Journal of Network and Computer Applications 32 (2009) 642-651

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Contents lists available at ScienceDirect

NETWORK&
COMPUTER
APPLICATIONS

An efficient design for fast memory registration in RDMA

Li Ou?, Xubin He®*, Jizhong Han®

2 DELL Inc., USA

b Electrical and Computer Engineering Department, Tennessee Technological University, Cookeville, TN 38505, USA
€ Institute of Computing Technology, Chinese Academy of Sciences, China

ARTICLE INFO

Article history:

Received 7 October 2007
Received in revised form
26 March 2008
Accepted 5 July 2008

Keywords:

RDMA

Memory registration
Cache

Performance evaluation

ABSTRACT

Remote Direct Memory Access (RDMA) improves network bandwidth and reduces latency by elimi-
nating unnecessary copies from network interface card to application buffers, but the communication
buffer management to reduce memory registration and deregistration cost is a significant challenge to
be addressed. Previous studies use pin-down cache and batched deregistration, but only simple LRU is
used as a replacement algorithm to manage cache space. In this paper, we evaluate the cost of memory
registration in both user and kernel spaces. Based on our analysis, we reduce the overhead of
communication buffer management in two aspects simultaneously: utilize a Memory Registration
Region Cache (MRRC), and optimize the RDMA communication process of clients and servers with Fast
RDMA Read and Write Process (FRRWP). MRRC manages memory in terms of memory region, and
replaces old memory regions according to both their sizes and recency. FRRWP overlaps memory
registrations between a client and a server, and allows applications to submit RDMA write operations
without being blocked by message synchronization. We compare the performance of MRRC and FRRWP
with traditional RDMA operations. The results show that our new design improves the total cost of
memory registrations and overall communication latency by up to 70%.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The advent of networking technologies facilitates the service of
storage over networks. Remote Direct Memory Access (RDMA) is
emerging as the central feature in modern network interconnects.
It offers low latency, high throughput, and low CPU overhead
communication in network storage systems. These enabling
technologies eliminate or reduce costs of memory copy, network
access, interrupt, and protocol processing in the network
subsystem. Interconnects like InfiniBand (Infiniband Trade Asso-
ciation, 2000), Myrinet (Boden et al., 1995), and Quadrics (Petrini
et al., 2001) have long introduced RDMA in LAN environments.
RDMA over IP has been developed to extend the benefits of RDMA
across the WAN/Internet. The RDMA Consortium has proposed the
RDMA Protocol Verbs Specifications (RDMAVS 1.0) (Hilland et al.,
2003) to standardize the efforts.

While RDMA improves network bandwidth and decreases
latency by eliminating unnecessary copies from network interface
cards (NICs) to application buffers, a number of challenges must
be addressed. One of the most significant issues is efficient
communication buffer management to reduce memory registra-

* Corresponding author. Tel.: +19313723462; fax: +1931372 3436.
E-mail addresses: li_ou@dell.com (L. Ou), hexb@tntech.edu (X. He),
hjz@ict.ac.cn (J. Han).

1084-8045/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jnca.2008.07.008

tion and deregistration costs. Previous research (Bell and
Bonachea, 2003; Rangarajan and Iftode, 2004; Tezuka et al.,
1998; Wu et al,, 2003a,b; Zhou et al., 2002) shows that memory
registration is an expensive operation since it requires pinning of
pages in physical memory and accessing the on-chip memory of
the NIC, such as InfiniBand Host Control Adapter (HCA) and RNIC
of RDMA over IP. Experimental results (Tezuka et al., 1998) from
Myrinet and an extremely old Pentium Pro machine (200 MHz)
show that one memory page transfer (4KB) only takes 25.6 us
while the memory registration cost is approximately 26 pis. Even
with a much faster configuration (InfiniBand HCA and Intel Xeon
2.4GHz processor) (Wu et al., 2003b), the registration of a
memory page still costs about 7 s, almost the same as the
transfer time for that page. The cost and overhead of memory
registration dramatically degrade the performance of RDMA and
increase network latency in the critical data path of I/O
operations.

Several attempts (Bell and Bonachea, 2003; Rangarajan and
Iftode, 2004; Tezuka et al., 1998; Wu et al., 2003a, b; Zhou et al.,
2002) have been made to reduce the overhead of memory
registration in RDMA. In some special environments (Bell and
Bonachea, 2003; Liu et al., 2003; Wu et al., 2004), the memory
region used by applications is predefined and can be preregistered
in the initialization phase; thus in the critical path of data
transferring, memory registration is not necessary. In general
applications, since dynamic registration and deregistration cannot

www.sciencedirect.com/science/journal/yjcna
www.elsevier.com/locate/jnca
dx.doi.org/10.1016/j.jnca.2008.07.008
mailto:li_ou@dell.com
mailto:hexb@tntech.edu
mailto:hjz@ict.ac.cn

L. Ou et al. / Journal of Network and Computer Applications 32 (2009) 642-651 643

be avoided, a pin-down cache (Tezuka et al., 1998) is incorporated
in the memory manager. A pin-down cache delays deregistration
of registered buffers and caches their registration information for
future accesses of the same memory region. Several cache designs
for memory registration (Rangarajan and Iftode, 2004; Wu et al.,
2003a) are proposed based on the pin-down cache to take
advantage of temporal locality of memory accesses of RDMA.
Current memory registration caches manage memories at the
page level and only consider LRU as the replacement algorithm.
Most applications using RDMA register and deregister memory
regions containing multiple continuous or noncontiguous mem-
ory pages; thus, page level management for registration caches is
not efficient enough. Furthermore, with multiple page memory
regions, the locality of memory accesses is also changed, and the
general LRU algorithm is probably not the best choice.

In this paper, we evaluate the cost of memory registration in
both user and kernel spaces. We analyze latency of memory
registration and find three main parts which contributes most to
the total costs. Based on our analysis, we reduce the overhead of
memory registration in two aspects simultaneously: utilize a
memory registration cache, and optimize the RDMA communica-
tion process of clients and servers.

We propose a new cache management scheme, Memory
Registration Region Cache (MRRC), to minimize the cost of
memory registration and deregistration in the critical data path.
MRRC manages memory in terms of memory regions, which
contain one or more memory pages, and considers pipelining
between RDMA operations and memory registrations. MRRC
organizes the cache stack using the LRU algorithm, but divides
the stack into three sections and evicts memory regions from the
eviction section according to both the size and recency.

We then propose a new communication scheme between an
RDMA client and server, Fast RDMA Read and Write Process
(FRRWP), to minimize the cost of memory registration in the
critical data path. FRRWP re-schedules the communication
process of RDMA to overlap memory registrations between the
client and the server. It allows issues of RDMA operations without
being blocked by the synchronization messages: the applications
may submit an RDMA write immediately after they finish local
memory registrations, without waiting for the confirmation of
registrations from the peer node.

The performance of MRRC is compared with traditional RDMA
memory registration operations and other typical registration
cache management algorithms such as pin-down cache (Tezuka
et al., 1998) and FMRD (Wu et al., 2003a). The results show that
compared to traditional RDMA memory registration, MRRC
improves the total cost of memory registrations by up to 70%.
We compare the latency of FRRWP with traditional RDMA
operations using a mathematic model. The results show that
FRRWP reduces the total communication latency in the critical
data path by 68%.

The rest of the paper is organized as follows. Background
material is presented in Section 2. Section 3 examines related
work. Section 4 evaluates the cost of memory registration in both
user and kernel space. Sections 5 and 6 describe the design issues
of MRRC and FRRWP in detail, respectively. MRRC is compared to
the previous efforts to improve RDMA performance in Section 7.
The latency of FRRWP is analyzed in Section 8. Section 9 draws the
conclusions.

2. Background review

In RDMA, an NIC (RNIC, RDMA NIC) or InfiniBand HCA writes or
reads user specified buffers directly without unnecessary copies,
so before each RDMA operation, it is required to register a

memory region where the user buffers are located. In the process
of registration, the device driver first maps the virtual memory
address to the physical address, then pins the memory region to
make sure that in the operations of RDMA, the memory region is
not swapped out from physical memory. After mapping and
pinning, the driver reports the information of the memory region
to NIC, in which a table is used to keep information of all
registered memory regions. A memory region cannot be pinned
forever; otherwise, the effective size of physical memory used for
other purpose is reduced. On the other side, the number of entries
in the registration table is limited. When the number of registered
buffers exceeds this limit, the application needs to deregister
memory and free resources on the NIC, which involves the
unpinning of the memory region and remove the entry from the
table. Memory registration and deregistration are time-consum-
ing operations.

The cost of memory registration and deregistration varies with
the performance of hosts. For instance, in a pretty old Pentium Pro
machine (200 MHz), one memory page (4 KB) registration takes
26 ps (Tezuka et al., 1998), while the same operation only need
7 us with a much faster Intel Xeon 2.4 GHz processor (Wu et al.,
2003b). Although high performance servers reduce time of
memory registrations, the cost is still almost same as the network
latency of the contemporary interconnect used by servers (Tezuka
et al., 1998; Wu et al., 2003b). If every RDMA operation is blocked
by the registration and deregistration, the overhead is very large
and overall communication latency is very high. Previous studies
(Tezuka et al., 1998; Wu et al., 2003b) show that without any
optimization, the RDMA performance is hurt by the memory
registration and deregistration so much that even the traditional
send and receive operations, which involve several memory
copies, could outperform RDMA if the message size is small.
Experiments (Tezuka et al., 1998; Wu et al., 2003b) show that if
the message size of most operations is less than 1K, RDMA with
normal memory registration may not provide better performance
than the traditional way, and in some cases, even worse.

The simple solution of pre-registering all buffers at application
startup is not general and cannot be applied in most systems,
since they use large caches and require large amount of memory
buffers. Dynamic memory registration is not avoided if applica-
tions keep using different buffers. To improve RDMA performance,
it is very important to reduce the overhead of memory registra-
tion and deregistration.

3. Related work

Several studies have improved the performance of memory
registration and deregistration of RDMA. Tezuka et al. (1998)
propose a pin-down cache for Myrinet. A pin-down cache delays
the deregistration of registered buffers and caches their registra-
tion information for future accesses of the same memory region.
LRU is used as a replacement algorithm in a pin-down cache to
manage memory registrations. Zhou et al. (2002) eliminate
pinning and unpinning from the registration and deregistration
paths by combining memory pinning and allocation together.
They also demonstrated that batched deregistration is an efficient
way to reduce the average cost of deregistration memory. Wu
et al. (2003a), propose a two-level architecture, FMRD, for
memory registration by adopting both a pin-down cache and
batched deregistration. FMRD also takes advantage of the
Mellanox fast memory region registration extension in VAPI
(Mellanox Technologies, 2003). Based on the pin-down cache, a
lazy cache is proposed in Rangarajan and Iftode (2004), which
combines a cache of registration mappings with a lazy approach
to memory deregistration. The lazy cache is implemented using an

644 L. Ou et al. / Journal of Network and Computer Applications 32 (2009) 642-651

LRU list with a fixed size hash table for fast access, and allows
applications to query the size of the buffer/descriptor set. This
work in memory registration builds upon but is different from the
previous studies because a new replacement algorithm for MRRC
considers the effects of various sizes of memory regions.

In some application, memory regions are predefined and can
be preregistered in the initialization phase to avoid extra cost in
the critical path of data transferring. In the design of Unifier (Wu
et al., 2004), the cache buffers are divided into two groups (ready
buffers and raw buffers). The ready buffers are registered and
resident in the system during the Unifier’s life time. In the
implementation of RDMA-Based MPI, Liu et al. (2003) introduced
a technique called persistent buffer association, in which buffers at
both the sender and receiver sides are allocated, registered, and
associated during the initialization phase. In Bell and Bonachea
(2003), a firehose algorithm is proposed for RDMA in a shared
memory system. The firehose algorithm starts by determining the
largest amount of application memory that can be shared with
remote machines, then all shared memory regions are pinned and
registered, and linked to a firehose interface, from which remote
machines can write and read shared memory at any time.

Other research focuses on directly reducing the cost of memory
registration. In RDMA Protocol Verbs Specifications (RDMAVS 1.0)
(Hilland et al., 2003) and the Mellanox IB-Verbs extension (VAPI)
(Mellanox Technologies, 2003), a new registration schema, Fast
Memory Registration (FMR), is introduced, in which registration
operations are divided into two distinct steps. In the first step,
applications apply a handle and allocate a resource in the NIC. This
step can be done in the initialization of the application. In the
second step, the application issues the fast registration requests
with the pre-allocated handle and the detail information of the
memory region; then the memory is pinned at last. The second
step is finished before any RDMA read or write operations. Since
the resources of the NIC are pre-allocated, the overhead of FMR in
the critical data path is smaller than that of traditional memory
registration operations. Experimental results (Rangarajan and
Iftode, 2004) show that the delay of memory registration is
reduced by 50us by using FMR with Intel Xeon 2.4GHz
processors. Wu et al. (2003b) propose an Optimistic Group
Registration (OGR) to reduce the cost of memory registration for
noncontiguous accesses. OGR integrates multiple registrations of
noncontiguous memories into one operation, and registers a large
memory region containing several noncontiguous buffers.

Caching is a common technique for improving the performance
of any I/O system. Researchers have developed many algorithms
to manage the buffer cache, such as LRU (Dan and Towsley, 1990),
MRU (Denning, 1968), LFU, FBR (Robinson and Devarakonda,
1990), LRU-k (O'Neil et al., 1993), 2Q (Johnson and Shasha,
1995), LIRS (Jiang and Zhang, 2002), and ARC (Megiddo and
Modha, 2003). Jiang et al. (2005) propose a new management
scheme, DULO, to balance the temporal and spatial locality of
workload. Gill and Modha (2005) use a new ordering algorithm,
WOW, to resort the writing sequences of non-volatile cache by
combining both spatial and temporal localities.

4. Cost analysis of memory registrations

To study the cost of memory registrations in RDMA, we set up
our experimental environments with two servers and InfiniBand
network. The server is equipped with a 2.8GHz Intel P4
microprocessor, 1024 MB memory, and an InfiniBand HCA. Two
servers are connected with an InfiniBand switch.

We developed a Client-Server program to test the latency of
memory registration and RDMA write operation between two
servers. We vary the message size from 1 to 128 KB, and compare

latency in both the user space and the kernel space. For each
message size, we record the average latency from multiple tests:
1000 times for small size messages in the user space, 100 times for
large size messages in the user space, and 50 times in the kernel
space.

First we compare the latency of memory registration and
RDMA write with various size of messages in user space in Fig. 1. It
is obvious that the cost of memory registration is so huge that it is
much higher than the latency of RDMA operation itself, especially
with small size messages. With such high cost, the benefit of
RDMA is reduced, and furthermore, the latency of RDMA
operation of small size messages, including memory registration
and real RDMA write, makes it unattractive compared to
traditional network protocol stack. The result is consistent with
the previous research (Tezuka et al., 1998; Wu et al., 2003b), but
the difference is that in our experiments, the cost of memory
registration are higher than real RDMA operations in some cases.
It is reasonable because reducing memory registration cost is
limited by performances of PCI bus of hosts, which improves very
slowly, while the latency and bandwidth of network subsystems
improve quickly.

We explain in Section 2 that the cost of memory registration
consists of three main parts: maps the virtual address to physical
address, pins the memory region, and registers to RDMA card.
With such high latency of memory registrations, we want to know
how those three parts contribute to whole costs. We examine the
latency of memory registrations in kernel space. We use
__get_free_pages to allocate memory regions and register the
memory region using ib_reg_phys_mr, which is a kernel service
provided by the kernel VAPI module. The memory region
allocated by __get_free_pages is returned with physical address
and physically contiguous, so there is no need to map address. Any
memory region allocated in kernel space will not be swapped out
any time, so there is no cost of pining memory. With such
configurations, we expect that the cost of memory registration in
kernel space only includes the latency of registering to RDMA
card. Our results are presented in Fig. 2. First we find that latency
in kernel space is about half of user space, when the memory size
is smaller than 32 KB. Since the registration in kernel space only
includes latency of registering to RDMA card and the registration
in user space includes all three parts, we know that the costs of
mapping address, pining memory, and crossing user-kernel
interfaces count about half of the total latency, and cost of
registering to physical card counts the other half. when the
memory region is larger than 32 KB, the latency of user space
increases dramatically, but the latency of kernel space is still
independent to the memory size. The reason is that in user space,
the system call malloc dos not guarantee that allocated memory

21

18 | —&— Registration —#— RDMA Write

15 |
g2t
3 [.
3ot

6 [

3 L

1

1 2 4 8 16 32 64 128
Memory Size (KB)

Fig. 1. Comparison between latency of memory registration and RDMA write with
various size of messages in user space. The data are normalized to the latency of
1 KB RDMA write.

L. Ou et al. / Journal of Network and Computer Applications 32 (2009) 642-651 645

3.0
55 —a+— User Space ~ —=— Kernel Space .
r B
_ 20 ¢ & - "
Q
515
S -
10 f = = » - = =
0.5 F
0.0 : t t t =
4 8 16 32 64 128
Memory Size (KB)

Fig. 2. Comparison of memory registration latency between user space and kernel
space with various size of messages. The data are normalized to the latency of 4 KB
kernel space.

region is physically contiguous. In our experiments, we find that
memory regions less than 32 KB are contiguous, but it is not the
case for larger regions. With separated physical memory regions,
the latency of mapping address, pinning memory, and even
registering to RDMA card should be higher, because kernel do
those jobs in terms of physically region.

From the previous experiments, we know that the latency of
registering to RDMA card counts about 50% of total cost. Since
other costs may be eliminated by allocating contiguous physical
spaces and pre-pining, it is important to know that what is the
main part of cost to register to RDMA card, and if it is possible to
eliminate it. The cost of registering to RDMA card includes two
parts: allocate a table in kernel memory and record physical
address of memory region, and write I/O registers of RDMA card to
register memory information. With FMR, user pre-allocates a
table in kernel memory to record physical address of memory
region, and pre-writes I1/O registers of RDMA card to register
memory information, and only fills the table for physical address
of memory region during the real memory registration operations.
We compare the latency of fast registration and ordinary
registration in kernel space and present the results in Table 1.
Amazingly, the latency of fast registration is so low that it can be
almost ignored. It is obvious that the main part of latency in
registering to RDMA card is the cost of communicating with 1/0
card and writing I/O registers.

Research in Wu et al. (2003b) showed that cost of FMR in user
space consists of two parts. First part is the cost of per registration,
and second part is cost of per page. In Wu et al. (2003b), the cost
of registering memory region is modeled as T = a = p + b, where a
is the registration cost per page, and b is the overhead per
operation, and p is the size of the memory region in pages. In their
testbed, the costs of per page in registration is 0.77 pus. The
overhead per registration and deregistration operations is 7.42 ps.
With this result, we find that our design reduces the latency in the
entire communication process by T, = 0.77 % p + 7.42. Our results
of FMR in kernel space is consistent with the previous research,
because the cost of kernel space fast registration is so small that
the main cost of user space fast registration comes from latency of
crossing user-kernel interfaces. Our results show that latency of
switching environment is about 5 ps, which is main part of cost
per operations in previous model.

From our experimental results, we find that the latency of
communicating with I/O card and writing /O registers counts
about half of the cost of memory registration, and unfortunately,
unlike other parts of cost, it can not be eliminated by optimizing
kernel and modifying software.That part of latency is still high
enough, especially when compared to latency of RDMA write
itself. Actually, although the cost of FMR in user space is very low,
compared to ordinary registrations, it is still almost same with the

Table 1
Latency of fast and ordinary memory registrations in kernel space

Memory size (KB) Fast MR Ordinary MR
4 1.000 79.124
8 1.014 79.588
16 1.108 79.313
32 1.237 79.599
64 1.550 79.387
128 2.027 79.822

The data are normalized to the latency of 4 KB fast MR.

cost of real network operations, because of latency of switching
environment. In this paper, we reduce the overhead of memory
registration and improve the performances of RDMA by using
MRRC, and FRRWP, which overlaps memory registrations of
client and server and reduces the overhead of synchronization
messages.

5. Memory registration region cache (MRRC)

In RDMA operation, memory is accessed in terms of region,
which includes several physical pages, so memory is also
registered in gratitude of memory region. A memory region could
be a bulk of contiguous virtual memory, or a list of noncontiguous
physical memory pages. In this design, we use an MRRC to manage
information of all registered memory regions. The size of the
MRRC is equal to the maximal memory pages an NIC allows to
register. The deregistration of a memory region is delayed until
the MRRC cache is full, and after that, a replacement algorithm,
Memory Resorting and Eviction (MRE) is used to choose regions for
batched deregistration according to their size and recency. Any
RDMA operation could be issued directly without memory
registration if the memory region it reads or writes has already
stayed in the MRRC, otherwise, a new registration operation is
required and the corresponding information is updated into
MRRC.

Since memory is managed in terms of regions, management
policy of MRRC is different from traditional buffer caches which
only manage fixed size memory pages. There are four possibilities
for the relationship between a memory region newly requested by
an RDMA operation and memory regions already cached. First, the
new region exactly matches a cached region; thus, no registration
is needed for actual RDMA operations. Second, the new region is a
subset of a cached region, and also no further registration is
needed. Third, there is an intersection between the new region
and a cached region. Registering the new region directly is a
simple but costly solution, since not only cache space is wasted by
duplicated memory pages, but also registering time is long due to
the full size memory region. In our design, the new region is
divided into two parts, the first part is totally matched with or a
subset of a cached region, and the second part is treated as a new
region which is registered immediately. This design not only saves
the space of the MRRC, but also improves system performance by
pipelining memory registration and RDMA operations. In the
same time of registration of the second part, the RDMA operation
for the first part can be issued to reduce total response time. In the
last case, there is no overlap between the new region and any
cached region, and a new registration operation is necessary.

The MRRC is designed by using the LRU algorithm and its data
structure: the LRU stack. The MRRC stack is partitioned into two
sections (shown in Fig. 3), similar to the DULO cache (Jiang et al.,
2005). The top part is the frequent reference section used for
admitting newly accessed memory regions. The lower part is the

646 L. Ou et al. / Journal of Network and Computer Applications 32 (2009) 642-651

Frequent
Reference

T

Resorting
Eviction

ol

Fig. 3. LRU stack of MRRC.

Resorting section in which all regions are treated as candidate for
eviction. The Resorting section is further divided into two
segments. The lower part is the eviction segment. All regions in
this segment are ready to be evicted from the cache and thus to be
deregistered.

MRE replaces memory regions in the bottom of the stack
according to both their recency and size. MRE prefers to replace
large regions first, because a large region consumes more cache
space, and small regions need more registration time compared to
one large region with the same memory size. Research in Wu et al.
(2003b) showed that cost of memory registration consists of two
parts. The first part is the cost per registration, and second part is
the cost per page. In Wu et al. (2003b), the cost of registering a
memory region is modeled as T=axp-+b, where a is the
registration cost per page, b is the overhead per operation, and p
is the size of the memory region in pages. The same cost equation
can be applied to deregister a region with different values of a and
b. In their testbed, the costs of registration and deregistration per
page are 0.77pus and 0.22 ps, respectively. The overheads per
registration and deregistration operations are 7.42 and 1.1ps.
From those results, it is easy to understand that registering
multiple small regions is more expensive than registering large
regions with the same number of pages. From this model, it is
obvious that one-by-one deregistration is not efficient. In MRRC, a
batched deregistration scheme is adopted.

Whenever the cache is full, MRE algorithm resorts all memory
regions in the Resorting section, according to their eviction factor.
The eviction factor, a function of size and recency of a memory
region, is identified by evictfact(s,r). In the current design,
evictfact(s,r) is defined as r + 1/s, where s is the size of a memory
region and r is the system recency value. System keeps a global
value of r. In the initialization phase, r is set to 0. Every time the
cache is full, the r is reset to the eviction factor of the memory
region in the bottom of the stack. The eviction factor of a memory
region is not renewed unless it is zero, or the region is accessed
again and sent to the top of the stack, in which case the eviction
factor is set to zero again. All regions are sorted according to their
eviction factor: the smaller of the eviction factor, the closer of a
region to the bottom of the stack. At the end of the resorting, all
regions in the eviction segment are deregistered in one operation
and evicted from the cache space. Fig. 4 outlines the MRRC and
MRE algorithms.

r=0;
/* procedure to be invoked upon a reference to memory region b */

if b is in cache
move b to the top of the stack;

else if b belongs to memory region ¢
move c to the top of the stack;

else if b overlaps with memory region d {
u=b&&d,
v=b—u,
move d to the top of the stack;
register v and add v to the top of the stack;

}

else
register b and add b to the top of the stack;

/* procedure to be invoked upon a full cache*/
/* e is the region at the bottom of the stack */

r = e.evictfact;

for each region a in resorting section
a.evictfact =1 + 1/s; /* s is size of a region */;

Resort each region in resorting section according to evictfact;
Batched deregister all regions in Eviction Segment;

Evict all regions in Eviction Segment;

Fig. 4. MRRC and MRE algorithms.

6. Fast RDMA Read and Write Process (FRRWP)

Basically, a RDMA operation is a two-fold process: it requires
memory registrations in both clients and servers, and exchange
synchronization messages to accomplish registration before the
real RDMA read or write operations. The cost of a complete RDMA
process includes the cost of the memory registrations in the client
and server, the overhead of synchronization messages, and the
cost of real RDMA read or write operations. In last section, we
attempted to reduce the overhead of memory registration directly
using MRRC. Another way to improve the performance of RDMA is
to optimize the RDMA communication process of clients and
servers, by overlapping the memory registrations between the
client and the server, and reducing the overhead of synchroniza-
tion messages.

Before issuing real RDMA read/write operations, the client and
server need to finish registration operations, and there are several
synchronization message between the client and server to
exchange peer Rkey. In the typical communication process, shown
in Fig. 5, the registration operations in both sides and the
synchronization messages are totally sequential, in which both
the client and server have to wait for the completion of peer
registrations.

In FRRWP, we change the flow of communication process to
overlap the registrations, shown in Fig. 6. The client first sends a
synchronization message to the server to start a new RDMA
transaction. Then both sides start the memory registrations. After
that, one side sends a synchronization message to inform Rkey to
the other side where real RDMA write will be submitted. After
both Rkey (peer memory region) and Lkey (local memory region)

L. Ou et al. / Journal of Network and Computer Applications 32 (2009) 642-651 647

a Client Server
Send Req Get Req
Send Key Get Key

R-key |

Client Server
Send Req |———)| Get Req
R-Key
Get Key |(—| Send Key

Finish [Finsh |——— Finish
Fig. 5. Typical RDMA Read and Write Process. (a) Read and (b) write.
a Client Server Client Server
Send Req Get Req | Send Req Get Req
R-Key * ' R- Key *
Send Key GetKey | | Get Key Send Key
Finish | [Finish |——{ Finish

Fig. 6. Read and write operations in FRRWP. (a) Read and (b) write.

are received, the real RDMA write operation starts. In FRRWP, the
registrations on both the client and server are processed in
parallel, so the overall latency of RDMA is reduced.

From Fig. 5, we find that the client or server is still blocked
before the stage of a RDMA write, because they need to wait for
the synchronization message with the Rkey being sent from the
peer. After finishing of the local registration, the server or client
application need poll or wait for the event of the incoming
synchronization message (using RDMA receive operation). Before
that, they cannot submit any RDMA write requests to the device
driver. In this case, the overhead of context switching between the
device driver and application is considerable. To improve the
performance, we introduce a new operation, Conditional RDMA
Write (CRW), in which, the RDMA write can be issued before
receiving the peer Rkey. The device driver will hold CRW requests,
until associated Rkey from the peer is received. Another operation,
Send Tag for CRW (STCRW), is also introduced in the peer side to
send the associated Rkey for the CRW. A CRW and a STCRW
operations are coupled together by a common tag, CWTAG, which
may be sent from a client to a server through a synchronization
message at the beginning of the transaction. Using CRW, the client
(or server) can submit an RDMA write to the device driver
following the local registration without being blocked by the peer.
After receiving a synchronization message containing a CWTAG
from peer, the driver checks the issued CRW with the same
CWTAG, and submits the real RDMA write operation along with
the Rkey from the peer.

Fig. 7 shows the interaction between the application and the
kernel in traditional RDMA operations. (1) The RDMA card writes

)
\J

sQ RQ cQ User

N
) Kernel
)

Fig. 7. Traditional RDMA operation.

(6)

the synchronization message to the buffer of the receive queue
(RQ). (2) The driver constructs a data structure to inform
completion of the receive operation and insert it into the
completion queue (CQ). (3) The application polls the CQ and
retrieves the synchronization message. (4) The application

648 L. Ou et al. / Journal of Network and Computer Applications 32 (2009) 642-651

processes the message and retrieves Rkey. (5) The application
inserts a RDMA write request to the send queue (SQ). (6) The
driver then submits the real RDMA write to the RDMA card. For
comparison, Fig. 8 shows our design of CRW. (1) The application
immediately inserts a conditional write request to the SQ without
being blocked. Then, the application is free and the driver will
take care of the following processes. (2) The RDMA card writes the
synchronization message to the buffer of the RQ. (3) The driver
uses STCRW in the message to locate the RDMA requests with the
same STCRW in the SQ. (4) The driver submits the RDMA write to
the RDMA card with the Rkey in the message. Comparing Figs. 7
and 8, we find that CRW is more efficient: first, the new design
removes Step 3 in the traditional RDMA process; second, the
application does not have to wait for the Rkey.

7. Simulation results

Trace-driven simulation is used to evaluate the MRRC design. A
simulator is developed to simulate the cache hit ratio of memory
registrations. Hit ratio here is defined as the ratio of the number of
cached memory registrations to the total number of requests in
the trace. In order to compare MRRC to previous efforts, the
simulator implements multiple algorithms, including MRRC, and
the pin-down cache (Tezuka et al., 1998). A memory page size is
4KB.

To evaluate caching algorithms and policies, we use two buffer
cache access traces. Table 2 presents the characteristics of the
three traces.

The HP Cello92 trace was collected at Hewlett-Packard
Laboratories in 1992 (Ruemmler and Wilkes, 1993). It captured
all L2 disk I/O requests in Cello, which is a timesharing system
used by a group of researchers to do simulations, compilation,
editing, and e-mail, from April 18 to June 19. We use the trace
collected on April 18 as the workload. The HTTPD workload was
generated by a seven-node IBM SP2 parallel web server (Katz
et al., 1994) serving a 524 MB data set. Multiple http servers share
the same files, although they seldom read files at the same time.
Based on the outputs of the simulator running the above two
traces, the total time for registering all memory regions is
calculated using the following formula:

Tiora = sUm(ismiss(i) + Tr(i) + SUm(Tur) (1)
i= j=

(1)

SQ |_| RQ
H

cQ User

Kernel

4)

L

Fig. 8. Conditional RDMA Write (CRW).

Table 2
Characteristics of the two traces used in the study

Trace Clients Client cache 10s (millions) Capacity (GB)

Cello92 1 30 MB 0.5 per day 10.4
HTTPD 7 - 1.1 0.5

Q

90%
80% |
0%
60%
50%
40% r
30%
20%
10%

0% L

Percentage of Total Request

—_
[\

Request Length (pages)

(on

50%

40% r

30%

20%

10%

Percentage of Total Request

0% 1 1 1 1 1
1 2 4 8 16 32

Request Length (pages)

Fig. 9. Distribution of request size for (a) Cell92 and (b) HTTD traces. A point (L, P)
on the curve indicates that the size of P percent of total requests is L pages.

where n is the total number of memory regions used in the trace,
and m is the total number of deregistered memory regions. T, and
T, are the cost of actual memory registration and deregistration,
respectively. T, and T, are calculated based the cost model
explained in Section 5. ismiss(i) is a Boolean function of the
memory region. It outputs 1 if the corresponding region cannot be
found in the cache space; otherwise, it outputs 0.

Fig. 9 shows the distribution of request sizes grouped by
powers of two.! A request size of the two traces is expressed in
terms of the number of memory pages. Most requests in the
Cello92 trace are small: the maximum request size is only 2 pages.
The size of requests in the HTTPD trace varies from 1 page to 32
pages. The difference comes from the environments where two
traces were collected. The Cello92 trace captured all L2 disk I/O
requests in Cello, in which small read or write requests were
issued one by one. The HTTPD workload was generated by a
seven-node IBM SP2 parallel web server, where only read requests
were applied to the whole file. The distribution of the request

! Request sizes that are not powers of two are rounded down to the nearest
power of two.

L. Ou et al. / Journal of Network and Computer Applications 32 (2009) 642-651 649

sizes of the traces impacts the results of the simulation because
each request is accompanied by a memory registration operation.
The request size determines the size of a memory region, and thus
defines the behavior of cache replacement algorithms.

Fig. 10 compares the memory region hit ratios between MRRC
and the pin-down cache with various cache sizes under the two
traces. The data shows that under the HTTPD trace, MRRC has a
10% hit ratio improvement compared to the pin-down cache, but
the difference is less obvious under the Cello92 trace. The
previous results in Fig. 9 show that the distribution of request
sizes in the two traces is totally different. This difference is the
reason for resulting hit ratios. HTTPD trace has a wide distribution
of request sizes and many large requests (up to 32 pages). Such
character of the HTTPD trace allows MRRC to group requests by
their sizes and optimize hit rates by giving small requests more
chances to stay in the cache space. On the contrary, the variation
of the request size in the Cello92 trace is small, and two page
requests account almost 80% of the total requests, so most
requests have the same size. MRRC cannot distinguish them with
memory region size, so in most time, only recency is used to
decide the life time of memory regions in the cache space. Thus,
MRRC behaves similar to the traditional pin-down caches for the
Cello92 trace.

Fig. 11 shows the total registration and deregistration time of
MRRC and the pin-down cache under the two traces. The time is
calculated with the formula explained in the beginning of this
section. The total cost in terms of registration/deregistration time
follows the trend of the hit ratios. MRRC provides a higher cache
hit ratio, and thus reduces the actual number of registration
operations. Moreover, the replacement algorithm of MRRC favors
small requests, because registering multiple small regions is more
expensive than registering large regions with the same number of
pages. This small-request-weighted policy further reduces mem-

a
80%
+ | —8— Pindown Cache —e— MRRC
60% I
2
5]
& 40%
&
20%
0% 1 1 1 1
2M 4M SM 16M 32M
Cache Size (B)
b
100%
80% I
2 60% |
51
m L
£ 40% |
20%
—8—Pindown Cache —— MRRC
0% 1 1 1 1
2M 4M SM 16M 32M
Cache Size (B)

Fig. 10. Memory registration hit ratios with various cache sizes ((a) Cello92 and
(b) HTTPD traces).

a
° 3
=l o Pindown Cache = MRRC
=
o0
] -
2 2F
[=]
)
]
~
FRN:
=
=
St
z

0 F ; f f f

2M 4M M 16M 32M
Cache Size (B)

b

4
g o Pindown Cache = MRRC
=
¥ 3 F
& :
- F
SE:
¥ 2F
& |
= F
S f
FLE
= E
g F
S

0 F t t t t

2M I4M 8M 16M 32M
Cache Size (B)

Fig. 11. Registration/deregistration costs with various cache sizes ((a) Cello92 and
(b) HTTPD traces). The data are normalized to the time of MRRC with 32 MB cache
size.

ory registration costs. The improvement of MRRC under the
HTTPD trace is obvious, because of enough small requests.
Although the difference of request sizes under the Cello92 trace
is less obvious, MRRC still reduces the total cost with its batched
registration. The maximum cost improvement is approximately
10%. As a comparison, Fig. 12 shows the improvement of MRRC
over the basic RDMA operations without memory registration
caches. The results clearly indicate how a cache space provided by
MRRC and the related replacement algorithm could dramatically
reduce RDMA memory management costs.

8. Latency analysis

We expect that the FRRWP reduces the communication latency
in the critical data path of RDMA operations. The benefit of FRRWP
comes from two sides. First, the overlapped memory registrations
between a client and a server; Second, the non-blocking CRW.

Research in Wu et al. (2003b) showed that the cost of memory
registration consists of two parts, the cost of each registration and
the cost of each page. In Wu et al. (2003b), the cost of registering
memory regions is modeled as T=a=x*p+b, where a is the
registration cost per page, and b is the overhead per registration
operation, and p is the size of the memory region in pages. In their
testbed, the cost per page is 0.77 pus. The overhead per registration
is 7.42ps. With this result, we find that our design reduces
the latency in the entire communication process by T, = 0.77
*p + 7.42, because of overlapped memory registrations.

Comparing Figs. 7 and 8, we find that CRW reduces latency for
following reasons. First, after receiving a synchronization mes-
sage, the driver does not need to construct a data structure and
insert it into the CQ. The latency of this part is T;. Second, the

650 L. Ou et al. / Journal of Network and Computer Applications 32 (2009) 642-651

a
5000
/g F O Pindown Cache B MRRC
o 4000 -
E f
=
e 3000 -
D
I~ |
D
2 2000
)
D L
=4
= 1000 |_l
] L
=
0 1 1 1 1
2M 4M 8M 16M 32M
Cache Size (B)
b
10000

I O Pindown Cache ® MRRC
8000

6000 |
4000 |
2000 |_l
ol - - - -
4M 8M 16M 32M

2M

Total Reg/DeReg Time (ms)

Cache Size (B)

Fig. 12. Improvement of MRRC over the basic RDMA operations without the
registration cache. (a) Cello92 and (b) HTTPD.

driver directly processes the message and sends an RDMA write to
the card without the participation of the application, so the
latency caused by the operation that the application polls the CQ
and inserts a request to SQ is eliminated. They are T, and Tj,
respectively. To find T;, we use a test program which is a kernel
module and performs 1000 times of constructing a completion
data structure and inserting it into a queue. The program monitors
the entire process and calculates the average time for each
operation. The experimental result shows that T is 2 ps. T, and T3
are the cost of context switch between the device driver and the
application. We use a test program to monitor 1000 times of
getpid() and find that the average cost per operation is 3ps.
getpid() is a very simple system call which only returns an integer
from a kernel data structure, so it reflects the minimum latency of
switching environment. Actually, T, and T3 should be large than
5 us, but we use it as an estimation. According to all those results,
the latency T, reduced by CRW is about 2 + 2 x 3 = 8 us.

Add T, and T, together, the cost saved by the FRRWP in the
whole communication process is approximately T =T, + T, =
15.42 + 0.77 x p, where p is the size of the memory region in term
of pages. We find that the minimum latency reduced by FRRWP is
15 ps. FRRWP reduces the total communication latency in the
critical data path by 68%.

9. Conclusions

In this paper, we evaluate the cost of memory registration in
both user and kernel spaces. We analyze latency of memory
registration and find three main parts which contributes most to
the total costs. Based on our analysis, we reduce the overhead of
memory registration in two aspects simultaneously: utilize a

memory registration cache, and optimize the RDMA communica-
tion process of clients and servers.

We propose a new cache management scheme: MRRC, to
improve performance of memory registration and deregistration
of RDMA. MRRC manages memory in terms of memory region and
considers pipelining between RDMA operations and memory
registrations. MRRC uses MRE as a replacement algorithm, which
considers both the size and recency of memory regions, because
registering multiple small regions is more expensive than
registering large regions with the same number of pages. To
further reduce costs, MRRC adopts batched deregistration to avoid
deregistering regions every replacement of the cache.

We propose a new communication scheme between an RDMA
client and server, Fast RDMA Read and Write Process (FRRWP), to
reduce the overhead of the memory registration and synchroniza-
tion messages in the critical data path. FRRWP overlaps memory
registrations between RDMA clients and servers. It allows the
applications to submit an RDMA write immediately after they
finish local memory registrations, without waiting for the
confirmation of registrations from the peer node.

We have evaluated our MRRC and other typical registration
cache designs using simulations under various workloads. The
results show that MRRC can efficiently increase the cache hit
ratios for memory registration by 10% and improves the total
response time by up to 70% compared to traditional RDMA
operations without optimization of memory registrations. We
compare the latency of FRRWP with traditional RDMA operations
using a mathematic model. The results show that FRRWP reduces
the total communication latency in the critical data path by 68%.

Acknowledgments

This research was supported by the U.S. National Science
Foundation under Grants CNS-0617528 and CNS-0720617 and by
the TTU office of research. It was also partially supported by the
973 Program of China under contract no. 2004CB318202, and
Faculty Research Grant at Institute of Computing Technology,
Chinese Academy of Sciences. The preliminary work on MRRC (Ou
et al., 2006b) and FRRWP (Ou et al., 2006a) were presented at the
NASA/IEEE Conference on Mass Storage Systems and Technologies
(MSST’06) and the International Workshop on Networking,
Architecture, and Storages (NAS’06), respectively.

References

Bell C, Bonachea D. A new DMA registration strategy for pinning-based high
performance networks. In: 17th international parallel and distributed proces-
sing symposium; 2003.

Boden NJ, Cohen D, Felderman RE, Kulawik AE, Seitz CL, Seizovic JN, Su W-K.
Myrinet: a gigabit-per-second local area network. IEEE-Micro 1995;15(1):
29-36.

Dan A, Towsley D. An approximate analysis of the LRU and FIFO buffer replacement
schemes. In: ACM SIGMETRICS; May 1990. p. 143-52.

Denning PJ. The working set model for program behavior. Commun ACM 1968;
1(5):323-33.

Gill BS, Modha DS. WOW: wise ordering for writes—combining spatial and
temporal locality in non-volatile caches. In: FAST 2005; December 2005.
Hilland J, Culley P, Pinkerton], Recio, R. RDMA protocol verbs specification (version

1.0). Technical report, RDMA Consortium, April 2003.

Infiniband Trade Association. Infiniband architecture specification, release 1.0,
October 24, 2000.

Jiang S, Zhang X. LIRS: an efficient low inter-reference recency set replacement
policy to improve buffer cache performance. In: Proceedings of the ACM
SIGMETRICS; 2002. p. 31-42.

Jiang S, Ding X, Chen F, Tan E, Zhang X. DULO: an effective buffer cache
management scheme to exploit both temporal and spatial localities. In: FAST
2005; December 2005.

Johnson T, Shasha D. 2Q: a low overhead high performance buffer management
replacement algorithm. In: Proceedings of the twentieth international
conference on very large databases; 1995. p. 439-50.

L. Ou et al. / Journal of Network and Computer Applications 32 (2009) 642-651 651

Katz ED, Butler M, McGrath R. A scalable HTTP server: the NCSA prototype. Comput
Networks ISDN Syst 1994;27(2):155-64.

Liu J, Wu J, Kini S, Wyckoff P, Panda DK. High performance RDMA-based MPI
implementation over InfiniBand. In: ICS '03; June 2003.

Megiddo N, Modha D. ARC: a self-tuning, low overhead replacement cache. In:
Proceedings of the second USENIX conference on file and storage technologies;
2003.

Mellanox Technologies. Mellanox IB-verbs API (VAPI), rev. 0.95, March 2003.

O'Neil EJ, O'Neil PE, Weikum G. The LRU page replacement algorithm for database
disk buffering. In: Proceedings of the ACM SIGMOD international conference
on management of data; May 1993. p. 297-306.

Ou L, He X, Han J. A fast read/write process to reduce RDMA communication
latency. In: Proceedings of the international workshop on networking,
architecture, and storages (IWNAS); August 2006a.

Ou L, He X, Han]J. MRRC: an efficient cache for fast memory registration in RDMA.
In: Proceedings of the NASA/IEEE conference on mass storage systems and
technologies (MSST); May 2006b.

Petrini F, Feng WC, Hoisie A, Coll S, Frachtenberg E. The quadrics network
(QsNet): high-performance clustering technology. In: In hot interconnects;
2001.

Rangarajan M, Iftode L. Building a user-level direct access file system over
InfiniBand. In: 3rd workshop on novel uses of system area networks; 2004.

RDMA Consortium. Architectural specifications for RDMA over TCP/IP.

Robinson JT, Devarakonda MV. Data cache management using frequency-based
replacement. In: Proceedings of the ACM SIGMETRICS conference on
measurement and modeling of computer systems; 1990.

Ruemmler C, Wilkes J. Unix disk access patterns. In: Proceedings of the winter
1993 USENIX conference.

Tezuka H, O’Carroll F, Hori A, Ishikawa Y. Pindown cache: a virtual memory
management technique for zero-copy communication. In: International
parallel processing symposium; March 1998.

Wu J, Wyckoff P, Panda DK. PVFS over InfiniBand: design and performance
evaluation. In: International conference on parallel processing; October 2003a.

Wu J, Wyckoff P, Panda DK. Supporting efficient noncontiguous access in PVFS over
InfiniBand. In: Cluster 2003 conference; December 2003b.

Wu J, Wyckoff P, Panda DK, Ross R. Unifier: unifying cache management and
communication buffer management for PVFS over InfiniBand. In: CCGrid '04;
April 2004.

Zhou Y, Bilas A, Jagannathan S, Dubnicki C, Philbin JF, Li K. Experiences with VI
communication for database storage. In: ISCA; 2002.

	An efficient design for fast memory registration in RDMA
	Introduction
	Background review
	Related work
	Cost analysis of memory registrations
	Memory registration region cache (MRRC)
	Fast RDMA Read and Write Process (FRRWP)
	Simulation results
	Latency analysis
	Conclusions
	Acknowledgments
	References

