
Int. J. High Performance Computing and Networking, Vol. x, No. x, 200x 1

Copyright © 200x Inderscience Enterprises Ltd.

A unified multiple-level cache for high performance
storage systems

Xubin (Ben) He* and Li Ou
Department of Electrical and Computer Engineering,
Tennessee Technological University,
Cookeville, TN 38505 USA
E-mail: hexb@tntech.edu E-mail: Iou21@tntech.edu
*Corresponding author

Martha J. Kosa
Department of Computer Science,
Tennessee Technological University,
Cookeville, TN 38505 USA
E-mail: mjkosa@tntech.edu

Stephen L. Scott and Christian Engelmann
Computer Science and Mathematics Division,
Oak Ridge National Laboratory,
Oak Ridge, TN 37831
E-mail: scottsl@ornl.gov E-mail: engelmannc@ornl.gov

Abstract: Multi-level cache hierarchies are widely used in high-performance storage systems to
improve I/O performance. However, traditional cache management algorithms are not suited well
for such cache organisations. Recently proposed multi-level cache replacement algorithms using
aggressive exclusive caching work well with single or multiple-client, low-correlated workloads,
but suffer serious performance degradation with multiple-client, high-correlated workloads.
In this paper, we propose a new cache management algorithm that handles multi-level buffer
caches by forming a unified cache (uCache), which uses both exclusive caching in L2 storage
caches and cooperative client caching. We also propose a new local replacement algorithm,
Frequency Based Eviction-Reference (FBER), based on our study of access patterns in exclusive
caches. Our simulation results show that uCache increases the cumulative cache hit ratio
dramatically. Compared to other popular cache algorithms, such as LRU, the I/O response time is
improved by up to 46% for low-correlated workloads and 53% for high-correlated workloads.

Keywords: cooperative cache; multi-level cache; distributed I/O; storage systems.

Reference to this paper should be made as follows: He, X., Ou, L., Kosa, M.J., Scott, S.L.
and Engelmann, C. (xxxx) ‘A unified multiple-level cache for high performance storage
systems’, Int. J. High Performance Computing and Networking, Vol. x, No. x, pp.xxx–xxx.

Biographical notes: X. He is an Assistant Professor of Electrical and Computer Engineering at
Tennessee Technological University. He received his PhD degree in Electrical Engineering from
the University of Rhode Island in 2002. His current research interests include computer
architecture, storage and I/O systems and performance evaluation. He is a member of the IEEE
Computer Society.

L. Ou received his PhD Degree in Computer Engineering from the Tennessee Technological
University in December 2006. His research interests include computer architecture, storage and
I/O systems, and high performance cluster computing.

M.J. Kosa is an Associate Professor of Computer Science at Tennessee Technological University.
She received her PhD degree in Computer Science from the University of North Carolina at
Chapel Hill in 1994. Her research interests include distributed algorithms and computer science
education. She is a member of ACM.

S.L. Scott is a Senior Research Scientist at the Oak Ridge National Laboratory. His research
interest is in experimental systems with focus on high performance distributed, heterogeneous,
and parallel computing. He received his PhD in Computer Science from Kent State University in
1996. He is a member of ACM, IEEE Computer, and the IEEE Task Force on Cluster
Computing.

2 X. He, L. Ou, M.J. Kosa, S.L. Scott and C. Engelmann

C. Engelmann is a Research Staff Member at Oak Ridge National Laboratory. He is currently a
PhD student at the University of Reading. His research interests include high availability for
scientific high-end computing, efficient fault tolerance for extreme-scale systems and flexible,
pluggable, component-based runtime environments. He is a member of the IEEE Computer
Society and ACM.

1 Introduction

Caching is a common technique for improving the
performance of I/O systems. Researchers have developed
many algorithms to manage the buffer cache, such as LRU
(Dan and Towsley, 1990), MRU (Denning, 1968), LFU,
FBR (Robinson and Devarakonda, 1990), LRU-k (O’Neil
et al., 1993), 2Q (Johnson and Shasha, 1995), LIRS
(Jiang and Zhang, 2002), and ARC (Megiddo and Modha,
2003). These algorithms were designed for local cache
replacement because they do not need any information from
other caches. They worked well for a single system.
In a distributed I/O environment, buffer caches are mostly
organised as multi-level cache hierarchies residing on
multiple machines. For example, in a distributed file system,
shown in Figure 1 (Zhou et al., 2004), the upper level
caches reside on file servers (storage clients), and the
lower level caches reside on storage servers. We refer to
upper level storage client caches as LI buffer caches and
lower level storage caches as L2 buffer caches (Zhou et al.,
2004). L1/L2 buffer caches are very different from L1/L2
processor caches because L1/L2 buffer caches refer to
main-memory caches distributed in multiple machines.
The access patterns of L2 caches show weak temporal
locality (Bunt et al., 1993; Froese and Bunt, 1996; Zhou
et al., 2004) after filtering from LI caches, which implies
that a cache replacement algorithm, such as LRU, may not
work well for L2 caches. Additionally, local management
algorithms used in L2 caches are inclusive (Wong and
Wilkes, 2002), which try to keep blocks that have been
cached by LI caches, and waste aggregate cache space.
Thus, though the aggregate cache size of the hierarchy is
increasingly larger, the system may not deliver the expected
performance commensurate with the aggregate cache size.

Figure 1 Multi-level buffer cache hierarchy

Several attempts have been made to improve the cache
performance of multi-level buffer caches for distributed
I/O systems. Recent research (Wong and Wilkes, 2002;
Zhou et al., 2004; Chen et al., 2005; Bairavasundaram et al.,
2004; Jiang and Zhang, 2004) characterises the behaviour of

accesses to L2 caches, and introduces multiple algorithms
based on the characteristics to improve the L2 cache hit
ratio. Except for multi-queue replacement (Zhou et al.,
2004), all the other algorithms try to achieve exclusive
caching (Wong and Wilkes, 2002) through quick eviction of
duplicated blocks in L2 caches. Implementing aggressive
exclusive caching may get a high hit ratio in the case of a
single storage client, but multiple-client systems introduce a
new complication: the sharing of data among clients. It may
no longer be a good idea to discard a recently read block
from the L2 cache after it has been sent to a client cache,
because the block may be referenced again by other clients
in the near future. Real workloads show behaviour between
two extremes: disjoint workloads, in which the clients each
issue references for non-overlapping parts of the aggregate
working set, and conjoint workloads, in which the clients
each issue exactly the same references in the same order at
the same time (Wong and Wilkes, 2002). Nearly disjoint
workloads are low-correlated workloads, and nearly
conjoint workloads are high-correlated. For low-correlated
workloads, aggressive exclusive caching is effective, but for
high-correlated workloads, since the same blocks may be
referenced by multiple clients within a relatively short time
period, inclusive caching is more attractive. For example,
the simulation results in Wong and Wilkes (2002) show that
exclusive caching could achieve a 1.50 speedup over LRU
for low-correlated workloads, but suffers a 0.55 slowdown
for high-correlated workloads. Thus, for a multiple-client
system, it is important to design an algorithm which
balances between aggressive exclusive caching and
inclusive caching according to workload characteristics.
Wong and Wilkes (2002) propose SLRU and an adaptive
cache insertion policy to decide how to cache duplicated
blocks according to their previous hit ratios. The simulation
results show that it could achieve up to a 1.32 speedup for
low-correlated workloads and an approximate 1.18 speedup
for high-correlated workloads over the LRU algorithm.
It trades a hit ratio for low-correlated workloads for a
speedup for high-correlated workloads.

In this paper, we propose a new unified cache
management algorithm, uCache, for multi-level I/O systems
to provide high cumulative hit ratios in multiple storage
client cache systems, for both high-correlated and
low-correlated workloads. We use cooperative client caches
(Dahlin et al., 1994) to provide inclusive caching for high
frequency block reuse among multiple LI caches with
high-correlated workloads, while implementing exclusive
caching in L2 caches to improve the hit ratio for
low-correlated workloads. We study the access patterns of
exclusive caching and find that LRU and other traditional
algorithms are not suitable even for local replacement in L2

 A unified multiple-level cache for high performance storage systems 3

caches. Based on our study, we propose a new local L2
cache management algorithm, FBER, for exclusive caching
environments. We compare the uCache algorithm with the
traditional LRU and other typical multi-level cache
management algorithms such as exclusive caching (Wong
and Wilkes, 2002; Zhou et al., 2004), 2Q (Johnson and
Shasha, 1995), and SLRU (Wong and Wilkes, 2002), using
simulations under different workloads. The results show that
compared to LRU, uCache can dramatically increase the
overall cache hit ratio and improve the average I/O response
time by up to 46% for low-correlated workloads and 53%
for high-correlated workloads.

The rest of the paper is organised as follows.
The background is presented in Section 2. Section 3
discusses access patterns of L2 caches in exclusive caching
environments. Section 4 describes our idea and design
issues in detail. Section 5 describes our simulation
methodology. We compare our work to previous efforts to
improve L2 cache performance in Section 6 and examine
related work in Section 7. We draw our conclusions in
Section 8.

2 Background review

To improve the hit ratio of buffer caches, researchers have
proposed many management algorithms, such as LRU
(Dan and Towsley, 1990), MRU (Denning, 1968), LFU,
FBR (Robinson and Devarakonda, 1990), LRU-k (O’Neil
et al., 1993), 2Q (Johnson and Shasha, 1995), LIRS
(Jiang and Zhang, 2002), ARC (Megiddo and Modha,
2003), Cooperative caching (Dahlin et al., 1994; Sarkar and
Hartman, 1996), and the Exclusive caching algorithm
(Wong and Wilkes, 2002; Zhou et al., 2004). We outline
three typical algorithms related to our design below.

2.1 LRU cache algorithm

The Least Recently Used (LRU) policy is one of the most
effective policies for memory caching. Many current
implementations of cache management algorithms also use
variants of the LRU policy. The idea of LRU is simple:
a block which is LRU should be the best candidate to be
evicted from the cache if a new block needs to be inserted.
In the LRU policy, a block is tagged with a priority measure
that is equal to the time elapsed since the block was last
accessed. When space needs to be created in the cache, the
oldest block, i.e., the one that has been accessed least
recently, is removed.

2.2 Exclusive cache algorithms

Recent studies (Bunt et al., 1993; Zhou et al., 2004) show
that weak temporal locality of L2 cache accesses causes a
low hit ratio for the traditional LRU algorithm. Traditional
L2 cache algorithms are inclusive (Wong and Wilkes,
2002), which means the same blocks are cached by both the
LI and L2 caches at the same time. Thus, duplicated blocks
waste aggregate cache space. In exclusive caching, a block

is discarded from the L2 caches some time after it is sent
back to the LI caches. If the same block is evicted from
the LI caches, the L2 caches load it again for the next
possible access. Exclusive caching algorithms achieve
higher hit ratios compared to traditional inclusive caching
techniques (i.e., LRU), in single client storage systems, or
multiple-client systems with low-correlated workloads.
However, they suffer performance degradation in
multiple-client systems with high-correlated workloads,
because blocks may be referenced again by other storage
clients within a limited time after they are sent back to
individual clients.

2.3 Cooperative cache algorithms

Cooperative cache algorithms (Dahlin et al., 1994) are used
to improve the overall cache hit ratio by taking advantage of
cache space in client machines.

When a client request is missed in the storage server
cache, the traditional way to service the request is to access
hard disks. Since the storage server is shared by multiple
clients, there is a high probability that the blocks requested
by one client and missed in the server cache are kept by
other clients. So, in cooperative caching, the storage server
tracks the blocks cached in each client, and directs a request
to a client if there is a cache miss in the server and the
corresponding block can be found in that client.

3 Analysis of access patterns of exclusive caching

Exclusive caching is different from current inclusive
caching in several aspects. First, after it is reloaded into the
storage cache, and then referenced by a client, a block is
quickly discarded by the management algorithm, no matter
how many times it has been referenced before, but
traditional algorithms try to keep a block with a recently
good hit history in the cache as long as possible. Second, the
reference sequences of storage caches are totally different
from those of traditional caches. The access sequences of
traditional caches consist of continuous references of
blocks, and researchers use metrics, such as reuse distance
(Zhou et al., 2004), inter-reference gap (Phalke and
Gopinath, 1995), and inter-reference recency (Jiang and
Zhang, 2002), to describe characteristics of workloads,
which are then used to design replacement algorithms to
manage buffer caches. In exclusive caching, access
sequences of storage caches consist of two types of
randomly interleaved operations: evictions, which inform
storage systems to reload blocks that have been replaced by
client caches, and references, such as reads or writes,
provided by standard I/O interfaces. With these differences,
we need to analyse the access patterns of exclusive caching,
and design a replacement algorithm based on those patterns.

3.1 Traces

To study L2 buffer cache access patterns and evaluate
caching algorithms and policies, we use three buffer cache

4 X. He, L. Ou, M.J. Kosa, S.L. Scott and C. Engelmann

access traces. These traces are chosen to represent different
types of workloads: high-correlated and low-correlated.
In our study, we use 4 KB as the cache block size for our
access pattern analysis and our experimental evaluation of
various algorithms. We have examined other block sizes,
with similar results. Table 1 shows the characteristics of the
traces.

Table 1 Characteristics of traces

Trace Clients IOs (millions) Volume (GB)
Cello92 1 0.5 per day 10.4
HTTPD 7 1.1 0.5
DB2 8 3.7 5.2

The HP Cello92 trace was collected at Hewlett-Packard
Laboratories in 1992 (Ruemmler and Wilkes, 1993).
It captured all L2 disk I/O requests in Cello, a timesharing
system used by a group of researchers to do simulations,
compilation, editing, and e-mail, from April 18 to June 19.
We use the trace collected on April 18 as the workload for
the single client simulation. Cello is an HP 9000/877 server
with one 64 MHz CPU, 96 MB memory and eight disks.
Since requests of the traces collected on different days
access the same data set, we also use them as workloads for
the multiple-client simulation: each trace file collected
within one day acts as the workload of one client.
These workloads are high-correlated.

The HTTPD workload was generated by a seven-node
IBM SP2 parallel web server (Katz et al., 1994) serving a
524 MB data set. Multiple http servers share the same files,
although they seldom read files at the same time. We use the
HTTPD workload as the high-correlated workloads for the
multiple-client simulation.

The DB2 trace-based workload was generated by an
eight-node IBM SP2 system running an IBM DB2 database
application that performed join, set and aggregation
operations on a 5.2 GB data set. Uysal et al. (1997) used this
trace in their study of I/O on parallel machines. Each DB2
client accesses disjoint parts of the database. No blocks are
shared among the eight clients. We use the DB2 workload
as the low-correlated workload for the multiple-client
simulation.

Since LI buffer cache sizes clearly affect an L2
cache’s performance, we carefully set the LI buffer
cache sizes for the three traces to achieve a reasonable LI
hit ratio. The cache size of the HP 9000/877 server is only
10–30 MB, which is very small by current standards.
The Cello92 trace and the HTTPD trace show high temporal
locality, and a small client cache may achieve a high hit
ratio. In the simulations, we assume the cache size of each
client is 16 MB for the Cello92 traces, and 8 MB for the
HTTPD trace, providing an LI hit ratio of approximately
50%. The DB2 trace shows very low temporal locality, and
a 512 MB client cache just provides a LI hit ratio of no
more than 15%. But if the cache size increases to 600 MB,
the LI hit ratio suddenly increases to 75%, because reuse
distances (Zhou et al., 2004) of most blocks are <150 K. To
reserve enough cache misses for L2 caches, we assume the

cache size of each client for the DB2 trace is 512 MB. Since
the number of compulsory cache misses in the DB2 trace is
large, we use approximately 10% of the requests to warm up
the cache space.

3.2 Access patterns of exclusive caching

Because of the uniqueness of the reference sequences, the
metrics used before may not correctly describe the
characteristics of access patterns for exclusive caching.
Thus, we need to define new metrics to describe the access
pattern. The Eviction-Reference-Gap (ERG) indicates the
distance (the number of distinct evictions) between an
eviction of a block from an LI cache and the later reference
by that cache. ERG describes how long a block will stay in
the L2 cache space before it is referenced again.
The replacement algorithm should keep blocks with small
ERG values. The Eviction Frequency defines how many
times a block has been evicted from the LI caches, and
hence reloaded into the storage cache. Not every eviction of
a block will be referenced by an LI cache again within a
reasonable ERG; some of them are never referenced again,
and some of them are referenced, but with an ERG that is
much larger than a real cache space can provide. These
kinds of evictions are dead evictions. Evictions referenced
by LI caches again within a reasonable ERG are reusable
evictions. Obviously, a good replacement algorithm should
discard dead eviction blocks as quickly as possible, and for
reusable eviction blocks, keep those with relatively small
ERGs.

We first study the ERG of blocks in storage caches.
The data in Figure 2 shows the distribution of evictions
over ERGs grouped by powers of two.1 Significantly, blocks
evicted from LI caches are not referenced quickly: most
evictions have relatively large ERGs (from 32 K to 64 K in
the Cello92 trace, from 8 K to 16 K in the HTTPD trace,
and 64 K in the DB2 trace). Furthermore, the curves
descend slowly from peak to foot (the largest ERG even
extends to more than 1 M), which means it is difficult for a
replacement algorithm to retain most blocks before they are
referenced by clients. A good replacement algorithm for
storage caches should at least retain blocks that reside in the
hill portion of the histogram for a longer period of time to
provide more than a 50% hit ratio. Obviously, the
distribution of ERG in Figure 2 shows that LRU is not an
appropriate local replacement algorithm for exclusive
caching in an L2 cache.

Figure 2 Eviction-Reference-Gap (EVG): (a) 4 clients under
Cello92 trace; (b) 7 clients under HTTPD trace
and (c) 8 clients under DB2 trace

 (a)

 A unified multiple-level cache for high performance storage systems 5

Figure 2 Eviction-Reference-Gap (EVG): (a) 4 clients
under Cello92 trace; (b) 7 clients under HTTPD
trace and (c) 8 clients under DB2 trace
(continued)

 (b)

 (c)

Using the same traces, we have also examined the
behaviour of storage buffer cache accesses in terms of
eviction frequency. The data in Figure 3 show the
distribution of the percentages of reusable and dead
evictions over eviction frequencies grouped by powers of
two.2 It is obvious that blocks with high eviction frequencies
result in a high percentage of the reusable evictions and a
low percentage of the dead evictions. The percentage of
dead evictions decreases with the eviction frequency, but
the peak of the reusable evictions does not appear at the
point of the highest eviction frequency (16 in the Cello92
trace, 128 in the HTTPD trace, and 2 in the DB2 trace).
That does not mean that blocks with eviction frequencies
higher than the peak point will reduce the hit ratio, because
the number of dead evictions of those blocks is close to
zero, which means that almost all of those blocks are
referenced later. Since dead evictions absolutely cause
cache misses, caching blocks with high eviction frequencies
is helpful for increasing hit ratios. The DB2 trace shows
very low temporal locality, so the highest eviction
frequency is only four. We also studied how the average
ERG distribution changes with the eviction frequency.
The data in Figure 4 show that the blocks with higher
eviction frequencies always have smaller mean ERGs,
which indicates that those blocks have high hit probabilities
before they are discarded by the replacement algorithm.
From Figures 3 and 4, we conclude that higher eviction
frequencies of blocks result in higher contributions to the
total cache hits and lower contributions to the total cache
misses.

Figure 3 Reusable and dead eviction distribution: (a) 4 clients
under Cello92 trace; (b) 7 clients under HTTPD trace
and (c) 8 clients under DB2 trace

 (a)

 (b)

 (c)

Figure 4 Mean of ERGs: (a) 4 clients under Cello92 trace;
(b) 7 clients under HTTPD trace and (c) 8 clients
under DB2 trace

 (a)

 (b)

6 X. He, L. Ou, M.J. Kosa, S.L. Scott and C. Engelmann

Figure 4 Mean of ERGs: (a) 4 clients under Cello92 trace;
(b) 7 clients under HTTPD trace and (c) 8 clients
under DB2 trace (continued)

 (c)

Since the percentage of dead evictions and the average
ERGs quickly decrease with the eviction frequency, a good
replacement algorithm could retain blocks with a high
eviction frequency as long as possible to achieve a high
hit ratio.

4 Design of uCache

The basic idea of uCache is based on a simple observation.
In a multiple-client system, a higher correlation of
workloads means that it is more likely that a block
requested by one client is found in caches of other
clients, because a block used by one client may have been or
will be referenced by other clients within a limited
time period. From this observation, the uCache algorithm
implements exclusive caching in L2 caches for
low-correlated workloads, but tries to utilise client buffer
caches to improve cumulative hit ratios for high-correlated
workloads.

In uCache, all storage client caches related to a storage
server are organised as cooperative client caches (Dahlin
et al., 1994). A block is discarded by storage caches after it
is sent back to a client, and is loaded again if evicted by
that client. With a miss in the storage cache, a request may
be redirected to an appropriate cooperative client cache if
the block can be found in that client, or a hard disk action
must be issued. Figure 5 briefly outlines the uCache
algorithm.

Figure 5 uCahce algorithm

uCache is inherently adaptive to both low-correlated and
high-correlated workloads. For low-correlated workloads,
a high hit ratio is expected in the exclusive storage cache.
For high-correlated workloads, similar to previous
aggressive exclusive caching, a low hit ratio in the storage
cache is predicted, but cooperative client caches
provide considerable additional cache hits, according to our
earlier observation. The final cumulative hit ratio is still
higher than the ratio for traditional inclusive caching, such
as LRU.

To implement the uCache algorithm, we consider three
major issues. The first is how clients and storage collaborate
to achieve exclusive caching; the second is how the storage
system tracks the blocks cached by the cooperative client
caches; and the last is how to replace the blocks in the
storage caches. We discuss the first two issues in
Section 4.1 and the last one in Section 4.2.

4.1 Collaboration between clients and the storage
systems

Since the storage caches are exclusive to the client side, the
storage systems need to collaborate with clients to decide
when to reload blocks that have been evicted by client
caches. On the other side, all client caches are cooperative
and it is the storage system’s responsibility to redirect
requests to clients, so storage systems also need to track
which blocks are cached by which clients, and to send a
request to an appropriate cooperative client after an access
miss in the storage cache. Actually, as long as storage
systems know when a block is evicted from a client cache,
they can make correct decisions for both when to reload
blocks and where to redirect requests, because with accurate
information of load and evictions of blocks, the storage
systems can track the content of client caches without
problems. Thus, for uCache, one of the key design issues is
to choose a mechanism for storage caches to learn when a
block is evicted by LI caches.

Unfortunately, with traditional I/O interfaces between
clients and storages, the block loading information is
transparent only to storages, but not evictions. The most
intuitive way is to design a new interface between clients
and storage systems to send notifications of block evictions
from the LI to the L2 caches, like the demotion operation
(Wong and Wilkes, 2002). Although this mechanism is the
most accurate, client software must be modified, and
network overhead between the clients and storage systems
increases. Another possible mechanism is to guess evictions
of clients from access sequences and existing interfaces,
without any modification of the LI software. uCache obtains
LI cache replacement information by maintaining a data
structure to track client content, similar to the idea proposed
in Zhou et al. (2004). Chen et al. (2005) concluded that the
performance of the latter design is very close to the former
one if appropriate local optimisations are applied. Some
distributed I/O systems implement block-level cache
consistency algorithms, in which storage servers track
blocks cached by clients. From those systems, uCache gets

 A unified multiple-level cache for high performance storage systems 7

enough LI replacement information; thus it does not need to
implement the collaboration mechanism.

4.2 Local replacement algorithm

Based on the study of access patterns of exclusive caching
in Section 2.3, we design a new replacement algorithm,
called FBER. The main idea of this algorithm is to maintain
blocks with different access frequencies for different
periods of time in a storage cache. According to Section 2.3,
it is important to retain blocks with high eviction
frequencies as long as possible. In exclusive caching, once
referenced by the LI caches, blocks are discarded from the
L2 caches. Thus FBER maintains a data structure, called the
History Reference Frequency (HRF) table, to record past
reference information of a block evicted at least once by the
LI caches. For each following reference to the block, no
matter if it still stays in the cache, FBER increases the
reference frequency of the block in the HRF. Each time a
block is evicted from the clients and reloaded into a storage
cache, FBER checks the HRF according to the block
number and gets the previous reference frequency. Then it
inserts the block into a FIFO queue. The insertion point of a
block is determined by its previous reference frequency; the
higher the frequency, the closer to the tail of the queue;
so a block with high frequency has a longer lifetime than
one with low frequency. To achieve this we set m insertion
points, from I0 to Im–1, for the real queue, where m is a
tunable parameter. Im–1 is the point at the tail of the queue,
and blocks inserted at Ij have a longer lifetime in the cache
than those inserted at Ii (i < j). The insertion point h of a
block is a function of the reference frequency,
insertPoint(f). In our current design, insertPoint(f) is
defined as log2(f). Our experiments also show that six
insertion points are enough to separate high frequency
blocks from others. Figure 6 outlines the FBER algorithm.

The highest cumulative hit ratio is provided by totally
exclusive caching, since no blocks exist in either the clients’
or the storage caches, but this configuration degrades the
storage hit ratio dramatically for high-correlated workloads.
A small inclusive cache in storage is very helpful to increase
the local hit ratio, but the size of the small cache needs to be
tuned carefully. uCache uses the Adaptive Space Allocation
algorithm (ASA) to manage the storage cache and provide
optimal inclusive cache space dynamically. The LRU
algorithm is used to manage the small inclusive cache.
Blocks referenced by clients recently are placed into the
LRU cache, either from the FBER cache, or from hard disks
because of local misses, to provide cache hits for future
references. The size of the small LRU cache is determined
dynamically by its hit ratio. One hit of the LRU cache will
increase its size by one block, and one hit of the FBER
cache will shrink its size by one block. Since the highest
cumulative hit ratio is provided by total exclusiveness, a
ghost cache which simulates a totally exclusive storage
cache is implemented to provide a reference for each
moment of access. If the current cumulative hit ratio is too
low compared to that of the ghost cache, the LRU cache size
will be reduced. The ASA algorithm tries to maximise the

local hit ratio while not sacrificing the cumulative hit ratio
too much. Figure 7 outlines the ASA algorithm.

Figure 6 FBER algorithm

Figure 7 ASA algorithm

8 X. He, L. Ou, M.J. Kosa, S.L. Scott and C. Engelmann

5 Simulation methodology

We compare cumulative L2 cache hit ratios and average
response times of uCache (implementing FBER and ASA for
storage cache) and other algorithms, including LRU, 2Q,
exclusive caching, and SLRU.

We use trace-driven simulation to evaluate cumulative
hit ratios. We have developed a simulator to simulate
two-level buffer cache hierarchies with multiple clients and
one storage system. LRU is used as the replacement
algorithm in the LI caches, and the aforementioned
algorithms are implemented in the L2 cache. Thus, in
our simulations, when we refer to LRU, we talk about
LRU–LRU (L1–L2 caches). Since the block size of the
machines where the three traces are collected is 4 KB, we
also assume a cache block size in our simulation of 4 KB.
We have examined other block sizes, with similar results.
The traces we used for the simulator are described in
Section 3.1.

The following formula describes the calculation of the
average response times for the L2 caches.

mean miss.s s r r dT T h T h T= × + × + ×

Ts and Tr are costs of hits in the storage cache and the
remote cooperative client caches, respectively. Td is the cost
of reading a block from a storage disk. hs and hr are the hit
ratios (output by our simulator) of the storage cache and
the remote cooperative client caches, respectively, and
miss = 1 – (hs + hr).

We have designed a program to compute the
average values of Ts, Tr, and Td for a 4 KB block.
The storage server is a Dell PowerEdge 2500, with a
1.4 GHz Intel Xeon microprocessor, 1024 MB memory, and
a Dell PercRaid Raid5 54.5 G Disk. The client is a
Dell Dimension 4500, with a 2.4 GHz Intel Pentium-4
microprocessor, 256 M memory and a 40 G IDE disk.
All machines are equipped with a 32 bit PCI
100/1000 Mbps network interface card, and connected
through a Dell PowerConnect 5224 Gigabit Ethernet
switch. RedHat 9.1 is installed on each machine, with
Linux kernel 2.4.20–8. For each access time, we performed
100 experiments and calculated the average value.
The results are summarised in Table 2. Actually, the access
time of remote cooperative client caches includes the check
time of storage caches, the network overhead among
storage and clients, and the service time of the client caches,
because the requests are still first checked at the storage
side, and after a cache miss occurs, they are then sent to
clients.

Table 2 Access times for different level caches

 Storage
cache (us)

Remote cooperative
client caches (us)

Storage
disk (us)

Gigabit Ethernet 250 380 9,500
150 Mb ATM l,050 l,350 10,500
10 Mb Ethernet 6,900 7,200 16,150

We designed the ASA and FBER algorithms to improve the
local hit ratios of uCache, but part of the hit ratio increase
still comes from remote cooperative client caches, so the
final average response time is sensitive to network latency
and host processing speed. To study how the network
environment can influence the final result, we also provide
average values of Ts, Tr and Td in some slower networks.
These data are derived from the original study on
cooperative caching by Dahlin et al. (1994). Although these
measurements are now a few years old and thus likely to be
slow when compared to state-of-art equipment, our purpose
is to show how uCache can tolerate severe environments,
since it is obvious that uCache works better in high speed
networks. In Table 2, the response time of Gigabit Ethernet
comes from our measurements, and others are derived from
Dahlin et al. (1994). The average response times of the L2
caches for all of the following simulations are calculated
from measurements of the Gigabit Ethernet environment,
except those in Section 6.4, where we intentionally examine
the sensitivity of uCache to technology changes.

6 Simulation results

6.1 Single client

We use the Cello92 trace as the workload of a single client
system. Since there is only one client, uCache works the
same as previous exclusive caching algorithms, except that
FBER and ASA are used as the local replacement algorithms
in the L2 cache.

Figure 8 shows that the uCache always provides the best
hit ratio among all the algorithms. It provides about a 25%
higher hit ratio in a 64 MB cache and 15% in a 128 MB
cache, compared to LRU. When the cache size increases to
128 MB, the difference is not obvious, because 128 MB is
large enough to hold most blocks. LRU is the worst one,
because of its inclusiveness. 2Q provides some gain because
it evicts cold blocks as soon as possible. uCache and
exclusive caching provide the best results, since duplicated
blocks are removed quickly from L2 caches, and the
aggregate cache space is utilised efficiently. uCache has an
obvious improvement, even compared to exclusive caching,
because the FBER algorithm prefers to retain blocks with
high eviction frequencies, which contribute most of the
cache hits. The ASA algorithm aggressively shrinks the
small LRU cache to provide all the cache space to FBER.

Figure 8 L2 cache hit ratio of single client

 A unified multiple-level cache for high performance storage systems 9

6.2 Low-correlated traces

We use the DB2 trace as a multiple-client low-correlated
workload. Figure 9 shows that uCache provides the best hit
ratio among all the algorithms. Since no blocks are shared
among the eight clients, the additional hit ratio for
cooperative caching is zero. The temporal locality of the
DB2 workload is very weak, so the LRU and 2Q algorithms
provide very low cache hit ratios, even when the storage
cache size increases to 4096 MB. SLRU is much better than
LRU, but still lags behind exclusive caching and uCache,
because it is designed to be compatible with high-correlated
workloads by not completely implementing exclusiveness in
the L2 cache. The difference between uCache and exclusive
caching is not obvious, because the highest eviction
frequency of the DB2 trace is only four, which is not enough
for FBER to utilise. The ASA algorithm successfully
allocates all storage cache space to FBER, since almost no
blocks are reused among different clients. Figure 10 shows
that the average response time follows the same trend as the
hit ratio. The biggest improvement from LRU to uCache is
46%, with a 1024 MB storage cache.

Figure 9 L2 cache hit ratios of 8 clients (DB2 trace)

Figure 10 L2 cache response time of 8 clients (DB2 trace)

6.3 High-correlated traces

We use the Cello92 trace and the HTTPD trace as
multiple-client high-correlated workloads. Figure 11
shows the hit ratios of the different algorithms under various
configurations. The uCache always provides the best hit
ratio among all the algorithms. LRU provides a relatively
high hit ratio because each block in a LRU cache has a long
life before it is discarded, and thus has a high possibility
of being referenced again by different clients with
high-correlated workloads. The gain of uCache becomes

smaller as the storage cache grows larger, since a large
cache size retains a block for a long enough time to be
accessed by most clients. Exclusive caching suffers serious
performance degradation, even when compared to LRU,
because discarding a block immediately after it is referenced
once causes many cache misses for successive references
from other clients. We notice that even the storage hit ratios
of uCache, which does not count the benefits from the
cooperative client caches, are much higher than those of
exclusive caching and are very close to the results of the
three inclusive cache algorithms. The ASA and FBER
algorithms work perfectly to both increase local hits and
maintain high cumulative hit ratios.

Figure 11 L2 cache hit ratio under Cell92/HTTPD traces.
Hits from cooperative client caches are not included:
(a) 4 clients under Cello92 trace; (b) 8 clients under
Cello92 trace; (c) 16 clients under Cello92 trace and
(d) 7 clients under HTTPD trace

 (a)

 (b)

 (c)

 (d)

10 X. He, L. Ou, M.J. Kosa, S.L. Scott and C. Engelmann

ASA and FBER balance well between the local storage hit
ratio and the cumulative hit ratio. Figure 12 compares the
cumulative and storage hit ratios of LRU, exclusive caching,
and uCache under various configurations. We intentionally
change the replacement algorithms for exclusive caching
and LRU to add cooperative client caches and provide the
cumulative hit ratios. We have mentioned before that
entirely exclusive caching in storage with cooperative client
caches provides the maximum cumulative hit ratio, but very
low storage hit ratios in high-correlated workloads. When
compared with exclusive caching, we find that the
cumulative hit ratio of uCache is almost the same, while the
local storage hit ratio is much higher. We also find that even
with cooperative client caches, LRU cannot provide
satisfactory cumulative cache hits, because most blocks in
the storage cache and cooperative client caches are the
same, and aggregate cache space is wasted. With the ASA
algorithm, uCache provides both satisfactory local hit ratios,
almost the same as typical inclusive caching, and high
cumulative hit ratios, very close to the maximum values that
totally exclusive caching algorithm can reach.

Figure 12 Cumulative hit ratio comparison under Cello92
(128 MB storage cache) and HTTPD (64 MB storage
cache) traces: (a) 4 clients under Cello92 trace;
(b) 8 clients under Cello92 trace; (c) 16 clients under
Cello92 trace and (d) 7 clients under HTTPD trace

 (a)

 (b)

 (c)

Figure 12 Cumulative hit ratio comparison under Cello92
(128 MB storage cache) and HTTPD (64 MB storage
cache) traces: (a) 4 clients under Cello92 trace;
(b) 8 clients under Cello92 trace; (c) 16 clients under
Cello92 trace and (d) 7 clients under HTTPD trace
(continued)

 (d)

Figure 13 shows that the average response time follows the
same trend as the hit ratio. The biggest improvement is
53% from LRU to uCache, with a 32 MB storage cache for
the 7-client HTTPD trace.

Figure 13 Average response time of L2 cache under Cello92 and
HTTPD traces: (a) 4 clients under Cello92 trace;
(b) 8 clients under Cello92 trace; (c) 16 clients under
Cello92 trace and (d) 7 clients under HTTPD trace

 (a)

 (b)

 (c)

 A unified multiple-level cache for high performance storage systems 11

Figure 13 Average response time of L2 cache under Cello92 and
HTTPD traces: (a) 4 clients under Cello92 trace;
(b) 8 clients under Cello92 trace; (c) 16 clients under
Cello92 trace and (d) 7 clients under HTTPD trace
(continued)

 (d)

Figure 14 uses the Cello92 trace as an example to show the
source of the gain of uCache. The base segments are the hit
ratios that a pure exclusive cache can provide. We find that
ASA and FBER contribute a lot to the increase of the local
hit ratios. Finally, cooperative client caches provide
additional cumulative hits.

Figure 14 Cumulative hit ratio of L2 cache (Cello92 trace)

6.4 Sensitivity

To study how the performance of uCache is affected
by different network technologies with high-correlated
workloads (the gains with single client and low-correlated
workloads are not from remote cooperative caches),
we use the parameters collected in Section 4.2 to
calculate the average response times under various
environments with the cache hit ratios from the previous
simulations.

Figure 15 indicates how the improvement of uCache
over LRU varies with different network technologies.
With comprehensive comparisons, we find that although
uCache provides smaller response times in all three settings,
the gain decreases when the network speed is slower.
uCache on Gigabit Ethernet achieves the highest
improvement of up to 40%, while the improvement in
10 Mb Ethernet is limited to under 13%. Although this
result indicates that uCache is sensitive to network speeds,
current popular networks are fast enough for uCache to
achieve reasonable speedups.

Figure 15 uCache vs. LRU under Cello92 trace

7 Related work

L2 caches have poor hit ratios, as demonstrated in Muntz
and Honeyman (1992) and Froese and Bunt (1996). Further
studies show that the poor hit ratio is caused by both weaker
temporal locality (Bunt et al., 1993; Zhou et al., 2004) and
duplicated blocks (Wong and Wilkes, 2002). After studying
the behaviour of NFS servers, Reed and Long (1996) found
that the LRU algorithm may still exploit temporal locality
caused by frequent accesses of file system metadata. Many
new algorithms have been proposed recently to improve
cumulative hit ratios, such as MQ (Zhou et al., 2004),
Demotion-based algorithm (Wong and Wilkes, 2002),
Global L2 buffer cache management (Zhou et al., 2004),
X-Ray (Bairavasundaram et al., 2004), and client-controlled
cache replacement (Jiang and Zhang, 2004). Chen et al.
(2005) classified all those algorithms into two types:
hierarchy-aware caching, and aggressively-collaborative
caching, and compared the performance among typical
algorithms belonging to the two types. Ari et al. (2002)
proposed ACME to adaptively select the best replacement
policy for each cache-level to achieve high cumulative hit
ratios. Our work in multi-level cache hierarchies builds
upon, but is different from, previous studies because the
uCache algorithm is adaptive to multiple-client systems,
with either high-correlated workloads or low-correlated
workloads.

Researchers have used metrics such as reuse distance
(Zhou et al., 2004), inter-reference gap (Phalke and
Gopinath, 1995), and inter-reference recency (Jiang and
Zhang, 2002) to analyse access patterns of workloads, but
none of them studies the characteristics of reference streams
of L2 caches in exclusive caching. Our study shows
that the ERG is very large and high eviction frequency
blocks contribute most to cache hits in exclusive caching.
Based on our study, we propose a new algorithm, FBER, to
improve hit ratios for exclusive caching.

Researchers have considered using cooperative client
caching to improve cumulative hit ratios in multi-level
cache hierarchies. Dahlin et al. (1994) proposed four
representative cooperative caching algorithms and
demonstrated that N-Chance Forwarding can provide the
best performance. GMS (Feeley et al., 1995) is more general
than N-chance in that it is a distributed shared-memory

12 X. He, L. Ou, M.J. Kosa, S.L. Scott and C. Engelmann

system, for which cooperative caching is only one
possible use. Sarkar and Hartman (1996) introduced a
hint-based algorithm to reduce overhead of cooperative
caches. Our work is related to, but different from, those
previous algorithms, because we use exclusive caching in
storage caches to improve hit ratios for low-correlated
workloads, while using cooperative client caching to cache
blocks reused frequently among clients in high-correlated
workloads.

8 Conclusions

In this paper, we propose a new unified buffer cache
management algorithm: uCache, to improve performance of
L2 caches in multi-level cache hierarchies for multiple
clients. uCache combines both exclusive caching in storage
caches to improve hit ratios for low-correlated workloads,
and cooperative client caching to improve hit ratios for
high-correlated workloads.

We have studied the characteristics of reference streams
of exclusive caching. Our results show that the average
ERG of exclusive caching with multiple clients is rather
large, in that it is difficult for a replacement algorithm
utilising temporal locality of workloads to provide high hit
ratios. A frequency based algorithm is highly preferred
because high eviction frequency blocks contribute the most
to cache hits but cause the fewest cache misses in exclusive
caching. We propose new local replacement algorithms,
FBER, and ASA algorithm, to improve the hit ratios of
exclusive caching.

We have evaluated our uCache algorithm and other
typical multi-level caching algorithms using simulations
under both high-correlated and low-correlated workloads.
The results show that uCache dramatically increases
cumulative cache hit ratios over LRU and improves the
average I/O response time by up to 46% for low-correlated
workloads and 53% for high-correlated workloads.

In multiple clients with high-correlated workloads, the
speedup of uCache is sensitive to network technologies.
Although slower networks obviously decrease the
performance of uCache, current popular networks provide
enough speed for uCache to achieve decent speedups.

Acknowledgements

The authors would like to thank the anonymous
referees for their insightful and constructive comments.
This work was supported in part by the US National
Science Foundation under grant #CNS-0617528 and the
Center for Manufacturing Research at Tennessee
Technological University. It was also partially supported
by the Mathematics, Information and Computational
Sciences Office, Office of Advanced Scientific Computing
Research, Office of Science, US Department of Energy,
under contract No. DE-AC05-00OR22725 with UT-
Battelle, LLC.

References
Ari, I., Amer, A., Gramacy, R., Miller, E.L., Brandt, S.A.

and Long, D.E. (2002) ‘ACME: adaptive caching using
multiple experts’, Proc. in Informatics, Paris, France, Vol. 14,
pp.143–158.

Bairavasundaram, L.N., Sivathanu, M., Arpaci-Dusseau, A.C. and
Arpaci-Dusseau, R.H. (2004) ‘X-RAY: a non-invasive
exclusive caching mechanism for RAIDs’, Proc. 31th
Annual International symposium on Computer Architecture,
München, Germany, pp.176–187.

Bunt, R.B., Willick, D.L. and Eager, D.L. (1993) ‘Disk cache
replacement policies for network file servers’, Proc. IEEE
International Conference on Distributed Computing
Systems-ICDCS ‘93, Pittsburgh, PA, pp.2–11.

Chen, Z., Zhang, Y., Zhou, Y., Scott, H. and Schiefer, B. (2005)
‘Empirical evaluation of multi-level buffer cache
collaboration for storage systems’, ACM SIGMETRICS:
Performance Evaluation Review, Vol. 33, No. 1, June,
pp.145–156.

Dahlin, M., Wang, R., Anderson, T., and Patterson, S. (1994)
‘Cooperative caching: using remote client memory to
improve file system performance’, Operating Systems Design
and Implementation, Monterey, California, November,
pp.267–280.

Dan, A. and Towsley, D. (1990) ‘An approximate analysis of the
LRU and FIFO buffer replacement schemes’, Proceedings of
the {ACM SIGMETRICS} Conference on Measurement and
Modeling of Computer Systems, Boulder, Colorado, may,
pp.143–152.

Denning, P.J. (1968) ‘The working set model for program
behavior’, Communications of the ACM, Vol. 11, No. 5,
pp.323–333.

Feeley, M.J., Morgan, W.E., Pighin, F.H., Karlin, A.R.,
Levy, H.M. and Thekkath, C.A. (1995) ‘Implementing
global memory management in a workstation cluster’, Proc.
Symp. Operating Systems Principles, Cooper Mountain
Resort, Colorado, December, pp.201–212.

Froese, K. and Bunt, R.B. (1996) ‘The effect of client caching on
file server workloads’, Proc. 29th Hawaii International
Conference of System Sciences, Maui, Hawaii, January,
pp.150–159.

Jiang, S. and Zhang, X. (2002) ‘LIRS: an efficient low
inter-reference recency set replacement policy to improve
buffer cache performance’, Proceedings of the {ACM
SIGMETRICS} International Conference on Measurement
and Modeling of Computer Systems, pp.31–42.

Jiang, S. and Zhang, X. (2004) ‘ULC: a file block placement and
replacement protocol to effectively exploit hierarchical
locality in multi-level buffer caches’, Proceedings of the 24th
International Conference on Distributed Computing Systems,
Tokyo, Japan, March, pp.168–177.

Johnson, T. and Shasha, D. (1995) ‘2Q: a low overhead high
performance buffer management replacement algorithm’,
Proc. 20th International Conference on Very Large
Databases, Santiago, Chile, pp.439–450.

Katz, E.D., Butler, M. and McGrath, R. (1994) ‘A scalable HTTP
server: the NCSA prototype’, Computer Networks and ISDN
Systems, Vol. 27, No. 2, pp.155–164.

Megiddo, N. and Modha, D. (2003) ‘ARC: a self-tuning, low
overhead replacement cache’, Proc. Second USENIX Conf.
File and Storage Technologies, San Franciso, CA, pp.115–
130.

 A unified multiple-level cache for high performance storage systems 13

Muntz, D. and Honeyman, P. (1992) ‘Multi-level caching in
distributed file systems-or-your cache ain’t nuthin’ but trash’,
Proc. Usenix Winter Technical Conf., San Francisco,
California, January, pp.305–314.

O’Neil, E.J., O’Neil, P.E. and Weikum, G. (1993) ‘The LRU
page replacement algorithm for database disk buffering’,
Proc. ACM SIGMOD Int’l Conf. Management of Data,
Washington DC, May, pp.297–306.

Phalke, V. and Gopinath, B. (1995) ‘An inter-reference gap model
for temporal locality in program behavior’, Proc. Joint Int’l
Conf. Measurement and Modeling of Computer Systems,
Ottawa, Canada, May, pp.291–300.

Reed, B. and Long, D.E. (1996) ‘Analysis of caching algorithms
for distributed file systems’, ACM SIGOPS Operating
Systems Review, Vol. 30, No. 3, pp.12–21.

Robinson, J.T. and Devarakonda, M.V. (1990) ‘Data cache
management using frequency-based replacement’, Proc. ACM
SIGMETRICS Conf. Measurement and Modeling of Computer
Systems, Boulder, Colorado, May, pp.134–142.

Ruemmler, C. and Wilkes, J. (1993) ‘Unix disk access
patterns’, Proc. Winter 1993 USENIX Conf., San Diego, CA,
pp.405–420.

Sarkar, P. and Hartman, J. (1996) ‘Efficient cooperative
caching using hints’, Proc. Second ACM Symp.
Operating Systems Design and Implementation, Seattle, WA,
pp.35–46.

Uysal, M., Acharya, A. and Saltz, J. (1997) Requirements of I/O
Systems for Parallel Machines: An Application-driven Study,
Technical Report CS-TR-3802, Dept. of Computer Science,
University of Maryland, College Park, MD, May.

Wong, T. and Wilkes, J. (2002) ‘My cache or yours? Making
storage more exclusive’, Proc. USENIX Ann. Technical Conf.,
Monterey, California, pp.161–175.

Zhou, Y., Chen, Z. and Li, K. (2004) ‘Second-level buffer cache
management’, IEEE Transactions on Parallel Distributed
Systems, Vol. 15, No. 6, pp.505–519.

Notes
1ERGs that are not powers of two are rounded down to the nearest
power of two.

2Eviction frequencies that are not powers of two are rounded down
to the nearest power of two.

