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Abstract: Multi-level cache hierarchies are widely used in high-performance storage systems to 
improve I/O performance. However, traditional cache management algorithms are not suited well 
for such cache organisations. Recently proposed multi-level cache replacement algorithms using 
aggressive exclusive caching work well with single or multiple-client, low-correlated workloads, 
but suffer serious performance degradation with multiple-client, high-correlated workloads.  
In this paper, we propose a new cache management algorithm that handles multi-level buffer 
caches by forming a unified cache (uCache), which uses both exclusive caching in L2 storage 
caches and cooperative client caching. We also propose a new local replacement algorithm, 
Frequency Based Eviction-Reference (FBER), based on our study of access patterns in exclusive 
caches. Our simulation results show that uCache increases the cumulative cache hit ratio 
dramatically. Compared to other popular cache algorithms, such as LRU, the I/O response time is 
improved by up to 46% for low-correlated workloads and 53% for high-correlated workloads. 
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1 Introduction 

Caching is a common technique for improving the 
performance of I/O systems. Researchers have developed 
many algorithms to manage the buffer cache, such as LRU 
(Dan and Towsley, 1990), MRU (Denning, 1968), LFU, 
FBR (Robinson and Devarakonda, 1990), LRU-k (O’Neil  
et al., 1993), 2Q (Johnson and Shasha, 1995), LIRS  
(Jiang and Zhang, 2002), and ARC (Megiddo and Modha, 
2003). These algorithms were designed for local cache 
replacement because they do not need any information from 
other caches. They worked well for a single system.  
In a distributed I/O environment, buffer caches are mostly 
organised as multi-level cache hierarchies residing on 
multiple machines. For example, in a distributed file system, 
shown in Figure 1 (Zhou et al., 2004), the upper level 
caches reside on file servers (storage clients), and the  
lower level caches reside on storage servers. We refer to 
upper level storage client caches as LI buffer caches and 
lower level storage caches as L2 buffer caches (Zhou et al., 
2004). L1/L2 buffer caches are very different from L1/L2 
processor caches because L1/L2 buffer caches refer to  
main-memory caches distributed in multiple machines.  
The access patterns of L2 caches show weak temporal 
locality (Bunt et al., 1993; Froese and Bunt, 1996; Zhou  
et al., 2004) after filtering from LI caches, which implies 
that a cache replacement algorithm, such as LRU, may not 
work well for L2 caches. Additionally, local management 
algorithms used in L2 caches are inclusive (Wong and 
Wilkes, 2002), which try to keep blocks that have been 
cached by LI caches, and waste aggregate cache space. 
Thus, though the aggregate cache size of the hierarchy is 
increasingly larger, the system may not deliver the expected 
performance commensurate with the aggregate cache size. 

Figure 1 Multi-level buffer cache hierarchy 

 

Several attempts have been made to improve the cache 
performance of multi-level buffer caches for distributed  
I/O systems. Recent research (Wong and Wilkes, 2002; 
Zhou et al., 2004; Chen et al., 2005; Bairavasundaram et al., 
2004; Jiang and Zhang, 2004) characterises the behaviour of 

accesses to L2 caches, and introduces multiple algorithms 
based on the characteristics to improve the L2 cache hit 
ratio. Except for multi-queue replacement (Zhou et al., 
2004), all the other algorithms try to achieve exclusive 
caching (Wong and Wilkes, 2002) through quick eviction of 
duplicated blocks in L2 caches. Implementing aggressive 
exclusive caching may get a high hit ratio in the case of a 
single storage client, but multiple-client systems introduce a 
new complication: the sharing of data among clients. It may 
no longer be a good idea to discard a recently read block 
from the L2 cache after it has been sent to a client cache, 
because the block may be referenced again by other clients 
in the near future. Real workloads show behaviour between 
two extremes: disjoint workloads, in which the clients each 
issue references for non-overlapping parts of the aggregate 
working set, and conjoint workloads, in which the clients 
each issue exactly the same references in the same order at 
the same time (Wong and Wilkes, 2002). Nearly disjoint 
workloads are low-correlated workloads, and nearly 
conjoint workloads are high-correlated. For low-correlated 
workloads, aggressive exclusive caching is effective, but for 
high-correlated workloads, since the same blocks may be 
referenced by multiple clients within a relatively short time 
period, inclusive caching is more attractive. For example, 
the simulation results in Wong and Wilkes (2002) show that 
exclusive caching could achieve a 1.50 speedup over LRU 
for low-correlated workloads, but suffers a 0.55 slowdown 
for high-correlated workloads. Thus, for a multiple-client 
system, it is important to design an algorithm which 
balances between aggressive exclusive caching and 
inclusive caching according to workload characteristics. 
Wong and Wilkes (2002) propose SLRU and an adaptive 
cache insertion policy to decide how to cache duplicated 
blocks according to their previous hit ratios. The simulation 
results show that it could achieve up to a 1.32 speedup for 
low-correlated workloads and an approximate 1.18 speedup 
for high-correlated workloads over the LRU algorithm.  
It trades a hit ratio for low-correlated workloads for a 
speedup for high-correlated workloads. 

In this paper, we propose a new unified cache 
management algorithm, uCache, for multi-level I/O systems 
to provide high cumulative hit ratios in multiple storage 
client cache systems, for both high-correlated and  
low-correlated workloads. We use cooperative client caches 
(Dahlin et al., 1994) to provide inclusive caching for high 
frequency block reuse among multiple LI caches with  
high-correlated workloads, while implementing exclusive 
caching in L2 caches to improve the hit ratio for  
low-correlated workloads. We study the access patterns of 
exclusive caching and find that LRU and other traditional 
algorithms are not suitable even for local replacement in L2 
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caches. Based on our study, we propose a new local L2 
cache management algorithm, FBER, for exclusive caching 
environments. We compare the uCache algorithm with the 
traditional LRU and other typical multi-level cache 
management algorithms such as exclusive caching (Wong 
and Wilkes, 2002; Zhou et al., 2004), 2Q (Johnson and 
Shasha, 1995), and SLRU (Wong and Wilkes, 2002), using 
simulations under different workloads. The results show that 
compared to LRU, uCache can dramatically increase the 
overall cache hit ratio and improve the average I/O response 
time by up to 46% for low-correlated workloads and 53% 
for high-correlated workloads. 

The rest of the paper is organised as follows.  
The background is presented in Section 2. Section 3 
discusses access patterns of L2 caches in exclusive caching 
environments. Section 4 describes our idea and design 
issues in detail. Section 5 describes our simulation 
methodology. We compare our work to previous efforts to 
improve L2 cache performance in Section 6 and examine 
related work in Section 7. We draw our conclusions in 
Section 8. 

2 Background review 

To improve the hit ratio of buffer caches, researchers have 
proposed many management algorithms, such as LRU  
(Dan and Towsley, 1990), MRU (Denning, 1968), LFU, 
FBR (Robinson and Devarakonda, 1990), LRU-k (O’Neil  
et al., 1993), 2Q (Johnson and Shasha, 1995), LIRS  
(Jiang and Zhang, 2002), ARC (Megiddo and Modha, 
2003), Cooperative caching (Dahlin et al., 1994; Sarkar and 
Hartman, 1996), and the Exclusive caching algorithm 
(Wong and Wilkes, 2002; Zhou et al., 2004). We outline 
three typical algorithms related to our design below. 

2.1 LRU cache algorithm 

The Least Recently Used (LRU) policy is one of the most 
effective policies for memory caching. Many current 
implementations of cache management algorithms also use 
variants of the LRU policy. The idea of LRU is simple:  
a block which is LRU should be the best candidate to be 
evicted from the cache if a new block needs to be inserted. 
In the LRU policy, a block is tagged with a priority measure 
that is equal to the time elapsed since the block was last 
accessed. When space needs to be created in the cache, the 
oldest block, i.e., the one that has been accessed least 
recently, is removed. 

2.2 Exclusive cache algorithms 

Recent studies (Bunt et al., 1993; Zhou et al., 2004) show 
that weak temporal locality of L2 cache accesses causes a 
low hit ratio for the traditional LRU algorithm. Traditional 
L2 cache algorithms are inclusive (Wong and Wilkes, 
2002), which means the same blocks are cached by both the 
LI and L2 caches at the same time. Thus, duplicated blocks 
waste aggregate cache space. In exclusive caching, a block 

is discarded from the L2 caches some time after it is sent 
back to the LI caches. If the same block is evicted from  
the LI caches, the L2 caches load it again for the next 
possible access. Exclusive caching algorithms achieve 
higher hit ratios compared to traditional inclusive caching 
techniques (i.e., LRU), in single client storage systems, or 
multiple-client systems with low-correlated workloads. 
However, they suffer performance degradation in  
multiple-client systems with high-correlated workloads, 
because blocks may be referenced again by other storage 
clients within a limited time after they are sent back to 
individual clients. 

2.3 Cooperative cache algorithms 

Cooperative cache algorithms (Dahlin et al., 1994) are used 
to improve the overall cache hit ratio by taking advantage of 
cache space in client machines. 

When a client request is missed in the storage server 
cache, the traditional way to service the request is to access 
hard disks. Since the storage server is shared by multiple 
clients, there is a high probability that the blocks requested 
by one client and missed in the server cache are kept by 
other clients. So, in cooperative caching, the storage server 
tracks the blocks cached in each client, and directs a request 
to a client if there is a cache miss in the server and the 
corresponding block can be found in that client. 

3 Analysis of access patterns of exclusive caching 

Exclusive caching is different from current inclusive 
caching in several aspects. First, after it is reloaded into the 
storage cache, and then referenced by a client, a block is 
quickly discarded by the management algorithm, no matter 
how many times it has been referenced before, but 
traditional algorithms try to keep a block with a recently 
good hit history in the cache as long as possible. Second, the 
reference sequences of storage caches are totally different 
from those of traditional caches. The access sequences of 
traditional caches consist of continuous references of 
blocks, and researchers use metrics, such as reuse distance 
(Zhou et al., 2004), inter-reference gap (Phalke and 
Gopinath, 1995), and inter-reference recency (Jiang and 
Zhang, 2002), to describe characteristics of workloads, 
which are then used to design replacement algorithms to 
manage buffer caches. In exclusive caching, access 
sequences of storage caches consist of two types of 
randomly interleaved operations: evictions, which inform 
storage systems to reload blocks that have been replaced by 
client caches, and references, such as reads or writes, 
provided by standard I/O interfaces. With these differences, 
we need to analyse the access patterns of exclusive caching, 
and design a replacement algorithm based on those patterns. 

3.1 Traces 

To study L2 buffer cache access patterns and evaluate 
caching algorithms and policies, we use three buffer cache 
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access traces. These traces are chosen to represent different 
types of workloads: high-correlated and low-correlated.  
In our study, we use 4 KB as the cache block size for our 
access pattern analysis and our experimental evaluation of 
various algorithms. We have examined other block sizes, 
with similar results. Table 1 shows the characteristics of the 
traces. 

Table 1 Characteristics of traces 

Trace Clients IOs (millions) Volume (GB) 
Cello92 1 0.5 per day 10.4 
HTTPD 7 1.1 0.5 
DB2 8 3.7 5.2 

The HP Cello92 trace was collected at Hewlett-Packard 
Laboratories in 1992 (Ruemmler and Wilkes, 1993).  
It captured all L2 disk I/O requests in Cello, a timesharing 
system used by a group of researchers to do simulations, 
compilation, editing, and e-mail, from April 18 to June 19. 
We use the trace collected on April 18 as the workload for 
the single client simulation. Cello is an HP 9000/877 server 
with one 64 MHz CPU, 96 MB memory and eight disks. 
Since requests of the traces collected on different days 
access the same data set, we also use them as workloads for 
the multiple-client simulation: each trace file collected 
within one day acts as the workload of one client.  
These workloads are high-correlated. 

The HTTPD workload was generated by a seven-node 
IBM SP2 parallel web server (Katz et al., 1994) serving a 
524 MB data set. Multiple http servers share the same files, 
although they seldom read files at the same time. We use the 
HTTPD workload as the high-correlated workloads for the 
multiple-client simulation. 

The DB2 trace-based workload was generated by an 
eight-node IBM SP2 system running an IBM DB2 database 
application that performed join, set and aggregation 
operations on a 5.2 GB data set. Uysal et al. (1997) used this 
trace in their study of I/O on parallel machines. Each DB2 
client accesses disjoint parts of the database. No blocks are 
shared among the eight clients. We use the DB2 workload 
as the low-correlated workload for the multiple-client 
simulation. 

Since LI buffer cache sizes clearly affect an L2  
cache’s performance, we carefully set the LI buffer  
cache sizes for the three traces to achieve a reasonable LI  
hit ratio. The cache size of the HP 9000/877 server is only  
10–30 MB, which is very small by current standards.  
The Cello92 trace and the HTTPD trace show high temporal 
locality, and a small client cache may achieve a high hit 
ratio. In the simulations, we assume the cache size of each 
client is 16 MB for the Cello92 traces, and 8 MB for the 
HTTPD trace, providing an LI hit ratio of approximately 
50%. The DB2 trace shows very low temporal locality, and 
a 512 MB client cache just provides a LI hit ratio of no 
more than 15%. But if the cache size increases to 600 MB, 
the LI hit ratio suddenly increases to 75%, because reuse 
distances (Zhou et al., 2004) of most blocks are <150 K. To 
reserve enough cache misses for L2 caches, we assume the 

cache size of each client for the DB2 trace is 512 MB. Since 
the number of compulsory cache misses in the DB2 trace is 
large, we use approximately 10% of the requests to warm up 
the cache space. 

3.2 Access patterns of exclusive caching 

Because of the uniqueness of the reference sequences, the 
metrics used before may not correctly describe the 
characteristics of access patterns for exclusive caching. 
Thus, we need to define new metrics to describe the access 
pattern. The Eviction-Reference-Gap (ERG) indicates the 
distance (the number of distinct evictions) between an 
eviction of a block from an LI cache and the later reference 
by that cache. ERG describes how long a block will stay in 
the L2 cache space before it is referenced again.  
The replacement algorithm should keep blocks with small 
ERG values. The Eviction Frequency defines how many 
times a block has been evicted from the LI caches, and 
hence reloaded into the storage cache. Not every eviction of 
a block will be referenced by an LI cache again within a 
reasonable ERG; some of them are never referenced again, 
and some of them are referenced, but with an ERG that is 
much larger than a real cache space can provide. These 
kinds of evictions are dead evictions. Evictions referenced 
by LI caches again within a reasonable ERG are reusable 
evictions. Obviously, a good replacement algorithm should 
discard dead eviction blocks as quickly as possible, and for 
reusable eviction blocks, keep those with relatively small 
ERGs. 

We first study the ERG of blocks in storage caches.  
The data in Figure 2 shows the distribution of evictions  
over ERGs grouped by powers of two.1 Significantly, blocks 
evicted from LI caches are not referenced quickly: most 
evictions have relatively large ERGs (from 32 K to 64 K in 
the Cello92 trace, from 8 K to 16 K in the HTTPD trace,  
and 64 K in the DB2 trace). Furthermore, the curves  
descend slowly from peak to foot (the largest ERG even 
extends to more than 1 M), which means it is difficult for a 
replacement algorithm to retain most blocks before they are 
referenced by clients. A good replacement algorithm for 
storage caches should at least retain blocks that reside in the 
hill portion of the histogram for a longer period of time to 
provide more than a 50% hit ratio. Obviously, the 
distribution of ERG in Figure 2 shows that LRU is not an 
appropriate local replacement algorithm for exclusive 
caching in an L2 cache. 

Figure 2 Eviction-Reference-Gap (EVG): (a) 4 clients under 
Cello92 trace; (b) 7 clients under HTTPD trace  
and (c) 8 clients under DB2 trace 

 
 (a) 
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Figure 2 Eviction-Reference-Gap (EVG): (a) 4 clients  
under Cello92 trace; (b) 7 clients under HTTPD  
trace and (c) 8 clients under DB2 trace  
(continued) 

 
 (b) 

 
 (c) 

Using the same traces, we have also examined the  
behaviour of storage buffer cache accesses in terms of 
eviction frequency. The data in Figure 3 show the 
distribution of the percentages of reusable and dead 
evictions over eviction frequencies grouped by powers of 
two.2 It is obvious that blocks with high eviction frequencies 
result in a high percentage of the reusable evictions and a 
low percentage of the dead evictions. The percentage of 
dead evictions decreases with the eviction frequency, but 
the peak of the reusable evictions does not appear at the 
point of the highest eviction frequency (16 in the Cello92 
trace, 128 in the HTTPD trace, and 2 in the DB2 trace).  
That does not mean that blocks with eviction frequencies 
higher than the peak point will reduce the hit ratio, because 
the number of dead evictions of those blocks is close to 
zero, which means that almost all of those blocks are 
referenced later. Since dead evictions absolutely cause 
cache misses, caching blocks with high eviction frequencies 
is helpful for increasing hit ratios. The DB2 trace shows 
very low temporal locality, so the highest eviction 
frequency is only four. We also studied how the average 
ERG distribution changes with the eviction frequency.  
The data in Figure 4 show that the blocks with higher 
eviction frequencies always have smaller mean ERGs, 
which indicates that those blocks have high hit probabilities 
before they are discarded by the replacement algorithm. 
From Figures 3 and 4, we conclude that higher eviction 
frequencies of blocks result in higher contributions to the 
total cache hits and lower contributions to the total cache 
misses. 
 

Figure 3 Reusable and dead eviction distribution: (a) 4 clients 
under Cello92 trace; (b) 7 clients under HTTPD trace 
and (c) 8 clients under DB2 trace 

 
 (a) 

 
 (b) 

 
 (c) 

Figure 4 Mean of ERGs: (a) 4 clients under Cello92 trace;  
(b) 7 clients under HTTPD trace and (c) 8 clients  
under DB2 trace 

 
 (a) 

 
 (b) 
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Figure 4 Mean of ERGs: (a) 4 clients under Cello92 trace;  
(b) 7 clients under HTTPD trace and (c) 8 clients  
under DB2 trace (continued) 

 
 (c) 

Since the percentage of dead evictions and the average 
ERGs quickly decrease with the eviction frequency, a good 
replacement algorithm could retain blocks with a high 
eviction frequency as long as possible to achieve a high  
hit ratio. 

4 Design of uCache 

The basic idea of uCache is based on a simple observation. 
In a multiple-client system, a higher correlation of 
workloads means that it is more likely that a block  
requested by one client is found in caches of other  
clients, because a block used by one client may have been or 
will be referenced by other clients within a limited  
time period. From this observation, the uCache algorithm 
implements exclusive caching in L2 caches for  
low-correlated workloads, but tries to utilise client buffer 
caches to improve cumulative hit ratios for high-correlated 
workloads. 

In uCache, all storage client caches related to a storage 
server are organised as cooperative client caches (Dahlin  
et al., 1994). A block is discarded by storage caches after it 
is sent back to a client, and is loaded again if evicted by  
that client. With a miss in the storage cache, a request may 
be redirected to an appropriate cooperative client cache if 
the block can be found in that client, or a hard disk action 
must be issued. Figure 5 briefly outlines the uCache 
algorithm. 

Figure 5 uCahce algorithm 

 

uCache is inherently adaptive to both low-correlated and 
high-correlated workloads. For low-correlated workloads,  
a high hit ratio is expected in the exclusive storage cache. 
For high-correlated workloads, similar to previous 
aggressive exclusive caching, a low hit ratio in the storage 
cache is predicted, but cooperative client caches  
provide considerable additional cache hits, according to our 
earlier observation. The final cumulative hit ratio is still 
higher than the ratio for traditional inclusive caching, such 
as LRU. 

To implement the uCache algorithm, we consider three 
major issues. The first is how clients and storage collaborate 
to achieve exclusive caching; the second is how the storage 
system tracks the blocks cached by the cooperative client 
caches; and the last is how to replace the blocks in the 
storage caches. We discuss the first two issues in  
Section 4.1 and the last one in Section 4.2. 

4.1 Collaboration between clients and the storage 
systems 

Since the storage caches are exclusive to the client side, the 
storage systems need to collaborate with clients to decide 
when to reload blocks that have been evicted by client 
caches. On the other side, all client caches are cooperative 
and it is the storage system’s responsibility to redirect 
requests to clients, so storage systems also need to track 
which blocks are cached by which clients, and to send a 
request to an appropriate cooperative client after an access 
miss in the storage cache. Actually, as long as storage 
systems know when a block is evicted from a client cache, 
they can make correct decisions for both when to reload 
blocks and where to redirect requests, because with accurate 
information of load and evictions of blocks, the storage 
systems can track the content of client caches without 
problems. Thus, for uCache, one of the key design issues is 
to choose a mechanism for storage caches to learn when a 
block is evicted by LI caches. 

Unfortunately, with traditional I/O interfaces between 
clients and storages, the block loading information is 
transparent only to storages, but not evictions. The most 
intuitive way is to design a new interface between clients 
and storage systems to send notifications of block evictions 
from the LI to the L2 caches, like the demotion operation 
(Wong and Wilkes, 2002). Although this mechanism is the 
most accurate, client software must be modified, and 
network overhead between the clients and storage systems 
increases. Another possible mechanism is to guess evictions 
of clients from access sequences and existing interfaces, 
without any modification of the LI software. uCache obtains 
LI cache replacement information by maintaining a data 
structure to track client content, similar to the idea proposed 
in Zhou et al. (2004). Chen et al. (2005) concluded that the 
performance of the latter design is very close to the former 
one if appropriate local optimisations are applied. Some 
distributed I/O systems implement block-level cache 
consistency algorithms, in which storage servers track 
blocks cached by clients. From those systems, uCache gets 
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enough LI replacement information; thus it does not need to 
implement the collaboration mechanism. 

4.2 Local replacement algorithm 

Based on the study of access patterns of exclusive caching 
in Section 2.3, we design a new replacement algorithm, 
called FBER. The main idea of this algorithm is to maintain 
blocks with different access frequencies for different 
periods of time in a storage cache. According to Section 2.3,  
it is important to retain blocks with high eviction 
frequencies as long as possible. In exclusive caching, once 
referenced by the LI caches, blocks are discarded from the 
L2 caches. Thus FBER maintains a data structure, called the 
History Reference Frequency (HRF) table, to record past 
reference information of a block evicted at least once by the 
LI caches. For each following reference to the block, no 
matter if it still stays in the cache, FBER increases the 
reference frequency of the block in the HRF. Each time a 
block is evicted from the clients and reloaded into a storage 
cache, FBER checks the HRF according to the block 
number and gets the previous reference frequency. Then it 
inserts the block into a FIFO queue. The insertion point of a 
block is determined by its previous reference frequency; the 
higher the frequency, the closer to the tail of the queue;  
so a block with high frequency has a longer lifetime than 
one with low frequency. To achieve this we set m insertion 
points, from I0 to Im–1, for the real queue, where m is a 
tunable parameter. Im–1 is the point at the tail of the queue, 
and blocks inserted at Ij have a longer lifetime in the cache 
than those inserted at Ii (i < j). The insertion point h of a 
block is a function of the reference frequency, 
insertPoint(f). In our current design, insertPoint(f) is 
defined as log2(f). Our experiments also show that six 
insertion points are enough to separate high frequency 
blocks from others. Figure 6 outlines the FBER algorithm. 

The highest cumulative hit ratio is provided by totally 
exclusive caching, since no blocks exist in either the clients’ 
or the storage caches, but this configuration degrades the 
storage hit ratio dramatically for high-correlated workloads. 
A small inclusive cache in storage is very helpful to increase 
the local hit ratio, but the size of the small cache needs to be 
tuned carefully. uCache uses the Adaptive Space Allocation 
algorithm (ASA) to manage the storage cache and provide 
optimal inclusive cache space dynamically. The LRU 
algorithm is used to manage the small inclusive cache. 
Blocks referenced by clients recently are placed into the 
LRU cache, either from the FBER cache, or from hard disks 
because of local misses, to provide cache hits for future 
references. The size of the small LRU cache is determined 
dynamically by its hit ratio. One hit of the LRU cache will 
increase its size by one block, and one hit of the FBER 
cache will shrink its size by one block. Since the highest 
cumulative hit ratio is provided by total exclusiveness, a 
ghost cache which simulates a totally exclusive storage 
cache is implemented to provide a reference for each 
moment of access. If the current cumulative hit ratio is too 
low compared to that of the ghost cache, the LRU cache size 
will be reduced. The ASA algorithm tries to maximise the 

local hit ratio while not sacrificing the cumulative hit ratio 
too much. Figure 7 outlines the ASA algorithm. 

Figure 6 FBER algorithm 

 

Figure 7 ASA algorithm 
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5 Simulation methodology 

We compare cumulative L2 cache hit ratios and average 
response times of uCache (implementing FBER and ASA for 
storage cache) and other algorithms, including LRU, 2Q, 
exclusive caching, and SLRU. 

We use trace-driven simulation to evaluate cumulative 
hit ratios. We have developed a simulator to simulate  
two-level buffer cache hierarchies with multiple clients and 
one storage system. LRU is used as the replacement 
algorithm in the LI caches, and the aforementioned 
algorithms are implemented in the L2 cache. Thus, in  
our simulations, when we refer to LRU, we talk about  
LRU–LRU (L1–L2 caches). Since the block size of the 
machines where the three traces are collected is 4 KB, we 
also assume a cache block size in our simulation of 4 KB. 
We have examined other block sizes, with similar results. 
The traces we used for the simulator are described in 
Section 3.1. 

The following formula describes the calculation of the 
average response times for the L2 caches. 

mean miss.s s r r dT T h T h T= × + × + ×  

Ts and Tr are costs of hits in the storage cache and the 
remote cooperative client caches, respectively. Td is the cost 
of reading a block from a storage disk. hs and hr are the hit 
ratios (output by our simulator) of the storage cache and  
the remote cooperative client caches, respectively, and 
miss = 1 – (hs + hr). 

We have designed a program to compute the  
average values of Ts, Tr, and Td for a 4 KB block.  
The storage server is a Dell PowerEdge 2500, with a 
1.4 GHz Intel Xeon microprocessor, 1024 MB memory, and 
a Dell PercRaid Raid5 54.5 G Disk. The client is a  
Dell Dimension 4500, with a 2.4 GHz Intel Pentium-4 
microprocessor, 256 M memory and a 40 G IDE disk.  
All machines are equipped with a 32 bit PCI 
100/1000 Mbps network interface card, and connected 
through a Dell PowerConnect 5224 Gigabit Ethernet  
switch. RedHat 9.1 is installed on each machine, with  
Linux kernel 2.4.20–8. For each access time, we performed 
100 experiments and calculated the average value.  
The results are summarised in Table 2. Actually, the access 
time of remote cooperative client caches includes the check 
time of storage caches, the network overhead among  
storage and clients, and the service time of the client caches, 
because the requests are still first checked at the storage 
side, and after a cache miss occurs, they are then sent to 
clients. 

Table 2 Access times for different level caches 

 Storage 
cache (us) 

Remote cooperative 
client caches (us) 

Storage 
disk (us) 

Gigabit Ethernet 250 380 9,500 
150 Mb ATM l,050 l,350 10,500 
10 Mb Ethernet 6,900 7,200 16,150 

 

We designed the ASA and FBER algorithms to improve the 
local hit ratios of uCache, but part of the hit ratio increase 
still comes from remote cooperative client caches, so the 
final average response time is sensitive to network latency 
and host processing speed. To study how the network 
environment can influence the final result, we also provide 
average values of Ts, Tr and Td in some slower networks. 
These data are derived from the original study on 
cooperative caching by Dahlin et al. (1994). Although these 
measurements are now a few years old and thus likely to be 
slow when compared to state-of-art equipment, our purpose 
is to show how uCache can tolerate severe environments, 
since it is obvious that uCache works better in high speed 
networks. In Table 2, the response time of Gigabit Ethernet 
comes from our measurements, and others are derived from 
Dahlin et al. (1994). The average response times of the L2 
caches for all of the following simulations are calculated 
from measurements of the Gigabit Ethernet environment, 
except those in Section 6.4, where we intentionally examine 
the sensitivity of uCache to technology changes. 

6 Simulation results 

6.1 Single client 

We use the Cello92 trace as the workload of a single client 
system. Since there is only one client, uCache works the 
same as previous exclusive caching algorithms, except that 
FBER and ASA are used as the local replacement algorithms 
in the L2 cache. 

Figure 8 shows that the uCache always provides the best 
hit ratio among all the algorithms. It provides about a 25% 
higher hit ratio in a 64 MB cache and 15% in a 128 MB 
cache, compared to LRU. When the cache size increases to 
128 MB, the difference is not obvious, because 128 MB is 
large enough to hold most blocks. LRU is the worst one, 
because of its inclusiveness. 2Q provides some gain because 
it evicts cold blocks as soon as possible. uCache and 
exclusive caching provide the best results, since duplicated 
blocks are removed quickly from L2 caches, and the 
aggregate cache space is utilised efficiently. uCache has an 
obvious improvement, even compared to exclusive caching, 
because the FBER algorithm prefers to retain blocks with 
high eviction frequencies, which contribute most of the 
cache hits. The ASA algorithm aggressively shrinks the 
small LRU cache to provide all the cache space to FBER. 

Figure 8 L2 cache hit ratio of single client 
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6.2 Low-correlated traces 

We use the DB2 trace as a multiple-client low-correlated 
workload. Figure 9 shows that uCache provides the best hit 
ratio among all the algorithms. Since no blocks are shared 
among the eight clients, the additional hit ratio for 
cooperative caching is zero. The temporal locality of the 
DB2 workload is very weak, so the LRU and 2Q algorithms 
provide very low cache hit ratios, even when the storage 
cache size increases to 4096 MB. SLRU is much better than 
LRU, but still lags behind exclusive caching and uCache, 
because it is designed to be compatible with high-correlated 
workloads by not completely implementing exclusiveness in 
the L2 cache. The difference between uCache and exclusive 
caching is not obvious, because the highest eviction 
frequency of the DB2 trace is only four, which is not enough 
for FBER to utilise. The ASA algorithm successfully 
allocates all storage cache space to FBER, since almost no 
blocks are reused among different clients. Figure 10 shows 
that the average response time follows the same trend as the 
hit ratio. The biggest improvement from LRU to uCache is 
46%, with a 1024 MB storage cache. 

Figure 9 L2 cache hit ratios of 8 clients (DB2 trace) 

 

Figure 10 L2 cache response time of 8 clients (DB2 trace) 

 

6.3 High-correlated traces 

We use the Cello92 trace and the HTTPD trace as  
multiple-client high-correlated workloads. Figure 11  
shows the hit ratios of the different algorithms under various 
configurations. The uCache always provides the best hit 
ratio among all the algorithms. LRU provides a relatively 
high hit ratio because each block in a LRU cache has a long 
life before it is discarded, and thus has a high possibility  
of being referenced again by different clients with  
high-correlated workloads. The gain of uCache becomes 

smaller as the storage cache grows larger, since a large 
cache size retains a block for a long enough time to be 
accessed by most clients. Exclusive caching suffers serious 
performance degradation, even when compared to LRU, 
because discarding a block immediately after it is referenced 
once causes many cache misses for successive references 
from other clients. We notice that even the storage hit ratios 
of uCache, which does not count the benefits from the 
cooperative client caches, are much higher than those of 
exclusive caching and are very close to the results of the 
three inclusive cache algorithms. The ASA and FBER 
algorithms work perfectly to both increase local hits and 
maintain high cumulative hit ratios. 

Figure 11 L2 cache hit ratio under Cell92/HTTPD traces.  
Hits from cooperative client caches are not included: 
(a) 4 clients under Cello92 trace; (b) 8 clients under 
Cello92 trace; (c) 16 clients under Cello92 trace and 
(d) 7 clients under HTTPD trace 

 
 (a) 

 
 (b) 

 
 (c) 

 
 (d) 
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ASA and FBER balance well between the local storage hit 
ratio and the cumulative hit ratio. Figure 12 compares the 
cumulative and storage hit ratios of LRU, exclusive caching, 
and uCache under various configurations. We intentionally 
change the replacement algorithms for exclusive caching 
and LRU to add cooperative client caches and provide the 
cumulative hit ratios. We have mentioned before that 
entirely exclusive caching in storage with cooperative client 
caches provides the maximum cumulative hit ratio, but very 
low storage hit ratios in high-correlated workloads. When 
compared with exclusive caching, we find that the 
cumulative hit ratio of uCache is almost the same, while the 
local storage hit ratio is much higher. We also find that even 
with cooperative client caches, LRU cannot provide 
satisfactory cumulative cache hits, because most blocks in 
the storage cache and cooperative client caches are the 
same, and aggregate cache space is wasted. With the ASA 
algorithm, uCache provides both satisfactory local hit ratios, 
almost the same as typical inclusive caching, and high 
cumulative hit ratios, very close to the maximum values that 
totally exclusive caching algorithm can reach. 

Figure 12 Cumulative hit ratio comparison under Cello92 
(128 MB storage cache) and HTTPD (64 MB storage 
cache) traces: (a) 4 clients under Cello92 trace;  
(b) 8 clients under Cello92 trace; (c) 16 clients under 
Cello92 trace and (d) 7 clients under HTTPD trace 

 
 (a) 

 
 (b) 

 
 (c) 

Figure 12 Cumulative hit ratio comparison under Cello92 
(128 MB storage cache) and HTTPD (64 MB storage 
cache) traces: (a) 4 clients under Cello92 trace;  
(b) 8 clients under Cello92 trace; (c) 16 clients under 
Cello92 trace and (d) 7 clients under HTTPD trace 
(continued) 

 
 (d) 

Figure 13 shows that the average response time follows the 
same trend as the hit ratio. The biggest improvement is  
53% from LRU to uCache, with a 32 MB storage cache for 
the 7-client HTTPD trace. 

Figure 13 Average response time of L2 cache under Cello92 and 
HTTPD traces: (a) 4 clients under Cello92 trace;  
(b) 8 clients under Cello92 trace; (c) 16 clients under 
Cello92 trace and (d) 7 clients under HTTPD trace 

 
 (a) 

 
 (b) 

 
 (c) 
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Figure 13 Average response time of L2 cache under Cello92 and 
HTTPD traces: (a) 4 clients under Cello92 trace;  
(b) 8 clients under Cello92 trace; (c) 16 clients under 
Cello92 trace and (d) 7 clients under HTTPD trace 
(continued) 

 
 (d) 

Figure 14 uses the Cello92 trace as an example to show the 
source of the gain of uCache. The base segments are the hit 
ratios that a pure exclusive cache can provide. We find that 
ASA and FBER contribute a lot to the increase of the local 
hit ratios. Finally, cooperative client caches provide 
additional cumulative hits. 

Figure 14 Cumulative hit ratio of L2 cache (Cello92 trace) 

 

6.4 Sensitivity 

To study how the performance of uCache is affected  
by different network technologies with high-correlated 
workloads (the gains with single client and low-correlated 
workloads are not from remote cooperative caches),  
we use the parameters collected in Section 4.2 to  
calculate the average response times under various 
environments with the cache hit ratios from the previous 
simulations. 

Figure 15 indicates how the improvement of uCache 
over LRU varies with different network technologies.  
With comprehensive comparisons, we find that although 
uCache provides smaller response times in all three settings, 
the gain decreases when the network speed is slower. 
uCache on Gigabit Ethernet achieves the highest 
improvement of up to 40%, while the improvement in 
10 Mb Ethernet is limited to under 13%. Although this 
result indicates that uCache is sensitive to network speeds, 
current popular networks are fast enough for uCache to 
achieve reasonable speedups. 

Figure 15 uCache vs. LRU under Cello92 trace 

 

7 Related work 

L2 caches have poor hit ratios, as demonstrated in Muntz 
and Honeyman (1992) and Froese and Bunt (1996). Further 
studies show that the poor hit ratio is caused by both weaker 
temporal locality (Bunt et al., 1993; Zhou et al., 2004) and 
duplicated blocks (Wong and Wilkes, 2002). After studying 
the behaviour of NFS servers, Reed and Long (1996) found 
that the LRU algorithm may still exploit temporal locality 
caused by frequent accesses of file system metadata. Many 
new algorithms have been proposed recently to improve 
cumulative hit ratios, such as MQ (Zhou et al., 2004), 
Demotion-based algorithm (Wong and Wilkes, 2002), 
Global L2 buffer cache management (Zhou et al., 2004),  
X-Ray (Bairavasundaram et al., 2004), and client-controlled 
cache replacement (Jiang and Zhang, 2004). Chen et al. 
(2005) classified all those algorithms into two types: 
hierarchy-aware caching, and aggressively-collaborative 
caching, and compared the performance among typical 
algorithms belonging to the two types. Ari et al. (2002) 
proposed ACME to adaptively select the best replacement 
policy for each cache-level to achieve high cumulative hit 
ratios. Our work in multi-level cache hierarchies builds 
upon, but is different from, previous studies because the 
uCache algorithm is adaptive to multiple-client systems, 
with either high-correlated workloads or low-correlated 
workloads. 

Researchers have used metrics such as reuse distance 
(Zhou et al., 2004), inter-reference gap (Phalke and 
Gopinath, 1995), and inter-reference recency (Jiang and 
Zhang, 2002) to analyse access patterns of workloads, but 
none of them studies the characteristics of reference streams 
of L2 caches in exclusive caching. Our study shows  
that the ERG is very large and high eviction frequency 
blocks contribute most to cache hits in exclusive caching. 
Based on our study, we propose a new algorithm, FBER, to 
improve hit ratios for exclusive caching. 

Researchers have considered using cooperative client 
caching to improve cumulative hit ratios in multi-level 
cache hierarchies. Dahlin et al. (1994) proposed four 
representative cooperative caching algorithms and 
demonstrated that N-Chance Forwarding can provide the 
best performance. GMS (Feeley et al., 1995) is more general 
than N-chance in that it is a distributed shared-memory 
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system, for which cooperative caching is only one  
possible use. Sarkar and Hartman (1996) introduced a  
hint-based algorithm to reduce overhead of cooperative 
caches. Our work is related to, but different from, those 
previous algorithms, because we use exclusive caching in 
storage caches to improve hit ratios for low-correlated 
workloads, while using cooperative client caching to cache 
blocks reused frequently among clients in high-correlated 
workloads. 

8 Conclusions 

In this paper, we propose a new unified buffer cache 
management algorithm: uCache, to improve performance of 
L2 caches in multi-level cache hierarchies for multiple 
clients. uCache combines both exclusive caching in storage 
caches to improve hit ratios for low-correlated workloads, 
and cooperative client caching to improve hit ratios for 
high-correlated workloads. 

We have studied the characteristics of reference streams 
of exclusive caching. Our results show that the average 
ERG of exclusive caching with multiple clients is rather 
large, in that it is difficult for a replacement algorithm 
utilising temporal locality of workloads to provide high hit 
ratios. A frequency based algorithm is highly preferred 
because high eviction frequency blocks contribute the most 
to cache hits but cause the fewest cache misses in exclusive 
caching. We propose new local replacement algorithms, 
FBER, and ASA algorithm, to improve the hit ratios of 
exclusive caching. 

We have evaluated our uCache algorithm and other 
typical multi-level caching algorithms using simulations 
under both high-correlated and low-correlated workloads. 
The results show that uCache dramatically increases 
cumulative cache hit ratios over LRU and improves the 
average I/O response time by up to 46% for low-correlated 
workloads and 53% for high-correlated workloads. 

In multiple clients with high-correlated workloads, the 
speedup of uCache is sensitive to network technologies. 
Although slower networks obviously decrease the 
performance of uCache, current popular networks provide 
enough speed for uCache to achieve decent speedups. 
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Notes 
1ERGs that are not powers of two are rounded down to the nearest 
power of two. 

2Eviction frequencies that are not powers of two are rounded down 
to the nearest power of two. 


