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a b s t r a c t

High availability data storage systems are critical for many applications as research and business become
more data driven. Since metadata management is essential to system availability, multiple metadata
services are used to improve the availability of distributed storage systems. Past research has focused
on the active/standby model, where each active service has at least one redundant idle backup. However,
interruption of service and even some loss of service state may occur during a fail-over depending on
the replication technique used. In addition, the replication overhead for multiple metadata services can
be very high. The research in this paper targets the symmetric active/active replication model, which
uses multiple redundant service nodes running in virtual synchrony. In this model, service node failures
do not cause a fail-over to a backup and there is no disruption of service or loss of service state. A
fast delivery protocol is further discussed to reduce the latency of the total order broadcast needed.
The prototype implementation shows that metadata service high availability can be achieved with an
acceptable performance trade-off using the symmetric active/active metadata service solution.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

High availability data storage systems are critical for many
applications as research and business become more data driven.
A file system typically consists of two types of data: user data
andmetadata. Metadata is essential to system availability, because
it defines how a file system utilizes its storage space to manage
user data. Since metadata is ‘‘the data of the data’’, disruption of
metadata access could result in a failure of the entire I/O system,
while the loss of user data normally only affects some user files.
Any I/O request can be classified into either a user data ormetadata
request.
In a traditional storage system [31,11,42], metadata is stored

and managed by dedicated metadata services. There are three
major components in such a typical storage system: metadata ser-
vices, data services, and clients. A metadata service maintains in-
formation about files and directories in a file system. Data services
store file data. Clients send requests to the metadata service and
data services to store and retrieve file data. This system architec-
ture has been proved to be very efficient. However, it also implies
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several reliability deficiencies resulting in system-wide availability
and serviceability issues [19]. An entire distributed storage system
depends on the metadata service to function properly. It is a single
point of failure.
One way to improve the availability of parallel file systems is

to deploy multiple metadata services. Multiple services back each
other up. As long as at least onemetadata service is alive, the entire
system does not fail. Several models exist to perform reliable and
consistent replication of the service state to multiple redundant
services for high availability. Past research has focused on the
active/standbymodel [2,53,22], where each service has at least one
redundant idle backup. However, interruption of service and even
loss of service state may occur during a fail-over depending on the
replication technique, such as hot, warm or cold standby.
The research presented in this paper targets the symmetric

active/active replication model [20] for metadata service high
availability, which uses multiple redundant service nodes running
in virtual synchrony [32]. In this model, service failures do not
cause a fail-over to a backup and there is no disruption of service
or loss of service state. All services are active and ready to serve
requests from clients. This architecture improves the availability
and reliability.
Total order communication [7,18] is important for the symmet-

ric active/active replication model, but the agreement on the total
order usually bears a cost of performance. A fast delivery protocol is
discussed to reduce the latency of totally ordered broadcasting. The
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protocol performswell for both idle and active services. The results
show that, for write requests, the performance degradation is ac-
ceptable for typical distributed storage systems, and the through-
put of read requests increases linearly with the number of services.
We are able to show that metadata service high availability can be
achieved without interruption of service and with an acceptable
performance trade-off using the symmetric active/activemetadata
service solution.
This paper is organized as follows. The symmetric active/active

replication model is discussed in Section 2. Section 3 defines the
system model. The services of a total order broadcasting system is
discussed in Section 4. Section 5 illustrates the fast delivery total
order communication protocol. Section 6 describes the symmetric
active/activemetadata service design inmore detail. Experimental
results are presented in Section 7. The related work is examined in
Section 8, and conclusions are drawn in Section 9.

2. Symmetric active/active replication

The symmetric active/active replication model [20] allows one
to provide high availability for any type of client/server scenario
using the well-known state machine replication concept [27,43]
that relies on a group communication system [13,15] for totally
ordered and reliably delivered messages in a virtual synchronous
service group [32].
The symmetric active/activemetadata service allowsmore than

one redundant service to be active, i.e., to accept state changes,
while it does not waste system resources, as seen in an ac-
tive/standby model. Furthermore, there is no interruption of ser-
vice and no loss of state, since active services run in virtual syn-
chrony without the need to fail over. The size of the active service
group is variable at runtime; i.e., servicesmay join, leave, or fail. Its
membership is maintained by the group communication system in
a fault tolerant, adaptive fashion, ensuring group messaging prop-
erties. As long as one active service is alive, the state is never lost,
state changes can be performed, and output is produced according
to state changes.
The concept of internal symmetric active/active replication

(Fig. 1) allows each active service of a replicated service group
to accept query and request messages from external clients indi-
vidually, while using a process group communication system for
total state change message order and reliable state change mes-
sage delivery to all members of the service group. All state changes
are performed in the same order at all services; thus virtual syn-
chrony is given. Consistently produced service group output may
be routed through the process group communication system for at-
most-once delivery if dependent clients, services, and users cannot
handle duplicated messages.
For example, a networked server that changes its state based on

remote procedure calls (RPCs), such as the metadata service of a
parallel file system, is modified to replicate all state changes in the
formofmessages to all services in the service group. Upon delivery,
state changes are performed in virtual synchrony. The RPCs and
respective state changes are decoupled and executed by separate
event handler routines. RPC returnmessagesmay be unified via the
process group communication system, delivered by every process
group member, or delivered by only one process group member
and temporarily cached by others.
The developed proof of concept prototype is a customized im-

plementation for offering symmetric active/active high availability
for the metadata service. It is based on the internal RPC and state
change mechanisms of the original metadata service implementa-
tion and utilizes adaptors as part of the internal replication archi-
tecture (Fig. 1) to provide symmetric active/active high availability
without any interruption of service and without any loss of state.
3. Model and definition

Symmetric active/active metadata services for a file system do
not allow group partitions, otherwise a single global state for the
file system cannot be maintained. There is only one primary group
providing metadata services to clients. Any service that leaves the
primary group because of either malfunction or network partition
should stop responding to any requests from clients.
Assume that the primary group P consists of a group of

metadata services {p1, p2, . . . , pn}. We define Stp as the state of
metadata in a service p at a time t . We use the notation Gt if the
metadata in the group P is consistent at time t .

Property 1. Themetadata in the primary group P is consistent at time
t if and only if any two services in P have the same state at time t.

Gt ←→ ∀p, q ∈ P (Stp = S
t
q).

We define an initial state S0p for a service p in the primary group
P , and we assume that ∀p, q ∈ P, (S0p = S

0
q ).m

i
p is the ith message

which changes the state of a service p since the initial state S0p .
The function time(mip) returns the time amessagem

i
p arrives at the

service p. Sp,i is the state of service p after the messagemip.
Qip represents a sequence of ordered messages sent to service

p since the initial state S0p , and the last message of the sequence
is mip. {Q

i
p} defines the message set of the sequence: {Q

i
p} =

{m1p,m
2
p, . . . ,m

i
p}. |Q

i
p| is the number of messages in the sequence.

EQip defines the message order of the sequence:

∀mjp,m
k
p ∈ {Q

i
p}, j < k −→ (time(mjp) < time(m

k
p)).

Property 2. A message sequence Qip is said to be the same as a
message sequenceQjq if and only if the message set andmessage order
of the two sequences are the same.

Qip = Qjq ←→ ({Qip} = {Q
j
q}) ∧ (

EQip =
E

Q
j
q).

A sequence of ordered messages sent to service p changes the
state of a service p from the initial state S0p to Sp,i. We define a
recurrence relation and a function T̄ such that

Sp,i = T̄ (Sp,i−1,mip)

Sp,0 = S0p .

According to the definition of Qip, a sequence of ordered
messages sent to service p since the initial state S0p , the recurrence
relation can be solved to obtain a non-recursive definition of a state
transformation function T .

Sp,i = T (S0p ,Q
i
p).

Property 3. If the message sequence Qip is the same as the message
sequence Q

j
q, then the state of service p, Sp,i, is said to be the same as

the state of service q, Sq,j.

Qip = Qjq −→ Sp,i = Sq,j.

Proof.

Sp,i = T (S0p ,Q
i
p), Sq,j = T (S0q ,Q

j
q),

since S0p = S
0
q , ifQip = Qjq,

then Sp,i = Sq,j. �
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Fig. 1. Symmetric active/active replication architecture using internal replication by service modification/adaptation. The service interface could be a metadata service
interface if this model is used to develop active/active high availability for the metadata service.
The function time(Qip) returns the time the last message of
sequence Qip arrives at the service p. Q̄

t
p defines the longest

message sequence for service p before time t .

Q̄ tp = Qip −→6 ∃Q
j
p, (|Qjp| > |Q

i
p|) ∧

(time(Qip) < t) ∧ (time(Q
j
p) < t).

Property 4. If the message sequence Q̄ tp is the same as the message
sequence Q̄ tq , the state of service p, S

t
p, is said to be the same as the

state of service q, Stq, at a time t.

Q̄ tp = Q̄
t
q −→ Stp = S

t
q

After combining Properties 1 and 4, we have Property 5:

Property 5. The metadata in the primary group P is consistent at
time t if any two services in P receive the same message sequence at
time t.

∀p, q ∈ P (Q̄ tp = Q̄
t
q ) −→ Gt .

A group communication substrate provides a virtual synchro-
nous environment for application processes. This means that
every two processes that observe the same two consecutive
membership changes receive the same set of regular multicast
messages between the two changes. Regarding to the order of the
regular messages received between the two changes, the group
communication service provides total order communication. It
guarantees that all messages are delivered in the same order to all
group members. Combined with virtual synchrony and total order
communication, a group communication service guarantees that
any two services in the primary group P receive the samemessage
sequence. According to Property 5, the metadata in the primary
group P is consistent.
4. Total order broadcasting service

Section 3 shows that a total order broadcasting service is im-
portant to guarantee metadata consistency in a symmetric ac-
tive/active service group. In this section, the services of a total order
broadcasting are briefly discussed. We assume that there is a sub-
strate layer providing basic broadcasting services. A typical parallel
computing system comprises a set of processes that communicate
via broadcastingmessages.We assume thatmessages are uniquely
identified through a pair (sender, counter).

4.1. Basic broadcasting services

In a distributed system of a set of machines, each machine
has a sequence of events. An event is any operation executed
on the machines, and thus sending or receiving a message is an
event. Amachine in the system uses a broadcasting service to send
messages. A broadcast message is sent once by its source machine,
and arrives at all target machines in the system at different times.
The broadcasting service is responsible for the reliable delivery
of messages. Internally, causal delivery order [28] of messages is
guaranteed by the service. It is based on the relation ‘precedes’
(denoted by→), which is defined as follows.

Definition 1. Assume that ei and ej are two events in such a
distributed system. The transitive relation ei → ej (‘‘happened
before’’ relation) holds if any of the following conditions is
satisfied:

(1) ei and ej are two events on the same machine, and ei comes
before ej.

(2) ei is the sending of a message m by one machine and ej is the
receipt ofm by another machine.

(3) There exists a third event ek such that ei → ek and ek → ej.
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Fig. 2. Total order broadcasting service definition.

The causal order for broadcast messages is defined as fol-
lows [23]:

(Causal order): If the broadcast of a messagemi causally precedes
the broadcast of a messagemj,mi → mj, then no machine delivers
mj beforemi.

Definition 2. Messagemi andmessagemj are concurrent ifmi does
not causally precedemj andmj does not causally precedemi.

The basic broadcasting service receives the messages on the
network. It keeps causal order ofmessages and delivers them to the
fast delivery protocol. The broadcasting service does not guarantee
the same delivery sequence of concurrent messages in the system.
Failure can be defined as deviations from correct behaviors.

Some types of previously studied failure [23] include: crash failure,
send omission failure, receive omission failure, and Byzantine
failure. If a machine commits a failure, it is faulty; otherwise it
is correct. The following properties [23] are guaranteed by the
service:
(Validity): If a correct machine broadcasts a message m, then it
eventually deliversm.
(Agreement): If a correct machine delivers a message m, then all
correct processes eventually deliverm.
(Integrity): For any messagem, every machine deliversm at most
once, and only ifmwas previously broadcasted by sender(m).

4.2. Total order broadcasting

On top of the basic broadcasting service, totally ordered broad-
casting extends the underlying causal order to a total order for con-
current messages.
(Total order): If two correctmachines p and q both delivermessage
mi and mj, then p delivers mi before mj if and only if q delivers mi
beforemj.
The total order broadcasting provided by the system does not

guarantee total order across multiple partitions. As long as parti-
tions do not occur, all machines deliver the messages in the same
total order. When a partition occurs, machines in the same par-
tition continue to form the same total order. However, this may
differ across partitions. The total order broadcasting service of the
system is defined in Fig. 2.

5. Fast delivery protocol for total order broadcasting

Total order broadcasting is important for group communi-
cation services [13,7,15], but the agreement on the total order
usually bears a cost of performance: a message is not delivered
immediately after being received, until all the group members
reach agreement on a single total order of delivery. Generally, the
cost is measured as latency of totally ordered messages, from the
point the message is ready to be sent, to the time it is delivered.
Traditionally three approaches are widely used to implement

total ordering: sequencer, privilege-based, and communication
history algorithms [15]. In sequencer algorithms, one machine is
responsible for ordering the messages on behalf of other machines
in the group. Privilege-based algorithms rely on the idea that
senders can broadcast messages only when they are granted the
privilege to do so. For example, in a token-based algorithm [3],
a token is rotated among machines in the same group, and one
machine can only send messages while it holds the token. In
communication history algorithms, total order messages can be
sent by anymachine at any time, without prior enforced order, and
total order is ensured by delaying the delivery of messages, until
enough information of communication history has been gathered
from other machines.
These three types of algorithm have both advantages and dis-

advantages. Sequencer and privilege-based algorithms provide
good performancewhen a system is relatively idle. However, when
multiplemachines are active and constantly sendmessages, the la-
tency is limited by the time to circulate the token or produce the
order number from the sequencer. Communication history algo-
rithms have a post-transmission delay [15,18]. To collect enough
information, the system has to wait for a message from each ma-
chine in the group, and then delivers the set of messages that do
not causally follow any other, in a predefined order, for example,
by sender ID. The length of the delay is set by the slowest machine
to respondwith amessage. Thepost-transmissiondelay ismost ap-
parent when the system is relatively idle, and whenwaiting for re-
sponse from all other machines in the group. In the worst case, the
delay may be equal to the interval of heart beat messages from an
idlemachine. In contrast, if all machines producemessages and the
communication in the group is heavy, the regularmessages contin-
uously form a total order, and the algorithm provides the potential
for low latency of total order message delivery.
In a parallel computing system, multiple concurrent requests

are expected to arrive simultaneously. A communication history
algorithm is preferred to order requests amongmultiplemachines,
since such an algorithm performs well under heavy communica-
tion loads with concurrent requests. However, for relatively light
load scenarios, the post-transmission delay is high.
In this section, we describe a fast delivery protocol to reduce

this post-transmission delay. The fast delivery protocol provides
the total order broadcasting service defined in Section 4.2. We
assume that the protocol works on top of the basic broadcasting
service described in Section 4.1. We first consider a static system
of n machines, which means no failure of machines, no network
partitions and re-merges, and no new machines. Those features
will be considered in Section 5.3, in which we show how to extend
the protocol to handle dynamic environments. The fast delivery
protocol forms the total order by waiting for messages only from a
subset of themachines in the group; thus it fast delivers total order
messages. The protocol is implemented on top of the Transis [18]
group communication system.
Each machine will not deliver any messages until it collects a

message set from other machines in the group. The message set
should contain enough information to guarantee totally ordered
delivery. After a machine receives enough messages, it delivers
the set of messages that do not causally follow any other, in a
predefined order. Idle machines periodically broadcast heart beat
messages with a predefined interval on behalf of other machines.
Those heart beat messages will not be delivered, but are used by
machines to determine the order of received messages.

5.1. Notation and definition

We define that a partition P consists of a group of machines
{p1, p2, . . . , pN}. We assume that each machine in the group P has
a distinct ID. For a machine p, function id(p) returns its ID. If the
number of machines in the primary group P is N ,
∀p, q ∈ P, id(p), id(q) ∈ {1, 2, . . . ,N},
id(p) 6= id(q).
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Fig. 3. Fast delivery protocol algorithm.

We associate with each machine p ∈ P the functions prefix and
suffixwhich are defined as follows:

(1) prefix(p) = {q ∀q ∈ P, id(q) < id(p)}
(2) suffix(p) = {q|∀q ∈ P, id(q) > id(p)}.

The input to the fast delivery protocol is a stream of causally
ordered messages from the underlying broadcasting service. We
define a function sender(m) accepting an input parameter of any
messagem, and the function returns the ID of themachine sending
thismessagem. For example, if amessagemi is sent by amachine p,
then sender(mi) = p. If a messagemi is delivered before a message
mj, deliver(mi) < deliver(mj).
We define a pending message [17] to be a message that is

received but the total order has not been agreed, and thus, it
is not ready for delivery. A pending message that follows only
delivered messages is called a candidate message. The set of
concurrent candidate messages is called the candidate set. This is
the set of messages that are considered for the next slot in the
total order. For example, consider a system having five machines,
{p1, p2, p3, p4, p5}. After a certain time, there are no undelivered
messages on any machines. Machine p1 broadcasts a message
mp1, and machine p4 broadcasts a message mp4. All five machines
receive both mp1 and mp4, but none of them can deliver the two
messages, because apart from the sendingmachines, no one knows
if messages mp2 and mp3 are sent by p2 and p3 concurrently
with mp4, or not. All machines should not deliver mp1 and mp4
until enough information is collected to determine the total order.
The message set of mp1 and mp4 is called the candidate set, and
messages mp1 and mp4 are called candidate messages. Let Mp =
{m1,m2, . . . ,mk} be the set of candidate messages in a machine p.
We associate withMp a function senders.

senders(Mp) = {sender(mi)|∀mi ∈ Mp}.

Let Mdp be the set of messages ready to be delivered in a
machine p such that Mdp ⊆ Mp. The set Mdp is called the deliver
set.

5.2. The fast delivery protocol

The fast delivery protocol is symmetric, and we describe it for a
specificmachine p (see the pseudo code in Fig. 3). The basic concept
of the fast delivery protocol is to form the total order by waiting
for messages only from a subset of the machines in the group.
Assuming that a candidatemessagem is in candidate set Mp, we use
the following delivery criterion to definewhatmessages amachine
has to wait for before deliveringm:

(1) Addm into deliver set Mdp when:

prefix(sender(m)) ⊆ senders(Mp).

(2) Deliver the messages in setMdp with the following order:

∀mi,mj ∈ Mdp,
ifmi → mj
deliver(mi) < deliver(mj)

ifmj → mi
deliver(mj) < deliver(mi)

otherwisemi andmj are concurrent
id(sender(mi)) < id(sender(mj)) −→ deliver(mi)
< deliver(mj).

With the same example as in Section 5.1, we explain how the
protocol works. All five machines can deliver mp1 immediately,
because prefix(p1) = φ, and senders(Mp) = φ. The five
machines cannot delivermp4, because prefix(p4) = {p1, p2, p3} and
senders(Mp) = p1. Machines have to wait for messages from both
p2 and p3, but do not need to wait for a message from p5, because
p5 6∈ prefix(p4).

Property 6. With the fast delivery algorithm, if a machine p delivers
mi before mj, then any machine q that belongs to the same partition
with p delivers mi before mj, which means that total ordering is
guaranteed in the same partition.

Proof. (1) If there is a casual order between mi and mj, and if p
delivers mi before mj, then mi causally precedes mj, so any
machine q in the same partition deliversmi beforemj.

(2) Otherwise,mi andmj are concurrent. If p deliversmi beforemj,
then id(sender(mi)) < id(sender(mj)). Any machine q in the
same partition deliversmi beforemj. �

According to the protocol, if prefix(sender(m)) 6⊆ senders(Mp),
themachine phas towait formessages fromothermachines before
delivering m. If any of those machines is idle, the waiting time
could be up to the interval of heart beat messages. To speedup the
delivery of m, idle machines should immediately acknowledge m
on behalf of other machines. If a machine q receives a message m,
and q is idle, q broadcasts a fast acknowledgment when

sender(m) ∈ suffix(q).

In the same example, if p2 and p3 are idle, they should fast
acknowledge mp4, because p4 ∈ suffix(p2), and p4 ∈ suffix(p3). If
p5 is idle, it does not need to send a fast acknowledgment, because
p4 6∈ suffix(p5).
Fast acknowledgment reduces the latency of message delivery;

however, it injects more packets into the network. If communica-
tion is heavy, fast acknowledgment may burden the network and
machines, and thus increase delivery latency. To reduce the cost,
we define the following acknowledgment criterion:

(ACK) Fast acknowledge a messagem from a machine qwhen:

(1) messagem is a total order message, and
(2) there is nomessage waiting to be sent from themachine q, and
(3) 6 ∃mj ∈ Mp, id(sender(mj)) = q.
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Condition 1 is straightforward. Condition 2 means that if a
machine is sending regular messages, it is not an idle machine,
and the regular messages themselves are enough to form a total
order. Condition 3 means that if a machine already sent a regular
message, which is still in the set Mp, that message can be used to
form a total order, without an additional acknowledgment. In the
same example, if p1 is idle after sending mp1, it does not need to
send any acknowledgment (although p4 ∈ suffix(p1)), becausemp1
is still inMp.
In a parallel system, when multiple concurrent requests arrive

amachine simultaneously and the system is busy, conditions 2 and
3 could not be satisfied simultaneously, so no additional acknowl-
edgments are injected into the network when communication is
heavy.

5.3. Fast delivery protocol for dynamic systems

The fast delivery protocol operates on an asynchronous stream
of causal order messages. So far, the protocol does not account
for failures, network partitioning and re-merging, and joining
machines. In this section, we show how to extend the protocol to
handle the above issues in dynamic environments.
The fast delivery protocol is integrated into the group commu-

nication service to provide total order delivery of messages on top
of the basic broadcasting service. We assume that the system con-
tains a membership service, which maintains a view of the cur-
rent membership set (CMS) consistent among all machines in the
dynamic environment. When machines crash or disconnect, the
network partitions and re-merges, or newmachines join, themem-
bership service of all connected machines must reconfigure and
reach a new agreement on the CMS.
After a new agreement is reached, the membership service de-

livers a view_change event indicating a new configuration. All con-
nected machines in the new configuration agree on the set of
regular messages that belong to the previous membership, and
must be delivered before the new view_change event. The fast de-
livery protocol is extended to define how to deliver such messages
in the dynamic environment.
We assume that, after a new agreement on the CMS, the mem-

bership service notifies the fast delivery protocol with a special
event. With such an event, the protocol gets the machine set, Pf ,
which belongs to the previous configuration, but is included in the
new configuration. The new prefix(p) and suffix(p) are calculated
based on the Pf :

(1) prefix(p) = {q|∀q ∈ Pf , id(q) < id(p)}
(2) suffix(p) = {q|∀q ∈ Pf , id(q) > id(p)}.

Using the algorithm described in Section 5, the set of regular
messages that belong to the previous configuration are delivered
before the view_change event with the new prefix(p) and suffix(p).
Since a new CMS always completes within a finite delay of time,
any total order message could be delivered within a limited time
interval.

6. Symmetric active/active metadata service design

Conceptually, the symmetric active/active metadata service
software architecture (Fig. 4) consists of several major parts,
to handle client requests, update the global state, and manage
membership of the service group. The current proof of concept pro-
totype implementation uses the Transis [18] process group com-
munication system in conjunction with the fast delivery protocol
to provide total order and virtual synchrony, and the Parallel Vir-
tual File System (PVFS) [11].
We provide basic metadata manipulation interfaces for clients.

To balance workloads among multiple services, a client randomly
Table 1
Transaction control module locking table of the symmetric active/active metadata
service.

Read Update Write

Read X
Update X X
Write X X X

chooses a service to send a request. All client requests are sent
to the request interface module. It interprets the requests, creates
new jobs for them, then either dispatches the jobs directly to the
basic metadata services module or requests Transis to broadcast
them in total order. Jobs are first put into an active queue. The
scheduler module chooses one active job to execute, until it is
blocked by I/O operations and thus the job is put into the idle
queue. After the I/O operations finish, the job is put back into the
active queue andwaits to be scheduled. The schedulingmechanism
guarantees that a metadata service is not blocked by any I/O
operation and multiple concurrent requests could be interleaved
for improved throughput performance.
The basic metadata services module is responsible for updat-

ing localmetadata and provides basicmetadatamanagement func-
tions, such as create new object (file or directory), add a new entry
into a directory, get attribute, and so on. Some client requests could
bemapped to basicmetadata services directly, such as get or set at-
tribute, but some updating requests involve several basicmetadata
services and are also considered as atomic operations. For example,
a create new file request involves three basic services: reading the
parent directory to make sure no object has the same name, cre-
ating an object, and adding the handle of the new object into the
parent directory. It is an atomic operation, because a failure of any
step requires a roll back of all steps. The transaction controlmodule
is responsible for processing of such requests automatically, han-
dling roll back if a failure occurs. It ensures that transactions are
processed consistently across all service instances using process
group communication services. All services make the same deci-
sion for a transaction, either submit, or rollback. The module coor-
dinates transaction processing, and dispatches any real metadata
operation to the basic services module.
Jobs are interleaved by the scheduler, but concurrent operations

on the same objects are serialized by a locking service. The locking
service provides three lock modes: read, write, and update. The
incompatibility of the three modes is shown in Table 1. The update
lock is designed to improve the performance of the transactions.
A transaction first applies an update lock, without blocking other
read requests, then upgrades to write mode only when operations
modifying local objects are ready to be submitted. This design
allows disabling the locking service if the parallel file system itself
provides other means of locking at the client side or if POSIX
file operation semantics are relaxed. Both may lead to further
performance improvement.
The file handle space is managed by a dedicated module. Each

metadata service allocates and releases file handles independently,
but the file handle management must be consistent among all ser-
vices of the group. The handle management module is responsible
for allocating and releasing handles consistently for all services and
maintaining the global state of the handle space.
The membership management module is responsible for main-

taining integrity of the service group. Every time when new ser-
vices join the group or current members leave the group, the
module is notified with a view change message from Transis. The
metadata is a global state that must be consistent across all ser-
vices at any time, so the service group does not allow multiple
partitions. Even if a network partition exists, the symmetric ac-
tive/activemetadata service group should only enable one primary
group. Any service either belongs to a default primary group, or dis-
ables (fences) itself, until it rejoins the primary group. If a service
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Fig. 4. Internal replication design of the symmetric active/active metadata service.
crashes, it is already disabled automatically. If a service leaves be-
cause of a network error, it must also stop responding to any client
requests. If a client happens to connect a service not belonging to
the primary group because of network partition, the client gets a
negative response from the service; thus the client either tries to
find other active services belonging to the primary group, or is noti-
fied with an operation failure event. In either case, the metadata is
kept consistent. After joining the primary group, a service gets the
current metadata service state from other members of the group,
and thus updates its local copy. Since the view changemessages are
also totally ordered to request messages from clients, the current
state of metadata obtained from other members is exactly consis-
tent to the global state.
Read requests do not modify metadata except that, in POSIX

compliant file systems, the last access time information is updated
upon file read requests. The POSIX compliance of updating the last
access time under read requests is relaxed in this design. The last
access time is updated at the server handling the read request, but
not instantly broadcasted to other servers. The update is put into a
queue, and broadcasted to the groupwith later write requests. Any
active service may handle read requests independently and locally
(Fig. 5). However, write requests arriving at any metadata service
have to be totally ordered by group communication services before
being submitted to the basic metadata service (Fig. 6). A typical
write request is processed by the following steps:

(1) A client sends a request to the request interface.
(2) Transis is requested to broadcast the state change message.
(3) Transis delivers the state change message to a local scheduler.
(4) The state change message is sent to the transaction control
module.

(5) The transaction control decomposes the state change mes-
sages.

(6) The state change messages update the local metadata.
(7) The operation results are returned to the request interface.
(8) The service results are returned to clients.

7. Experimental results

To verify the above model, a proof of concept prototype for
symmetric active/active metadata services has been implemented
using the PVFS 2 [11] and deployed on the XTORC cluster at Oak
Ridge National Laboratory, using up to four metadata services
and 32 client nodes in various combinations for functional and
performance testing. The compute nodes of the XTORC cluster are
IBM IntelliStation M Pro series services. Individual nodes contain a
Intel Pentium 2 GHz processor with 768 MB memory, and a 40 GB
hard disk. All nodes are connected via Fast Ethernet (100 MBit/s
full duplex) switches. Although the Fast Ethernet is pretty slow,
the network performance will not be the bottleneck of the system,
since we only measure the read/write performance of metadata
operations, which are very small messages (less than 1 KB in most
requests). Federa Core 5 has been installed as the operating system.
Transis v1.03with the fast delivery protocol is used to provide group
communication services. Failures are simulated by unplugging
network cables andby forcibly shutting down individual processes.

7.1. Benchmark

A set of micro- and macro-benchmark programs are used to
evaluate the effectiveness of the fast delivery protocol and the
active/active metadata service.
An MPI-based micro-benchmark was developed to study the

latency and throughput of the group communication service and
the metadata servers built on it. The benchmark has two test-
ing modes. In mode A, multiple benchmark instances concurrently
send messages to associated group communication servers, and
then block until deliveries of all messages are confirmed. The la-
tency of the group communication service is measured between
the point the messages are sent out and the point the confirma-
tions are delivered. In mode B, multiple benchmark instances con-
currently send metadata requests to associated metadata servers,
and wait for server responses. The blocked requests are sent for
latency measurements, and a group of unblocked requests from
each benchmark instance is sent for throughput measurements.
Please bear in mind that the micro-benchmark only measures the
latency/throughput of operations at metadata servers, not the op-
erations of the entire file system.
Several macro-benchmarks, including PostMark [37], Iozone

[24], and BTIO fromNAS PARALLEL BENCHMARKS (NPB) [33], were
used to study the peculiarities of a metadata service. A tracing
method is used to evaluate various standard file systemworkloads.
Traces were collected by instrumenting a PVFS2 file system to log
various operations in the metadata servers (MDSs) and the object-
based storage devices (OSDs). The collected traces were analyzed
offline to study the access patterns observed in the metadata
services. The test bed consisted of one MDS, three OSDs, and
multiple clients.
The PostMark benchmark was used to simulate heavy file sys-

tem loads. PostMark is designed to create a large pool of continually
changing files and to measure the transaction rates for a workload
approximating a large Internet e-mail server. In this study, the ini-
tial number of files was set to 100. Files ranged between 1 MB to
64 MB in size. PostMark performed 1000 transactions on each file.
Block sizes were 512 bytes and UNIX buffered I/O was used.
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Fig. 5. Read request handling of the symmetric active/active metadata service.
Fig. 6. Write request handling of the symmetric active/active metadata service.
Iozone generates and measures a variety of file operations
for determining a broad file system analysis. In this study, both
sequential and random access patterns are simulated with read,
write, re-read and re-write operations on a 4 GB file with various
request sizes from 4 KB to 128 KB.
BTIO is an MPI-IO benchmark from NPB used for studying ac-

cess patterns of parallel I/Os. It is compiled with OpenMPI [34] and
ROMIO [41]. MPI-Full mode with collective I/O was enabled to ex-
amine the cost of theMDS and OSDs under concurrent I/O accesses
from multiple clients.

7.2. Fast delivery protocol performance

At the first step, the effectiveness of the fast delivery protocol
was examined. The mode A of the MPI-based micro-benchmark
was used to send concurrent requests frommultiplemachines. The
latency was measured with blocked requests, and an average la-
tency was calculated from 100 requests of each machine. The re-
sults under various configurations were provided for comparison
from one to eight machines. In the configuration of only one ma-
chine, the latency overhead mainly came from the processing cost
of the group communication service. When the number of ma-
chines increased, additional overhead was introduced by the net-
work communication and total order communication algorithm
to reach agreement among machines. For each configuration, we
measured the latency under both idle and busy systems. In an idle
system, only a single machine sent requests. In a busy system, all
machines sent concurrent requests.
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Fig. 7. Latency performance of the fast delivery protocol (maximum latency of
Transis with one sender= heart beat interval, e.g.,≈ 500, 000 µs).

The fast delivery protocol was compared with the traditional
communication history algorithm provided by the original Transis
system. In an idle system, the post-transmission delay of the
traditional communication history algorithm was apparent. The
latency is a random variable, and in the worst case, it is equal to
the interval of heart beat messages from an idle machine. A typical
interval is in the gratitude of several hundred milliseconds, and
the default value of Transis is 500 ms. To compare with the fast
delivery protocol, Fig. 7 plots the minimum delay of Transis with
one sender. In the figure, the latency of the plain communication
history algorithm and the fast delivery protocol is almost identical,



X. He et al. / J. Parallel Distrib. Comput. 69 (2009) 961–973 969
because we compared to theminimum value of a random variable.
The prototype shows that although the latency increased with
the number of machines, the fast delivery protocol works well to
keep the overall overhead far more acceptable and consistent. In
an idle system, the latency of the new protocol is very close to
the minimum delay of the Transis. In a busy system (Fig. 7 with
P senders), the latency of the fast delivery protocol is almost the
same as that of the traditional communication history algorithm,
because the protocol held unnecessary acknowledgments. We
found that when all machines sent concurrent requests, the fast
delivery protocol did not acknowledge any broadcast, and the
regular messages continuously formed the total order.

7.3. Metadata service failure handling

In the experiments, configuration changes including failures
of metadata servers and new service joining were simulated.
The initial configuration of the system consisted of one metadata
server andmultiple clients. Configuration changes were simulated
at the time clients were randomly updating metadata. Excessive
functional testing revealed correct behavior during normal system
operation and in the case of single and multiple simultaneous
failures. The functions monitored in the simulation included the
following.

(1) Correct behavior of metadata services in the process of
configuration changes.

(2) Consistence of metadata crossing all metadata servers in new
configurations.

(3) Any disruption of service or loss of service state in the process
of configuration changes.

First, additional metadata servers were added into the service
group. New servers were allowed to join the group, and served
requests from clients right after they got the current metadata
service state from other members of the group. A consistent
metadata state wasmaintained in the group, for both oldmembers
and new members. There was no disruption of service or loss of
service state in this process, and clients were not aware of changes
of the configurations.
Then, one and more members were forced to leave the group,

by unplugging network cables and by forcibly shutting down
individual processes. Correct behavior of the metadata services
was maintained and clients were not aware of any changes. The
metadata state was consistent in the group before and after
members left the group. No disruption of service or loss of service
state occurred, while the metadata was maintained consistently at
all services and high availability service was provided to clients.

7.4. Metadata service with a micro-benchmark

The proof of concept prototype shows a comparable latency
and throughput performance. In the experiment, both the client
and service caches were disabled to avoid interference. Mode B
of the MPI-based micro-benchmark was used to send concur-
rent read/write requests from multiple clients. The latency and
throughput of the original PVFS metadata service were compared
with proposed symmetric active/active PVFS metadata service so-
lution. The results under various configurations were provided for
comparison between one, two, and four symmetric active/active
metadata services. The latency was measured with blocked re-
quests, and an average value was calculated from 100 requests of
each client. The read latency was not provided, because read re-
quests are independently handled by each activemetadata service,
and thus therewas no difference to the original PVFSmetadata ser-
vice. The throughput was measured with unblocked requests. The
total number of requests sent to the services was 5000 ∗ N , where
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N is the number of metadata services. Each client sent 5000∗Nn un-
blocked requests to services (n is the number of clients), and then
waited for the completion of all requests. An average throughput
was calculated in terms of requests/second.
Benefiting from the highly efficient total order service, the re-

quest latency of the prototype (Fig. 8) increases very conserva-
tively from that of a single PVFS metadata server. The delay of a
single PVFS metadata service was used as a baseline, and the data
is normalized to the point of one PVFS service with one client.
The latency of the baseline increases with the number of clients,
and the normalized latency of active/active metadata service fol-
lows the same trend. The new design shows the same scalability
as the baseline, since the latency difference remains small even
with a large number of clients. It is consistent for both a small and
a large number of clients. In the configuration of only one meta-
data servicewith symmetric active/active design, the latency over-
head (compared to the baseline) mainly comes from processing
cost of the Transis group communication service. When the num-
ber of metadata services increases, an additional overhead is intro-
duced by the network communication and the total order commu-
nication algorithm to reach agreement among services. A service
with two active/active servers is a practical configuration, because
two servers could provide the necessary high availability with no
disruption of service, but minimize the costs. In the configuration
of two active/active servers, the latency overhead is very minor.
The fast acknowledgment aggressively acknowledges the total or-
der messages to reduce the latency of idle services when the num-
ber of clients is small. The protocol is smart enough to hold its ac-
knowledgments when the network communication is heavy be-
cause more clients are involved.
The comparison ofwrite throughput (Fig. 9) illustrates the trend

that the overhead of virtual synchrony could be amortized with a
large number of clients. At the point of one client, the configuration
of two metadata servers introduces an overhead of 20%. If the
number of clients increases to 32, the overhead drops to less than
5%.With a large number of clients, the regular messages from each
server automatically form a total order without the overhead from
additional acknowledgements.
In contrast, the read throughput (Fig. 10) increases linearlywith

the number of services. This is not surprising, because multiple
services can process concurrent read requests simultaneously, a
feature of the symmetric active/active replication architecture.
With the same configuration of two servers, the improvement can
be as high as 80%. In a metadata access pattern with realistic work
load, the overheads suffering from update/write operations would
be amortized with an improved scalability of read requests.
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7.5. Metadata service with macro-benchmarks

The use of symmetric active/active replication allows for no in-
terruption of service upon failure of service nodes. Requiring vir-
tual synchrony of all update/write operations adds an overhead
to the ‘‘common path’’. The prototype shows a very conservative
overhead for write operations (Fig. 8), and shows that the read
throughput increases linearlywith the number of services (Fig. 10).
The further study of access patterns observed in metadata ser-
vices under various file system benchmarks (Section 7.1) could
provide a view with realistic file system workloads of how the
overall I/O performances would be impacted by applying the ac-
tive/active metadata service and the possibility that the overheads
suffered from update/write operations would be amortized with
an improved scalability of read requests.
A file system operation initiated from clients consists of two

types of sub-action: one is on the metadata server, and another
is on OSDs. Correspondingly, the delay of such operations can be
decomposed into the delay on the OSDs and the delay on the
MDS. Different file system workloads have different access pat-
terns, and the proportions of execution time on theMDS and on the
OSDs are different. The collected traces from realistic file system
workloads (Section 7.1) were analyzed by an in-house developed
profiler. The overall execution time of theseworkloadswas decom-
posed into the time spent on the OSDs and the time spent on the
MDS (Fig. 11). The results indicate that, under most workloads, the
execution time of the OSDs is a dominant figure of the overall I/O
delay: the time spent on the metadata server is less than 1%. In
those workloads, most file system operations occurred on OSDs.
The comparison of execution time between the MDS and the OSDs
illustrated that the overhead of metadata servers is a trivial com-
ponent in the ‘‘common path’’ for most realistic workloads. As a
OSD
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consequence, overall I/O performancesmay not be impacted by ap-
plying the active/active metadata service.
Sincemultiplemetadata services have the capability of process-

ing concurrent read requests simultaneously, an analysis of the
proportion of the execution timeofwrite operations and readoper-
ations on a metadata server (Fig. 12) illustrates that the overheads
suffered from update/write metadata operations may be amor-
tizedwith an improved scalability of read requests. PostMark is the
worst case: read operations accounts for 20% of total metadata ex-
ecution time. Considering that the proof of concept prototype im-
poses a very conservative overhead for write operations, and the
improvement of read operations could be as high as 80% with two
metadata servers, a high availability of metadata services can be
achieved with an acceptable performance trade-off even for work-
loads with a high amount of small I/O requests.

8. Related work

Past work on high availability for metadata services has pri-
marily focused on the active/standby model. The PVFS metadata
service, for example, can be deployed on two machines using ac-
tive/standby and crosswise active/standby strategies involving a
shared storage device and the heart beat mechanism [39]. Recent
research in symmetric active/active replication for high perfor-
mance system services [19,20] uses multiple redundant service
nodes running in virtual synchrony [32]. In particular, the JOSHUA
solution [49] for symmetric active/active HPC job and resource
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management was a precursor to the research presented in this
paper.
Previous research of distributed versioning [4,5] provided an

efficient model to establish strong consistency (one-copy serial-
izability) crossing multiple active replicas. Distributed versioning
provides both the consistency guarantees of eager replication and
the scaling properties of lazy replication. It does so by combining a
novel concurrency control method based on explicit versions with
conflict-aware query scheduling that reduces the number of lock
conflicts, and content-aware scheduling that enable a lazy read-
one, write-all replications. Both the distributed versioning model
and the active/active model guarantee strong consistency among
multiple active replicas, and they achieve high degrees of concur-
rencywith the read-once, write-all scheme, but differences exist in
how the two models implement the same total order at all repli-
cas. Distributed versioning uses highly optimized schedulers and
sequencers to assign distinct version numbers to replicas to guar-
antee the same total order, while the active/active model uses vir-
tual synchrony and the fast delivery protocol to achieve the same
total order.
Total order communication is important for symmetric active/

active replication. Among the several algorithms to implement
total ordering, there are three most used approaches: sequencer,
privilege-based, and communication history [15]. In the sequencer
algorithms [9,21,38,26], one machine is responsible for ordering
the messages on behalf of other processes in the group. Privilege-
based algorithms [14,3] rely on the idea that senders can broadcast
messages only when they are granted the privilege to do so, and
thus the total order is forced in the process of competition of
the privilege. In communication history algorithms [18,17,16,1,8],
total order is ensured by delaying the delivery of messages, until
enough information about the communication history has been
gathered from other machines. The agreement on the total order
usually bears a cost of performance: the latency from the point
the message is ready to be sent to the time it is delivered.
Early delivery algorithms [17,8] reduce the latency by reaching
agreement with a subset of the machines in the group. Optimal
delivery algorithms [25,51] delivermessages before the total order
is determined, but notify the applications and cancel the delivery
if the final order is different from the delivered order.
Metadata is very important for file systems. Researchers have

developed many algorithms to efficiently and reliably manage
metadata. An approach called Lazy Hybrid metadata management
for high performance object-based storage systems [10] combines
the best aspects of two managing metadata techniques: directory
subtree partitioning and pure hashing. Zhu et al. [54] propose a
hierarchical metadata management scheme. A dynamic subtree
partitioning and adaptive metadata management system [52] is
proposed to service a petabyte-scale distributed file system, using
a dynamic subtree technique to distribute the workload while
maximizing overall scalability. To solve the metadata consistency
problem, a metadata snapshotting [46] is presented to provide
system availability at very little cost. Journal-based metadata and
multi-version b-trees [47] are used in a comprehensive versioning
file system (CVFS) to reduce the space utilization without
decreasing the performance of data accessing. Two methods for
improving metadata operations, journaling and soft updates, are
explored [44] to improve the performance of metadata operations.
Previous file systems have distributed and replicated metadata

and user data to improve availability. The XFS file system [6] dis-
tributes metadata into multiple managers across the system on
a per-file granularity by utilizing a new serviceless management
scheme. Furthermore, location independence provides high avail-
ability by allowing any machine to take over the responsibilities
of a failed component after recovering its state from the redun-
dant log-structured storage system. The active/standby model is
used in XFS to organize a redundant storage system. The Frangi-
pani file system [48] uses the large, sparse disk address space of the
substrate Petal storage system [30] to simplify its data structures.
The data and metadata of Frangipani are stored and managed on
top of the virtual address space provided by Petal, similar to tradi-
tional file systems on top of the address space of hard disks, but the
real data is physically distributed tomultiple Petal storage services.
High availability of both user data and metadata is provided by a
replication based redundancy scheme called chained de-clustering
of the Petal system.
Various research efforts in file systems have shown that total

ordering can be used to provide high availability. The Deceit file
system [45] behaves like a plain NFS service. The deceit services
are interchangeable and collectively provide the illusion of a single
service to any clients. It uses the ISIS [9] distributed programming
environment for all totally ordered communication and process
groupmanagement. Non-volatile replicas of each file are stored on
a subset of the file services.
Recent research in providing service redundancy has focused on

practical solutions for solving the Byzantine generals problem [29],
where malicious attacks and software errors result in incorrect
process group behavior. These approaches go beyond the fail-
stop model, which assumes that system components, such as
services, nodes, or links, fail by simply stopping. Byzantine Fault
Tolerance with Abstract Specification Encapsulation (BASE) [40]
is a communication library for state machine replication. It uses
abstraction to reduce the cost of Byzantine fault tolerance and
to improve its ability to mask software errors. Using BASE, each
replica can be repaired periodically using an abstract view of
the state stored by correct replicas. Furthermore, each replica
can run distinct or nondeterministic service implementations,
which reduces the probability of commonmode failures. Prototype
implementations for a networked file system [12] and an object-
oriented database [50] suggest that the technique can be used in
practicewith amodest amount of adaptation andwith comparable
performance results.

9. Conclusions

This paper has presented recent research in symmetric active/
active metadata services as a generic approach for highly avail-
able cluster storage systems. This concept provides a virtually
synchronous environment for high availability without any inter-
ruption of service and without any loss of state. It guarantees the
safety of global state updating by utilizing group communication
services and total order broadcasting. The number of services in
the service group is variable at runtime. The internal scheduler
improves the system performance by interleaving concurrent re-
quests, and the built-in transaction control mechanism provides
atomic services and guarantees data consistency in the case of op-
eration failures.
A fast delivery protocol is illustrated to reduce the latency

of ordering messages. The protocol optimizes the total ordering
process bywaiting formessages only froma subset of themachines
in the group. The protocol performs well for both idle and active
services. Furthermore, the fast acknowledgment aggressively
acknowledges total order messages to reduce the latency when
some services are idle. The protocol is smart enough to hold its
acknowledgments when the network communication is heavy.
Both the functional and the performance test results are pre-

sented with comprehensive experiments under various system
configurations. The results show that, for write requests, the over-
head of latency and throughput increases with the number of ser-
vices, but is still acceptable for typical distributed storage systems.
The throughput of read requests increases linearly with the num-
ber of services. The experimental results show that high availabil-
ity of metadata services can be achieved without interruption of
service andwith an acceptable performance trade-off using the ac-
tive/active metadata service solution.
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