties associated with these techniques. Regardless,
Equation 1 illustrates the potentially deleterious ef-
fect of synchronous communication on high-latency
channels.

Solutions to these problems have come in primar-
ily two forms: modifications to the TCP algorithm
and application-level protocols which utilize UDP
for asynchronous data transfer and TCP for con-

trol and data integrity issues. This paper focuses
on the class of high-speed reliable UDP protocols
[20], which include SABUL/UDT [16], [17], RBUDP
[18], Tsunami [19], and Hurricane [39]. Despite
the primary focus on these protocols, most of the
techniques outlined in this paper could be applied
to any protocol for which transfer bandwidths are
set using inter-packet delay.

The rest of the paper is organized as follows.
High-speed TCP and High-speed reliable UDP are
discusses in Sections 2 and 3, respectively. The
goals for high-speed bulk data transfer over reliable
UDP are discussed in Section 4. Section 5 defines
our mathematical model. Section 6 describes the
architecture and algorithms for the PA-UDP proto-
col. Section 7 discusses the implementation details
of our PA-UDP protocol. Experimental results and
CPU utilization statistics are presented in Section
8. We examine related work in Section 9 and draw
our conclusions in Section 10.

2 TCP SOLUTIONS

As mentioned in Section 1, the congestion window
provided by TCP can make it impossible to saturate
link bandwidth under certain conditions. In the ex-
ample pertaining to Equation 1, one obvious speed
boost would be to increase the congestion window
beyond one packet. Assuming a no-loss link, a
window size of n packets would allow for 12.5n
Mbps throughput. On real networks, however, it
turns out that the Bandwidth-Delay Product (BDP)
of the network is integral to the window size. As
the name suggests, the BDP is simply the product
of the bandwidth of the channel multiplied by the
end-to-end delay of the hosts. In a sense, this is
the amount of data present “on the line” at any
given moment. A 10 Gbps channel with a RTT of
10 ms would need approximately a 12.5 Megabyte
buffer on either end, because at any given time, 12.5
Megabytes would be on the line that potentially
would need to be resent due to errors in the line or
packet loss at the receiving end. Ideally, a channel
could sustain maximum throughput by setting the
BDP equal to the congestion window, but it can be
difficult to determine these parameters accurately.
Moreover, the TCP header field uses only 16 bits
to specify window size. Therefore, unless the TCP
protocol is rewritten at the kernel level, the largest
usable window is 65 Kilobytes. Note that there are
modifications to TCP that can increase the window
size for large BDP networks [14]. Efforts in this
area also include dynamic windows, different ac-
knowledgment procedures, and statistical measure-
ments for channel parameters. Other TCP variants
attempt to modify the congestion control algorithm
to be more amenable to characteristics of high-
speed networks. Still others look toward multiple

3

TCP streams, like bbFTP, GridFTP, and pTCP. Most
employ a combination of these methods, including
(but not limited to) High Speed TCP [43], Scalable
TCP [44], and FAST TCP [46].

Many of the TCP-based algorithms are based in
the transport layer and thus kernel modification is
usually necessary to implement them. Some also
rely on specially configured routers. As a result, the
widespread deployment of any of these algorithms
would be a very daunting task. It would be ideal
to be able to run a protocol on top of the the two
standard transport layer protocols, TCP and UDP,
so that any computer could implement them. This
would entail an application-level protocol which
could combine the strengths of UDP and TCP and
which could be applied universally to these types
of networks.

3 HIGH-SPEED RELIABLE UDP
High-speed Reliable UDP protocols include
SABUL/UDT [16], [17], RBUDP [18], Tsunami [19],
and Hurricane [39], among others [20].

UDP-based protocols generally follow a similar
structure: UDP is used for bulk data transfer, and
TCP is used marginally for control mechanisms.
Most high-speed reliable UDP protocols use delay-
based rate control to remove the need for conges-
tion windows. This control scheme allows a host to
statically set the rate and undoes the throughput-
limiting stairstep effects of AIMD. Furthermore,
reliable delivery is ensured with either delayed,
selective or negative acknowledgments of packets.
Negative acknowledgments are optimal in cases
where packet loss is minimal. If there is little loss,
acknowledging only lost packets will incur the least
amount of synchronous communication between
the hosts. A simple packet numbering scheme and
application-level logic can provide in-order, reliable
delivery of data. Finally, reliable UDP is positioned
at the application level, which allows users to ex-
plore more customized approaches to suit the type
of transfer, whether it is disk-to-disk, memory-to-
disk, or any combination thereof.

Due to deliberate design choices, most High-
Speed Reliable UDP protocols have no congestion
control or fairness mechanisms. Eschewing fairness
for simplicity and speed improvements, UDP-based
protocols are meant to be deployed only on pri-
vate networks where congestion is not an issue,
or where bandwidth is partitioned apart from the
protocol.

Reliable UDP protocols have shown varying de-
grees of success in different environments, but they
all ignore the effects of disk throughput and CPU
latency for data transfer applications. In such high-
performance distributed applications, it is critical
that system attributes be taken into account to make

sure both sending and receiving parties can support
the required data rates. Many tests show artificially
high packet loss because of the limitations of the
end systems in acquiring the data and managing
buffers. In this paper, we show that this packet loss
can be largely attributed to the effects of lackluster
disk and CPU performance. We then show how
these limitations can be circumvented by a suitable
architecture and a self-monitoring rate control.

4 GOALS FOR HIGH-SPEED BULK
TRANSFER

Ideally, we would want a high-performing protocol
suitable for a variety of high-speed, high-latency
networks without much configuration necessary at
the user level. Furthermore, we would like to see
good performance on many types of hardware,
including commodity hardware and disk systems.
Understanding the interplay between these algo-
rithms and the host properties is crucial.

On high-speed, high-latency, congestion-free net-
works, a protocol should strive to accomplish two
goals: to maximize goodput by minimizing syn-
chronous, latency-bound communication and to
maximize the data rate according to the receiver’s
capacity. (Here we define goodput as the through-
put of usable data, discounting any protocol head-
ers or transport overhead [21].)

Latency-bound communication is one of the pri-
mary problems of TCP due to the positive ac-
knowledgment congestion window mechanism. As
previous solutions have shown, asynchronous com-
munication is key to achieving maximum goodput.
When UDP is used in tandem with TCP, UDP
packets can be sent asynchronously, allowing the
synchronous TCP component to do its job without
limiting the overall bandwidth.

High-speed network throughputs put consider-
able strain on the receiving system. It is often the
case that disk throughput is less than half of the
network’s potential and that high-speed processing
of packets greatly taxes the CPU. Due to this large
discrepancy, it is critical that the data rate is set
by the receiver’s capacity. An overly high data
rate will cause a system buffer to grow at a rate
relative to the difference between receiving and
processing the data. If this mismatch continues,
packet loss will inexorably occur due to finite buffer
sizes. Therefore, any protocol attempting to prevent
this must continually communicate with the sender
to make sure that the sender only sends at the
receiver’s specific capacity.

5 A MATHEMATICAL MODEL

Given the relative simplicity of high-speed UDP al-
gorithms, mathematical models can be constructed

4

with few uncontrollable parameters. We can ex-
ploit this determinism by tweaking system param-
eters for maximum performance. In this section,
we produce a mathematical model relating buffer
sizes to network rates and sending rates to inter-
packet delay times. These equations will be used
to predict the theoretical maximum bandwidth of
any data transfer given a system’s disk and CPU
performance characteristics.

Since the host receiving the data is under con-
siderably more system strain than the sender, we
shall concentrate on a model for the receiver and
then briefly consider the sender.

The receiver’s capacity can be thought of as an
equation relating its internal system characteristics
with those of the network. Two buffers are of
primary importance in preventing packet loss at the
receiving end: the kernel’s UDP buffer and the user
buffer at the application level.

5.1 Receiving Application Buffers
For the protocols which receive packets and write
to disk asynchronously, the time before the receiver
has a full application buffer can be calculated with
a simple formula. Let t be time in seconds , r(·) be
a function which returns the data rate in bits per
second (bps) of its argument, and m be the buffer
size in bits. The time before m is full is given by

t =
m

r(recv)− r(disk)
(2)

At time t the receiver will not be able to accept
any more packets and thus will have to drop some.
We found this to be a substantial source of packet
loss in most high-speed reliable UDP protocols. To
circumvent this problem, one may put a restriction
on the size of the file sent by relating file size to
r(recv) × t. Let f be the size of a file and fmax be
its maximum size.

fmax =
m

1− r(disk)
r(recv)

(3)

Note that fmax can never be negative since
r(disk) can only be as fast as r(recv). Also note
that, if the two rates are equally matched, fmax will
be infinite since the application buffer will never
overflow.

Designing a protocol that limits file sizes is cer-
tainly not an acceptable solution, especially since
we have already stipulated that these protocols
need to be designed to sustain very large amounts
of data. Therefore, if we can set the rate of the
sender, we can design an equation to accommodate
our buffer size and r(disk). Rearranging, we see
that

r(recv) =
r(disk)
1− m

f

(4)

r(recv) = αr(disk)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

File Completion (%)

B
uf

fe
r

C
om

pl
et

io
n

(%
)

Fig. 1. File vs. buffer completion during the course
of a transfer. Three paths are shown; the path that
adheres to α is optimal.

or if we let

α =
1

1− m
f

(5)

we can then arrive at

r(recv) = αr(disk) (6)

or

α =
r(recv)
r(disk)

(7)

We can intuitively see that, if the ratio between
disk and network activity remains constant at α,
the transfer will make full use of the buffer while
minimizing the maximum value of r(recv). To see
why this is the case, consider Figure 1. The middle
line represents a transfer which adheres to α. If
the transfer is to make full use of the buffer, then
any deviations from α at some point will require
a slope greater than α since r(disk) is assumed to
be at its peak for the duration of the transfer. Thus,
r(recv) must be increased to compensate. Adjusting
r(recv) to maintain α while r(disk) fluctuates will
keep the transfer optimal in the sense that r(recv)
has the lowest possible maximum value while total
throughput for the data transfer is maximized. The
CPU has a maximum processing rate and by keep-
ing the receiving rate from spiking, we remove the
risk of overloading the CPU. Burstiness has been
recognized as a limiting factor in previous literature
[22]. Additionally, the entirety of the buffer is used
during the course of transfer, avoiding the situation
of a suboptimal transfer rate due to unused buffer.

Making sure the buffer is only full at the end of
the data transfer has other important consequences
as well. Many protocols fill up the application
buffer as fast as possible, without regard to the state
of the transfer. When the buffer fills completely,
the receiver must issue a command to halt any

5

further packets from being sent. Such a requirement
is problematic due to the latency involved with
this type of synchronous communication. With a
100 millisecond round-trip time (rtt) on a 10 Gbps
link, the receiver would potentially have to drop
in excess of 80,000 packets of size 1500 bytes before
successfully halting the sender. Furthermore, we do
not want to use a higher peak bandwidth than is
absolutely necessary for the duration of the transfer,
especially if we are held to an imposed bandwidth
cap by some external application or client. Holding
to this α ratio will achieve optimal throughput in
terms of disk and CPU performance.

0
500

1000
1500

2000

0

500

1000

1500

2000
0

1000

2000

3000

4000

5000

6000

Buffer size (MB)

Disk and Buffer−Limited Throughputs for 3 GB file

Disk Rate (Mbps)

T
hr

ou
gh

pu
t (

M
bp

s)

Fig. 2. Throughputs for various parameters

The theoretical effects of various system param-
eters on a 3 GB transfer are shown in Figure 2.
Note how simply increasing the buffer size does not
appreciably affect the throughput but increasing
both r(disk) and m provides the maximum perfor-
mance gain. This graph also gives some indication
of the computational and disk power required for
transfers exceeding 1 Gbps for bulk transfer.

5.2 Receiving Kernel Buffers

Another source of packet loss occurs when the
kernel’s receiving buffer fills up. Since UDP was not
designed for anything approximating reliable bulk
transfer, the default buffer size for UDP on most
operating systems is very small; on Linux 2.6.9, for
example, it is set to a default of 131 kB. At 131 kB,
a 1 Gbps transfer will quickly deplete a buffer of
size m:

t =
m

r(recv)
=

131 kB
1000 Mbps

≈ 1.0 ms

Note that full depletion would only occur in
the complete absence of any receiving calls from
the application. Nevertheless, any CPU scheduling
latency must be made to be shorter than this time,
and the average latency-rate must conform to the

processing rate of the CPU such that the queue
does not slowly build and overflow over time.
A rigorous mathematical treatment of the kernel
buffer would involve modeling the system as a
queuing network, but this is beyond the scope of
the paper.

Let t% represent the percentage of time during
execution that the application is actively receiving
packets, and r(CPU) be the rate at which the CPU
can process packets.

t% ≥ r(recv)
r(CPU)

(8)

For example, if r(CPU) = 2 × r(recv), then the
application will only need to be actively receiving
packets from the buffer 50% of the time.

Rate modeling is an important factor in all of
these calculations. Indeed, equations 4, 5, and 6
would be useless if one could not set a rate to
a high degree of precision. TCP has been known
to produce complicated models for throughputs,
but fortunately our discussion is greatly simplified
by a delay-based rate that can be employed in
congestion-free environments. Let L be the data-
gram size (set to the MTU) and td be the time in-
terval between transmitted packets. Thus, we have

r(recv) =
L

td
(9)

In practice, it is difficult to use this equation to
any degree of accuracy due to context switching
and timing precision limitations. We found that,
by using system timers to measure the amount of
time spent sending and sleeping for the difference
between the desired time span and the sending
time, we could set the time delay to our desired
time with a predictably decreasing error rate. We
found the error rate as a percentage difference
between the desired sending rate and the actual
sending rate as

e(recv) =
β

td
(10)

where td is the desired inter-packet delay and β is
a value which can be determined programmatically
during the transfer. We used a floating β, dynamic
to the statistics of the transfer. Using the pthreads
library under Linux 2.6.9, we found that β gener-
ally was about 2e-6 for each transfer. Taking this
error into account, we can update our original rate
formula to obtain

r∗(recv) =
L

td
− βL

t2d
(11)

Figure 3 shows the percentage error rate between
equation 9 and the true sending rate. As shown by
Projected, we notice that the error due to scheduling

6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
2

1
0
2

1
1
2

1
2
2

1
3
2

1
4
2

1
5
2

1
6
2

1
7
2

1
8
2

1
9
2

E
rr

o
r

R
a
te

 (
%

)

Inter-Packet Delay (sec)

Actual

Projected

Fig. 3. Actual and predicted error rates vs inter-
packet delay

0

200

400

600

800

1000

1200

T
h

ro
u

g
h
p

u
t

(M
b

p
s
)

Inter-Packet Delay (sec)

Actual

Projected (Simple)

Projected (Error Corrected)

Fig. 4. Send rate vs inter-packet delay. Note that the
actual and error-corrected predicted rates are nearly
indistinguishable.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

Sleep (microseconds)

T
hr

ou
gh

pu
t (

G
bp

s)

Nanosecond Precision

Microsecond Precision

Fig. 5. Effects of timing granularity

can be predicted with a good degree of certainty
by equation 10. In Figure 4, the different rate
calculations for various inter-packet delays can be
seen. Equation 11, with the error rate factored in, is
sufficiently accurate for our purposes.

It should be noted that under extremely high
bandwidths certain aspects of a system that one

might take for granted begin to break down. For
instance, many kernels support only up to mi-
crosecond precision in system-level timing func-
tions. This is good enough for bandwidths lower
than 1 Gbps, but unacceptable for higher capacity
links. As shown in Figure 5, the resolution of
the timing mechanism has a profound impact on
the granularity of the delay-based rates. Even a
1 Gbps channel with microsecond precision has
some trouble matching the desired sending rate.
This problem has been noted previously in [22] and
has been usually solved by timing using clock cy-
cles. SABUL/UDT uses this technique for increased
precision.

Another source of breakdown can occur at the
hardware level. To sustain a 10 Gbps file transfer
for a 10 GB file, according to Equation 6, a receiver
must have a sequential disk write rate of

r(disk) = 10× 109 bps× (1− m

80× 109
) (12)

where m is in bits and r(disk) in bits per second.
We can see the extreme strain this would cause

to a system. In the experiments described in [23],
5 Ultra SCSI disks in RAID 0 could not achieve
800 Mbps for a 10 GB file. Assuming a sequential
write speed of 1 Gbps, Equation 12 shows that we
would require a 9 GB buffer. Similarly, a 10 Gbps
transfer rate would put considerable strain on the
CPU. The exact relation to CPU utilization would
depend on the complexity of the algorithms behind
the protocol.

5.3 The Data Sender
Depending on the application, the sender may be
locked into the same kinds of performance-limiting
factors as the receiver. For disk-to-disk transfers, if
the disk read rate is slower than the bandwidth
of the channel, the host must rely on pre-allocated
buffers before the transfer. This is virtually the same
relationship as seen in Equation 6. Unfortunately, if
the bottleneck occurs at this point, nothing can be
done but to improve the host’s disk performance.
Unlike the receiver, however, CPU latency and ker-
nel buffers are less crucial to performance and disk
read speeds are almost universally faster than disk
write speeds. Therefore, if buffers of comparable
size are used (meaning α will be the same), the
burden will always be on the receiver to keep up
with the sender and not vice versa. Note that this
only applies for disk-to-disk transfers. If the data
is being generated in real-time, transfer speed lim-
itations will depend on the computational aspects
of the data being generated. If the generation rate
is higher than the channel bandwidth then the
generation rate must be throttled down or buffers
must be used. Otherwise, if the generation rate is

7

epoch: time for thread to sleep
maxMem: size of application buffer
maxSetRate: maximum rate imposed by receiver
pktSize: size of a packet
hdrSize: size of a packet header
fSize: size of the file
while transfer do

prevDisk ← number of packets written to disk
prevNet ← number of packets received over network
sleep(epoch)
curDisk ← number of packets written to disk
curNet ← number of packets received over network
rateNet ← (curNet− prevNet)× pktSize/epoch
memLeft ← maxMem− (curNet− curDisk)× pktSize
bitsLeft ← fSize− curNet× pktSize - hdrSize
rateDisk ← (curDisk− prevDisk)× pktSize/epoch
if bitsLeft - memLeft > 0 then

alpha ← bitsLeft/(bitsLeft−memLeft)
newRate ← rateDisk× alpha
newRate ← min(maxSetRate, newRate)

else
newRate ← maxSetRate

end if
sendTCP(newRate)

end while

Fig. 6. A dynamic rate control algorithm based on
the buffer management equations of Section 5.

lower than channel bandwidth, a bottleneck occurs
at the sending side and max link utilization may be
impossible.

6 ARCHITECTURE AND ALGORITHMS

First we discuss a generic architecture which takes
advantage of the considerations related in the pre-
vious section. In the next three sections, a real-life
implementation is presented, and its performance
is analyzed and compared to other existing high-
speed protocols.

6.1 Rate Control Algorithms
According to Equation 6, given certain system char-
acteristics of the host receiving the file, an optimum
rate can be calculated so that the receiver will not
run out of memory during the transfer. Thus, a
target rate can be negotiated at connection time.
We propose a simple three way handshake protocol
where the first SYN packet from the sender asks
for a rate. The sender may be restricted to 500
Mbps, for instance. The receiver then checks its
system parameters, r(disk), r(recv), and m, and
either accepts the supplied rate, or throttles the
rate down to the maximum allowed by the system.
The following SYNACK packet would instruct the
sender of a change, if any.

Data could then be sent over the UDP socket
at the target rate, with the receiver checking for
lost packets and sending retransmission requests
periodically over the TCP channel upon discovery
of lost packets. The requests must be spaced out
in time relative to the RTT of the channel, which
can also be roughly measured during the initial

handshake, so that multiple requests are not made
for the same packet while the packet has already
been sent but not yet received. This is an example
of a negative acknowledgment system, because the
sender assumes the packets were received correctly
unless it receives data indicating otherwise.

TCP should also be used for dynamic rate con-
trol. The disk throughput will vary over the course
of a transfer, and as a consequence should be
monitored throughout. Rate adjustments can then
proceed according to Equation 6. To do this, disk
activity, memory usage, and data rate must be
monitored at specified time intervals. The dynamic
rate control algorithm is presented in Figure 6. A
specific implementation is given in Section 7.

6.2 Processing Packets

Several practical solutions exist to decrease CPU
latency for receiving packets. Multithreading is
an indispensable step to decouple other processes
which have no sequential liability with one another.
Minimizing I/O and system calls and appropriately
using mutexes can contribute to overall efficiency.
Thread priorities can often guarantee CPU atten-
tiveness on certain kernel scheduler implementa-
tions. Also, libraries exist which guarantee high-
performance, low latency threads [24], [25]. Re-
gardless of the measures mentioned above to curb
latency, great care must be made to keep the CPU
attentive to the receiving portion of the program.
Even the resulting latencies from a single print
statement inline with the receiving algorithm may
cause the build-up and eventual overflow of the
UDP buffer.

Priority should be given to the receiving portion
of the program given the limitations of the CPU.
When the CPU cannot receive data as fast as it
is sent, the kernel UDP buffer will overflow. Thus
a multithreaded program structure is mandated
so that disk activity can be decoupled with the
receiving algorithm. Given that disk activity and
disk latencies are properly decoupled, appropriate
scheduling priority is given to the receiving thread,
and rate control is properly implemented, optimal
transfer rates will be obtained given virtually any
two host configurations.

Reliable UDP works by assigning an ordered ID
to each packet. In this way, the receiver knows
when packets are missing and how to group and
write the packets to disk. As stipulated previously,
the receiver gets packets from the network and
writes them to disk in parallel. Since most disks
have write speeds well below that of a high-speed
network, a growing buffer of data waiting to be
written to disk will occur. It is therefore a priority
to maximize disk performance. If datagrams are
received out of order they can be dynamically

8

seqList: array of datagram ID’s in the order they were received
datagramList: array of datagrams in the order they were re-
ceived
datagram: holds datagram received from socket
i ← 0
totalDatagrams ← dfileSize / (packetSize - headerSize)e
while i < totalDatagrams do

while i = seqList[i] do
i ← i + 1

end while
swap(datagramList[i], datagramList[seqList[i]])
swap(seqList[i], seqList[seqList[i]])

end while

Fig. 7. The post-file processing algorithm in pseu-
docode.

rearranged from within the buffer, but a system
waiting for a packet will have to halt disk activity at
some point. In this scenario, we propose that when
using PA-UDP, most of the time it is desirable from
a performance standpoint to naively write packets
to disk as they are received, regardless of order.
The file can then be reordered afterwards from a
log detailing the order of ID reception.

See Figure 7 for pseudocode of this algorithm.
Note that this algorithm is only superior to in-
order disk writing if there are not too many packets
lost and written out of order. If the rate control of
PA-UDP functions as it should, little packet loss
should occur and this method should be optimal.
Otherwise, it may be better to wait for incoming
packets that have been lost before flushing a section
of the buffer to disk.Sender End

TCP

socket

UDP

socket

Send

thread

Rexmt

thread
Buffer

Data

generation

Disk

or

Fig. 8. PA-UDP: The Data SenderReceiver End

Disk

TCP

stream

UDP

socket

Recv

thread

Shared

array

Disk

thread

Rexmt

thread

File

processing

thread

Kernel

receive

buffer

Rate

control

Disk

thread

Dropped

datagram

list

Fig. 9. PA-UDP: The Data Receiver

7 IMPLEMENTATION DETAILS

To verify the effectiveness of our proposed protocol,
we have implemented PA-UDP according to the
architecture discussed in Section 6. Written mostly
in C for use in Linux and Unix environments, PA-
UDP is a multithreaded application designed to
be self-configuring with minimal human input. We
have also included a parametric latency simulator
so we could test the effects of high-latencies over a
low-latency Gigabit LAN.

7.1 Data Flow and Structures
A loose description of data flow and important data
structures for both the sender and receiver is shown
in Figures 8 and 9. The sender sends data through
the UDP socket, which is asynchronous, while pe-
riodically probing the TCP socket for control and
retransmission requests. A buffer is maintained so
the sender does not have to reread from disk when
a retransmitted packet is needed. Alternatively,
when the data is generated, a buffer might be
crucial to the integrity of the received data if data is
taken from sensors or other such non-reproducible
events.

At the receiver end as shown in Figure 9, there
are six threads. Threads serve to provide easily-
attainable parallelism, crucially hiding latencies.
Furthermore, the use of threading to achieve pe-
riodicity of independent functions simplifies the
system code. As the Recv thread receives packets,
two Disk threads write them to disk in parallel.
Asynchronously, the Rexmt thread sends retransmit
requests, and the Rate control thread profiles and
sends the current optimum sending rate to the
sender. The File processing thread ensures the data
is in the correct order once the transfer is over.

The Recv thread is very sensitive to CPU schedul-
ing latency and thus should be given high schedul-
ing priority to prevent packet loss from kernel
buffer overflows. The UDP kernel buffer was in-
creased to 16 Megabytes from the default of 131 kB.
We found this configuration adequate for transfers
of any size. Timing was done with microsecond
precision by using the gettimeofday function. Note,
however, that better timing granularity is needed
for the application to support transfers in excess of
1 Gbps.

The PA-UDP protocol handles only a single client
at a time, putting the others in a wait queue. Thus,
the threads are not shared among multiple connec-
tions. Since our goal was maximum link utilization
over a private network, we were not concerned
with multiple users at a time.

7.2 Disk Activity
In the disk write threads, it is very important from
a performance standpoint that writing is done syn-

9

chronously with the kernel. File streams normally
default to being buffered, but in our case, this can
have adverse effects on CPU latencies. Normally,
the kernel allocates as much space as necessary
in unused RAM to allow for fast returns on disk
writing operations. The RAM buffer is then asyn-
chronously written to disk, depending on which
algorithm is used, write-through, or write-back. We
do not care if a system call to write to disk halts
thread activity, because disk activity is decoupled
from data reception and halting will not affect the
rate at which packets are received. Thus it is not
pertinent that a buffer be kept in unused RAM.
In fact, if the transfer is large enough, eventually
this will cause a premature flushing of the kernel’s
disk buffer, which can introduce unacceptably high
latencies across all threads. We found this to be the
cause of many dropped packets even for file trans-
fers having sizes less than the application buffers.
Our solution was to force synchrony with repeated
calls to fsync.

As shown in Figure 9, we employed two parallel
threads to write to disk. Since part of the disk
thread’s job is to corral data together and do mem-
ory management, better efficiency can be achieved
by having one thread do memory management
while the other is blocked by the hard disk and vice
versa. A single-threaded solution would introduce
a delay during memory management. Parallel disk
threads remove this delay because execution is
effectively pipelined. We found that the addition
of a second thread significantly augmented disk
performance.

Since data may be written out of order due to
packet loss, it is necessary to have a reordering
algorithm which works to put the file in its proper
order. The algorithm discussed in Section 6 is given
in Figure 7.

7.3 Retransmission and Rate Control

TCP is used for both retransmission requests and
rate control. PA-UDP simply waits for a set period
of time and then makes grouped retransmission
requests if necessary. The retransmission packet
structure is identical to Hurricane [39]. An array of
integers is used, denoting datagram ID’s that need
to be retransmitted. The sender prioritizes these
requests, locking down the UDP data flow with a
mutex while sending the missed packets.

It is not imperative that retransmission periods
be calibrated except in cases where the sending
buffer is small or there is a very large rtt. Care
needs to be made to make sure that the rtt is not
more than the retransmission wait period. If this is
the case, requests will be sent multiple times before
the sender can possibly resend them, resulting in
duplicate packets. Setting the retransmission period

at least 5 times higher than the rtt ensures that this
will not happen while preserving the efficacy of the
protocol.

The retransmission period does directly influence
the minimum size of the sending buffer, however.
For instance, if a transfer is disk-to-disk and the
sender does not have a requested packet in the
application buffer, a seek time cost will incur when
the disk is accessed non-sequentially for the packet.
In this scenario, the retransmission request would
considerably slow down the transfer during this
time. This can be prevented by either increasing
the application buffer or sufficiently lowering the
retransmission sleep period.

As outlined in Figure 6, the rate control is compu-
tationally inexpensive. Global count variables are
updated per received datagram and per written
datagram. A profile is stored before and after a set
sleep time. After the sleep time, the pertinent data
can be constructed, including r(recv), r(disk), m,
and f . These parameters are used in conjunction
with Equations 6 and 7 to update the sending rate
accordingly. The request is sent over the TCP socket
in the simple form “RATE: R” where R is an integer
speed in Mbps. The sender receives the packet in
the TCP monitoring thread and derives new sleep
times from Equation 11. Specifically, the equation
used by the protocol is

td =
L+

√
L2 − 4βLR
2R

(13)

where R represents the newly requested rate.
As per the algorithm in Figure 6, if the memory

left is larger than the amount left to be transferred,
the rate can be set at the allowed maximum.

7.4 Latency Simulator
We included a latency simulator to more closely
mimic the characteristics of high-rtt high-speed
WANs over low-latency high-speed LANs. The rea-
sons for the simulator are twofold: the first reason
is simply a matter of convenience, given that testing
could be done locally, on a LAN. The second reason
is that simulations provide the means for paramet-
ric testing which would otherwise be impossible
in a real environment. In this way, we can test
for a variety of hypothetical rtt’s without porting
the applications to different networks. We can also
use the simulator to introduce variance in latency
according to any parametric distribution.

The simulator works by intercepting and times-
tamping every packet sent to a socket. A loop
runs in the background which checks to see if the
current time minus the timestamp is greater than
the desired latency. If the packet has waited for the
desired latency, it is sent over the socket. We should
note that the buffer size needed for the simulator is

10

numRealloc: count variable for number of datagram realloca-
tions currently made
numWritten: count variable for number of datagrams currently
written to disk
datagramList: array of received datagrams
if numRealloc < numWritten then

datagram ← reallocate(datagramList[numRealloc])
numRealloc ← numRealloc + 1

else
datagram ← allocate(new datagram)

end if

Fig. 10. Memory management algorithm

related to the desired latency and the sending rate.
Let b be the size of the latency buffer and tl be the
average latency.

b ≈ r(send)× tl (14)

By testing high-latency effects in a parametric
way, we can find out how adaptable the tim-
ing aspects are. For instance, if the retransmission
thread has a static sleep time before resending
retransmission requests, a high latency could result
in successive yet unnecessary requests before the
sender could send back the dropped packets. The
profiling power of the rate control algorithm is also
somewhat affected by latencies, since ideally the
performance monitor would be real-time. In our
tests, we found that PA-UDP could run with negli-
gibly small side-effects with rtt’s over one second.
This is mainly due to the relatively low variance of
r(disk) that we observed on our systems.

7.5 Memory Management
For high-performance applications such as these,
efficient memory management is crucial. It is not
necessary to delete packets which have been writ-
ten to disk, since this memory can be reallocated by
the application when future packets come through
the network. Therefore, we used a scheme whereby
each packet’s memory address is marked once the
data it contains is written to disk. When the net-
work receives a new packet, if a marked packet ex-
ists, the new packet is assigned to the old allocated
memory of the marked packet. In this way, we do
not have to use the C function free until the transfer
is over. The algorithm is presented in Figure 10.

8 RESULTS AND ANALYSIS

8.1 Throughput and Packet Loss Performance
We tested PA-UDP over a Gigabit Ethernet switch
on a LAN. Our setup consisted of two Dell Pow-
erEdge 850’s each equipped with a 1 Gigabit NIC,
dual Pentium 4 processors, 1 GB of RAM, and a
7200 RPM IDE hard drive.

We compared PA-UDP to three UDP-based pro-
tocols: Tsunami, Hurricane, and UDT (UDT4). Five

trials were conducted at each file size for both
protocols using the same parameters for buffers
and speeds. We used buffers 750 MB large for each
protocol, and we generated test data both on-the-
fly and from the disk. The average throughputs and
packet loss percentages are given in Tables 1 and 2,
respectively, for the case when data was generated
dynamically. The results are very similar for disk-
to-disk transfers.

PA-UDP performs favorably to the other proto-
cols, excelling at each file size. Tsunami shows high
throughputs, but fails to be consistent at higher file
sizes due to large retransmission errors. At larger
file sizes, Tsunami fails to complete the transfers,
instead restarting ad infinitum due to internal logic
decisions for retransmission. Hurricane completes
all transfers, but does not perform consistently and
suffers dramatically due to high packet loss. UDT
shows consistent and stable throughputs, especially
for large transfers, but adopts a somewhat more
conservative rate control than the others.

In addition to having better throughputs as com-
pared to Tsunami, Hurricane and UDT, PA-UDP
also has virtually zero packet loss due to buffer
overflow. This is a direct result of the rate con-
trol algorithm from Figure 6, which preemptively
throttles bandwidth before packet loss from buffer
overflows occur. Tsunami and Hurricane perform
poorly in these tests largely due to unstable rate
control. When the receiving rate is set above the
highest rate sustainable by the hardware, packet
loss eventually occurs. Since the transmission rates
are already at or above the maximum capable by
the hardware, any extra overhead incurred by re-
transmission requests and the handling of retrans-
mitted packets causes even more packet loss, often
spiraling out of control. This process can lead to
final packet retransmission rates of 100% or more in
some cases, depending on the file size and protocol
employed. Tsunami has a simple protection scheme
against retransmission spiraling that involves com-
pletely restarting the transfer after too much much
packet loss has occurred. Starting the transfer over
voids the pool of packets to be retransmitted with
the hope that the packet loss was a one-time error.
Unfortunately, this scheme causes the larger files
in our tests to endlessly restart and thus never
complete, as shown in Tables 1 and 2. UDT does
not seem to have these problems, but shows lower
throughputs than PA-UDP.

8.2 CPU Utilization

As discussed in Section 5, one of the primary ben-
efits of our flow control method is its low CPU uti-
lization. The flow control limits the transfer speeds
to the optimal range for the current hardware
profile of the host. Other protocols without this

11

TABLE 1
Throughput Averages

Average Throughput / Std. Dev. (Mbps)
File Size (MB) PA-UDP Tsunami Hurricane UDT

100 947.15 / 0.07 374.30 / 16.65 452.63 / 11.47 235.14 / 29.98
400 953.42 / 0.99 608.88 / 1.60 200.22 / 44.79 273.05 / 18.21
800 948.66 / 1.32 341.99 / 19.92 157.4 / 44.05 282.25 / 13.84

1000 938.51 / 10.94 294.96 / 11.51 145.08 / 71.49 295.90 / 11.57
2000 450.20 / 2.28 294.03 / 83.65 124.21 / 30.48 295.94 / 9.14
3000 371.01 / 10.43 timeout 87.11 / 4.27 246.78 / 6.46
5000 331.96 / 7.73 timeout 93.12 / 19.33 269.50 / 17.95

TABLE 2
Packet Loss Averages

Average Packet Loss / Std. Dev. (%)
File Size (MB) PA-UDP Tsunami Hurricane UDT

100 0.00 / 0.00 0.00 / 0.00 18.67 / 12.90 2.10 / 2.62
400 0.00 / 0.00 0.00 / 0.00 75.47 / 19.04 1.41 / 0.77
800 0.03 / 0.04 34.03 / 26.46 180.93 / 84.41 1.44 / 0.28

1000 0.01 / 0.02 41.48 / 21.40 122.18 / 107.95 0.46 / 0.57
2000 0.00 / 0.00 50.71 / 60.76 135.53 / 51.60 0.87 / 0.72
3000 0.00 / 0.00 time-out 230.83 / 31.95 0.00 / 0.00
5000 0.00 / 0.00 time-out 213.87 / 57.14 0.79 / 0.97

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

100 1000 10000

C
P

U
 U

ti
liz

at
io

n
 %

 p
e

r
M

b
p

s

File Size (MB)

PA-UDP

BBCP

Tsunami

UDT

Hurricane
80

90

100

0

10

20

30

40

50

60

70

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217 225

CP
U
 U
ti
liz
at
io
n
%

PA‐UDP

BBCP

Hurricane

Fig. 11. (a) Percentage CPU utilization per Mbps for three file sizes: 100, 1000, and 10,000 MB. PA-UDP
can drive data faster at a consistently lower computational cost. Note that we could not get UDT or Tsunami
to successfully complete a 10 GB transfer, so the bars are not shown. (b) A section of a CPU trace for
three transfers of a 10 GB file using PA-UDP, Hurricane, and BBCP. PA-UDP not only incurs the lowest CPU
utilization, but it is the most stable.

type of flow control essentially have to “discover”
the hardware-imposed maximum by running at
a unsustainable rate and then reactively curbing
throughput when packet loss occurs. In contrast
to other high-speed protocols, PA-UDP maintains
a more stable and more efficient rate.

A simple CPU utilization average during a trans-
fer would be insufficient to compare the various
protocols’ computational efficiency, since higher
throughputs affect CPU utilization adversely. Thus,
a transfer that spends most of its time waiting
for the retransmission of lost packets may look
more efficient from a CPU utilization perspective
though, in fact, it would perform much worse. To
alleviate this problem, we introduce a measure of

CPU utilization per units of throughput. Using this
metric, a protocol which incurs high packet loss
and spends time idling would be punished, and its
computational efficiency would be more accurately
reflected. Figure 11a shows this metric compared
for several different high-speed protocols at three
different file sizes over three different runs each.
To obtain the throughput efficiency, the average
CPU utilization is divided by the throughput of the
transfer. For completeness, we included a popular
high-speed TCP-based application, BBCP, as well as
the other UDP-based protocols. The results shown
are from the receiver, since it is the most compu-
tationally burdened. PA-UDP is considerably more
efficient than the other protocols, with the discrep-

12

ancy being most noticeable at 1 GB. The percentage
utilization is averaged across both CPU’s in our
testbed.

To give a more complete picture of PA-UDP’s
efficiency, Figure 11b shows a CPU utilization trace
over a period of time during a 10 GB transfer for
the data receiver. Two trials are represented for each
of the three applications: PA-UDP, Hurricane, and
BBCP. Not only is PA-UDP consistently less compu-
ationally expensive than other two protocols during
the course of the transfer, but it is also the most
stable. Hurricane, for instance, jumps between 50%
and 100% CPU utilization during the course of the
transfer. We note here also that BBCP, a TCP-based
application, outperforms Hurricane, a UDP-based
protocol implementation. Though UDP-based pro-
tocols typically have less overhead, which is the
main impetus for moving from TCP to UDP, the
I/O efficiency of a protocol is also very important,
and BBCP appears to have better I/O efficiency
compared to Hurricane. Again, the CPU utilization
is averaged between both processors on the Dell
PowerEdge 850.

8.3 Predicted Maxima

To demonstrate how PA-UDP achieves the pre-
dicted maximum performance, Table 3 shows the
rate-controlled throughputs for various file sizes
in relation to the predicted maximum throughput
given disk performance over the time of the trans-
fer. Again, a buffer of 750 Megabytes was used at
the receiver.

For 400, 800, and 1000 Megabyte transfers, the
discrepancy between predicted and real comes
from the fact that the transfers were saturating the
link’s capacity. The rest of the transfers showed
that the true throughputs were very close to the
predicted maxima. The slight error present can be
attributed to the impreciseness of the measuring
methods. Nevertheless, it is constructive to see that
the transfers are at the predicted maxima given the
system characteristics profiled during the transfer.

9 RELATED WORK

High-bandwidth data transport is required for
large-scale distributed scientific applications. The
default implementations of Transmission Control
Protocol (TCP) [30] and User Datagram Protocol
(UDP) do not adequately meet these requirements.
While several Internet backbone links have been
upgraded to OC-192 and 10GigE WAN PHY, end
users have not experienced proportional through-
put increases. The weekly traffic measurements re-
ported in [41] reveal that most of bulk TCP traffic
carrying more than 10MB of data on Internet2
only experiences throughput of 5Mbps or less. For

control applications, TCP may result in jittery dy-
namics on lossy links [37].

Currently there are two approaches to trans-
port protocol design: TCP enhancements and UDP-
based transport with non-Additive Increase Mul-
tiplicative Decrease (AIMD) control. In the recent
years, many changes to TCP have been introduced
to improve its performance for high-speed net-
works [29]. Efforts by Kelly have resulted in a TCP
variant called Scalable TCP [32]. High-Speed TCP
Low Priority (HSTCP-LP) is a TCP-LP version with
an aggressive window increase policy targeted to-
ward high-bandwidth and long-distance networks
[33]. The Fast Active-Queue-Management Scalable
TCP (FAST) is based on a modification of TCP
Vegas [26], [34]. The Explicit Control Protocol (XCP)
has a congestion control mechanism designed for
networks with a high bandwidth-delay-product
(BDP) [31] [45] and requires hardware support in
routers. The Stream Control Transmission Protocol
(SCTP) is a new standard for robust Internet data
transport proposed by the Internet Engineering
Task Force [42]. Other efforts in this area are de-
voted to TCP buffer tuning, which retains the core
algorithms of TCP but adjusts the send or receive
buffer sizes to enforce supplementary rate control
[27], [36], [40].

Transport protocols based on UDP have been
developed by using various rate control algo-
rithms. Such works include SABUL/UDT [16],
[17], Tsunami [19], Hurricane [39], FRTP [35], and
RBUDP [18] (see [20], [28] for an overview). These
transport methods are implemented over UDP at
the application layer for easy deployment. The
main advantage of these protocols is that their
efficiency in utilizing the available bandwidth is
much higher than that achieved by TCP. On the
other hand, these protocols may produce non-TCP-
friendly flows and are better suited for dedicated
network environments.

PA-UDP falls under the class of reliable UDP
based protocols and like the others is implemented
at the application layer. PA-UDP differentiates itself
from the other high-speed reliable UDP protocols
by intelligent buffer management based on dy-
namic system profiling considering the impact of
network, CPU, and disk.

10 CONCLUSIONS

The protocol based on the ideas in this paper has
shown that transfer protocols designed for high-
speed networks should not only rely on good the-
oretical performance but should also be intimately
tied to the system hardware on which they run.
Thus, a high-performance protocol should adapt in
different environments to ensure maximum perfor-
mance, and transfer rates should be set appropri-

13

TABLE 3
Throughputs to predicted maxima

File Size (MB) Throughput (Mbps) Predicted Maximum Average r(disk)
(Mbps) given r(disk) (Mbps)

400 965.80 ∞ 295.29
800 959.60 4401.92 275.12
1000 958.63 1101.48 275.37
2000 447.22 450.10 281.31
3000 370.20 373.41 280.06
4000 329.81 332.51 270.16
5000 325.58 327.48 278.36

ately to proactively curb packet loss. If this rela-
tionship is properly understood, optimal transfer
rates can be achieved over high-speed, high-latency
networks at all times without excessive amounts of
user customization and parameter guesswork.

In addition to low packet loss and high through-
put, PA-UDP has shown to be computationally
efficient in terms of processing power per through-
put. The adaptive nature of PA-UDP shows that it
can scale computationally, given different hardware
constraints. PA-UDP was tested against many other
high-speed reliable UDP protocols, and also against
BBCP, a high-speed TCP variant. Among all proto-
cols tested, PA-UDP consistently outperformed the
other protocols in CPU utilization efficiency.

The algorithms presented in this paper are com-
putationally inexpensive and can be added into ex-
isting protocols without much recoding as long as
the protocol supports rate control via inter-packet
delay. Additionally, these techniques can be used to
maximize throughput for bulk transfer on Gigabit
LANs where disk performance is a limiting factor.
Our preliminary results are very promising, with
PA-UDP matching the predicted maximum perfor-
mance. The prototype code for PA-UDP is avail-
able online at http://iweb.tntech.edu/hexb/pa-
udp.tgz.

REFERENCES

[1] N. S. V. Rao, W. R. Wing, S. M. Carter, and Q. Wu, “Ultra-
science net: network testbed for large-scale science applica-
tions,” Communications Magazine, IEEE, vol. 43, no. 11, pp.
S12–S17, 2005.

[2] X. Zheng, M. Veeraraghavan, N. S. V. Rao, Q. Wu, and
M. Zhu, “CHEETAH: Circuit-switched High-speed End-to-
End Transport Architecture testbed,” IEEE Commun. Mag.,
vol. 43, no. 8, pp. 11–17, Aug. 2005.

[3] On-demand secure circuits and advance reservation sys-
tem. [Online]. Available: http://www.es.net/oscars

[4] User Controlled LightPath Provisioning,
http://phi.badlab.crc.ca/uclp.

[5] Enlightened Computing, www.enlightenedcomputing.org.
[6] Dynamic resource allocation via gmpls optical networks.

[Online]. Available: http://dragon.maxgigapop.net
[7] JGN II: Advanced Network Testbed for Research and De-

velopment, http://www.jgn.nict.go.jp.
[8] Geant2, http://www.geant2.net.
[9] Hybrid Optical and Packet Infrastructure,

http://networks.internet2.edu/hopi.

[10] Z.-L. Zhang, “Decoupling qos control from core routers: A
novel bandwidth broker architecture for scalable support
of guaranteed services,” in SIGCOMM, 2000, pp. 71–83.

[11] N. S. V. Rao, Q. Wu, S. Ding, S. M. Carter, W. R. Wing,
A. Banerjee, D. Ghosal, and B. Mukherjee, “Control plane
for advance bandwidth scheduling in ultra high-speed
networks,” in INFOCOM. IEEE, 2006.

[12] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, and M. Bechler,
Linux Network Architecture. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 2004.

[13] S. Floyd, “RFC 2914: Congestion control principles,” Sep.
2000, category: Best Current Practise. [Online]. Available:
ftp://ftp.isi.edu/in-notes/rfc2914.txt

[14] V. Jacobson, R. Braden, and D. Borman, “RFC 2647: Tcp
extensions for high performance,” United States, 1992.
[Online]. Available: http://www.ietf.org/rfc/rfc1323.txt

[15] A. Hanushevsky, “Peer-to-peer computing for secure
high performance data cop,” Apr. 23 2007. [Online].
Available: http://www.osti.gov/servlets/purl/826702-
5UdHlZ/native/

[16] R. L. Grossman, M. Mazzucco, H. Sivakumar, Y. Pan,
and Q. Zhang, “Simple available bandwidth utilization
library for high-speed wide area networks,” J. Supercomput.,
vol. 34, no. 3, pp. 231–242, 2005

[17] Y. Gu and R. L. Grossman, “Udt: Udp-based data transfer
for high-speed wide area networks,” Comput. Networks,
vol. 51, no. 7, pp. 1777–1799, 2007.

[18] E. He, J. Leigh, O. T. Yu, and T. A. DeFanti, “Reliable blast
UDP: Predictable high performance bulk data transfer,” in
CLUSTER. IEEE Computer Society, 2002, pp. 317–324.
[Online]. Available: http://csdl.computer.org/

[19] M. Meiss. Tsunami: A high-speed rate-controlled
protocol for file transfer. [Online]. Available:
www.evl.uic.edu/eric/atp/TSUNAMI.pdf/

[20] M. Goutelle, Y. Gu, and E. He, “A survey of transport pro-
tocols other than standard tcp,” 2004. [Online]. Available:
citeseer.ist.psu.edu/he05survey.html

[21] D. Newman, “RFC 2647: Benchmarking terminology
for firewall performance,” 1999. [Online]. Available:
www.ietf.org/rfc/rfc2647.txt

[22] Y. Gu and R. L. Grossman, “Optimizing udp-based protocol
implementations.” Proceedings of the Third International
Workshop on Protocols for Fast Long-Distance Networks
(PFLDnet 2005), Lyons, France, 2005.

[23] R. L. Grossman, Y. Gu, D. Hanley, X. Hong, and B. Kr-
ishnaswamy, “Experimental studies of data transport and
data access of earth-science data over networks with
high bandwidth delay products,” Computer Networks,
vol. 46, no. 3, pp. 411–421, 2004. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2004.06.016

[24] A. C. Heursch and H. Rzehak, “Rapid reaction linux: Linux
with low latency and high timing accuracy,” in ALS ’01:
Proceedings of the 5th annual Linux Showcase & Conference.
Berkeley, CA, USA: USENIX Association, 2001, pp. 4–4.

[25] “Low latency: Eliminating application jitter with solaris,”
White Paper, Sun Microsystems, May 2007.

[26] L.S. Brakmo and S.W. O’Malley. Tcp vegas: new techniques
for congestion detection and avoidance. In SIGCOMM

14

’94 Conference on Communications Architectures and Protocols,
pages 24–35, London, United Kingdom, October 1994.

[27] T. Dunigan, M. Mathis, and B. Tierney. A tcp tuning
daemon. In Proceedings of Supercomputing: High-Performance
Networking and Computing, November 2002.

[28] A. Falk, T. Faber, J. Bannister, A. Chien, R. Grossman,
and J. Leigh. Transport protocols for high performance.
Communications of the ACM, 46(11):43–49, 2002.

[29] S. Floyd. Highspeed tcp for large congestion windows.
Internet draft, February 2003.

[30] V. Jacobson. Congestion avoidance and control. In Proc. of
SIGCOMM, page 314-29, 1988.

[31] D. Katabi, M. Handley, and C. Rohrs. Internet
congestion control for future high-bandwidth-delay
product environments. In Proceedings of ACM
SIGCOMM’02, Pittsburgh, PA, August 19-21 2002. Also see:
www.acm.org/sigcomm/sigcomm2002/papers/xcp.pdf.

[32] T. Kelly. Scalable tcp: Improving performance in highspeed
wide area networks. In Workshop on Protocols for Fast Long-
Distance Networks, Februrary 2003.

[33] A. Kuzmanovic, E. Knightly, and R. L. Cottrell. Hstcp-
lp: A protocol for low-priority bulk data transfer in high-
speed high-rtt networks. In Second International Workshop
on Protocols for Fast Long-Distance Networks, February 2004.

[34] S.H. Low, L.L. Peterson, and L. Wang. Understanding
vegas: a duality model. Journal of the ACM, 49(2):207–235,
March 2002.

[35] A. P. Mudambi, X. Zheng, and M. Veeraraghavan. A
transport protocol for dedicated end-to-end circuits. In
Proc. of IEEE Internation Conference on Communcations, 2006.

[36] R. Prasad, M. Jain, and C. Dovrolis. Socket buffer auto-
sizing for high-performance data transfers. Journal of Grid
Computing, 1(4):361–376, 2004.

[37] N. S.V. Rao, J. Gao, and L. O. Chua. Complex Dynamics in
Communication Networks, chapter On dynamics of transport
protocols in wide-area internet connections. 2004.

[38] N. Rao, W. Wing, Q. Wu, N. Ghani, Q. Liu, T. Lehman,
C. Guok, and E. Dart, “Measurements on hybrid dedicated
bandwidth connections,” High-Speed Networks Workshop,
2007, pp. 41–45, May 2007.

[39] N.S.V. Rao, Q. Wu, S.M. Carter, and W.R. Wing. High-
speed dedicated channels and experimental results with
hurricane protocol. Annals of Telecommunications, 61(1-2):21–
45, 2006. to appear.

[40] J. Semke, J. Madhavi, and M. Mathis. Automatic tcp buffer
tuning. In Proceedings of ACM SIGCOMM, August 1998.

[41] S. Shalunov and B. Teitelbaum. “A weekly version of the
Bulk TCP Use and Performance on Internet2”. Internet2
netflow: Weekly reports, 2004.

[42] R. Stewart and Q. Xie. Stream control transmission proto-
col. www.ietf.org/rfc/rfc2960.txt, October 2000. IETF RFC
2960.

[43] S. Floyd, “Highspeed tcp for large congestion
windows,” 2002. [Online]. Available: cite-
seer.ist.psu.edu/article/floyd02highspeed.html

[44] T. Kelly, “Scalable tcp: improving performance in high-
speed wide area networks,” SIGCOMM Comput. Commun.
Rev., vol. 33, no. 2, pp. 83–91, 2003.

[45] Y. Zhang and M. Ahmed, “A control theoretic analysis of
XCP,” in INFOCOM. IEEE, 2005, pp. 2831–2835.

[46] C. Jin, D. X. Wei, S. H. Low, J. J. Bunn, H. D. Choe, J. C.
Doyle, H. B. Newman, S. Ravot, S. Singh, F. Paganini,
G. Buhrmaster, R. L. Cottrell, O. Martin, and W. chun Feng,
“FAST TCP: from theory to experiments,” IEEE Network,
vol. 19, no. 1, pp. 4–11, 2005.

ACKNOWLEDGMENTS

This research was supported in part by the U.S.
National Science Foundation under grants OCI-
0453438 and CNS-0720617 and a Chinese 973
project under grant number 2004CB318203.

Ben Eckart received the B.S. degree in
Computer Science from Tennessee Tech-
nological University, Cookeville, in 2008.
He is currently a graduate student in Elec-
trical Engineering at Tennessee Techno-
logical University in the Storage Technol-
ogy Architecture Research (STAR) Lab.
His research interests include distributed
computing, virtualization, fault tolerant
systems, and machine learning.

Xubin He received the PhD degree in
electrical engineering from University of
Rhode Island, USA, in 2002 and both the
BS and MS degrees in computer science
from Huazhong University of Science and
Technology, China, in 1995 and 1997,
respectively. He is currently an associate
professor in the Department of Electrical
and Computer Engineering at Tennessee
Technological University and supervises
the Storage Technology Architecture Re-

search (STAR) Lab. His research interests include computer
architecture, storage systems, virtualization, and high availabil-
ity computing. He received the Ralph E. Powe Junior Faculty
Enhancement Award in 2004 and the TTU Chapter Sigma Xi
Research Award in 2005. He is a senior member of the IEEE,
a member of the IEEE Computer Society and ASEE.

Qishi Wu received the B.S. degree in
remote sensing and GIS from Zhejiang
University, China in 1995, the M.S. degree
in geomatics from Purdue University in
2000, and the Ph.D. degree in computer
science from Louisiana State University
in 2003. He was a research fellow in the
Computer Science and Mathematics Di-
vision at Oak Ridge National Laboratory
during 2003-2006. He is currently an As-
sistant Professor with the Department of

Computer Science at University of Memphis. His research inter-
ests include computer networks, remote visualization, distributed
sensor networks, high performance computing, algorithms, and
artificial intelligence.

Changsheng Xie received the BS and
MS degrees in Computer Science both
from Huazhong University of Science and
Technology (HUST), China , in 1982 and
1988, respectively. He is currently a pro-
fessor in the Department of Computer
Engineering at HUST. He is also the di-
rector of the Data Storage Systems Labo-
ratory of HUST and the deputy director of
the Wuhan National Laboratory for Opto-
electronics. His research interests include

computer architecture, disk I/O system, networked data storage
system and digital media technology. He is the vice chair of
the expert committee of Storage Networking Industry Association
(SNIA), China.

