
1

Hint-K: An Efficient Multi-level Cache Using
K-step Hints

Chentao Wu, Member, IEEE, Xubin He, Senior Member, IEEE, Qiang Cao, Member, IEEE,
Changsheng Xie, Member, IEEE, and Shenggang Wan

Abstract—I/O performance has been critical for large scale distributed systems. Many approaches, including hint-based multi-level
cache, have been proposed to smooth the gap between different levels. These solutions demote or promote cache blocks based on the
latest history information, which is insufficient for applications where frequent demote and promote operations occur. In this paper, we
propose a novel multi-level buffer cache using K-step hints (Hint-K) to improve the I/O performance of distributed systems. The basic
idea is to promote a block from the lower level cache to the higher level(s) or demote a block vice versa based on the block’s previous
K-step promote or demote operations, which are referred to as K-step hints. If we make an analogy between Hint-K and LRU-K, LRU-K
keeps track of the times of last K references for blocks within a single cache level, while our Hint-K keeps track of the information of the
last K movements (either demote or promote) of blocks among different cache levels. We develop our Hint-K algorithms and design a
mathematical model that can efficiently describe the activeness of any blocks in any cache level. Simulation results show that Hint-K
achieves better performance compared to existing popular multi-level cache schemes such as PROMOTE, DEMOTE, and MQ under
different I/O workloads.

Index Terms—Multi-level cache; hints; demote; promote; I/O performance

F

1 INTRODUCTION

W ITH the rapid growth of Internet service, many
data centers have built large scale distributed

storage systems, where multi-level hierarchical storage
systems are used to satisfy the ever-increasing high
performance I/O demand. In a typical hierarchical struc-
ture, the upper level storage serves as a cache for the
lower level, which forms a distributed multi-level cache
system. This multi-level cache manages the data which
might move among different levels depending on the
workload access patterns. To identify and manage these
data, hints [18], [26] are an effective way to improve the
performance of a storage system.

In early research on cooperative caching, hints [28],
[29] were used to approximate the global view of a
storage system. With the technical development of multi-
level caches, especially the advancement in the exclusive
cache schemes, hints are not only limited to show the
status of global management on data blocks, but also
the dynamic information of a detailed data block in a
storage system. Based on different roles in a multi-level
cache, hints can be classified into three categories:

• C. Wu is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai, P. R. China 200240.
E-mail: wuct@cs.sjtu.edu.cn.

• X. He is with the Department of Electrical and Computer Engineering,
Virginia Commonwealth University, Richmond, VA 23284, USA.
Corresponding author: xhe2@vcu.edu.

• Q. Cao, C. Xie, and S. Wan are with Wuhan National Laboratory for
Optoelectronics, Huazhong University of Science and Technology, Wuhan,
P. R. China 430074.
E-mail: {caoqiang, cs xie}@hust.edu.cn, wanshenggang@gmail.com.

• demote hints: flags to show the evicted data de-
moted from the upper level. Each demote hint
typically costs only a few bits. These hints are
presented in the DEMOTE [30] algorithm and some
other demote-like policies such as EV [4], GL-MQ
[36], X-RAY [1], uCache [25], etc.

• promote hints: flags to show the cache hit data
promoted from the lower level. Promote hints are
first given in the PROMOTE [6] algorithm. In Karma
[34] and MC2 [32], data blocks can be moved to the
upper cache level (closer to the clients) by READ and
READ-SAVE operations, which can be considered as
promote operations.

• application hints: flags to show the data informa-
tion in various applications. Some application hints
are static [15], [20] while the advanced application
hints are dynamic and well defined [21], [33], which
are based on experienced functions in various access
patterns or I/O applications.

To effectively use hints in a multi-level cache, one
challenging issue is how to correctly identify hot or
cold data, and then quickly promote hot data to the
upper level(s) and demote cold data to the lower level(s).
The information from current hints is insufficient to
efficiently predict hot or cold data [30], [6]. Demote hints
carry the history hint information from the upper level,
and promote hints provide the history hint information
from the lower level. Both demote and promote hints
record the latest hint operation, while application hints
are usually application dependent which is difficult to be
generalized. Typically these hints just record a block’s
latest hint information, but miss some important hint
history, which reflects a block’s movement among vari-



2

ous cache levels [30], [36], [1], [6], [34]. For example, as
shown in Figure 2, in a two level cache hierarchy, a block
(A), currently in the first cache level, has dropped from
the first cache level and then come back from the second
cache level multiple times. We define “active data block”
to delegate a cached data block which either is currently
in the cache or was resident in the cache. It means
this block has history hint information (via at least one
demotion or promotion operation). In Figure 2, blocks
A and B are active data blocks. We define “activeness”
to describe the history of demote/promote operations
of an active data block among different cache levels. If
two data blocks have the same activeness for the latest
K steps (latest K demotion/promotion operations), the
more active data block is the one which has longer hint
history. It is clear that the more active data block has
longer cache lifetime and higher access frequency as
shown in Figure 1.

0

15

30

45

60

75

90

105

120

135

150

Blocks with 
less 
demotion(s)/
promotion(s)

Blocks with 
more 
demotion(s)/
promotion(s)

(%
)

Average cache residence time Average access frequency

Fig. 1. Comparison between the blocks with the same
latest step hint in various traces. We select 200 pairs of
sample blocks in each trace and use DEMOTE [30] and
PROMOTE [6] algorithms for comparison. The results of
blocks with less number of demotion/promotion opera-
tions are normalized to 100%. It shows that the blocks
with more demotion/promotion operations are more likely
to have longer cache residence time and higher access
frequency.

According to the above definitions, block A is more
active than block B in Figure 2. Similarly, block C is more
active than block D. However, based on the latest step
hint information given by previous approaches [30], [6],
block A is as active as block B, so are blocks C and D.
Obviously, we have different results on the activeness
of the same blocks, therefore, efficiently charactering
the activeness of these blocks is a problem. On the
other hand, typical hint-based methods treat these data
with demote hints by an MRU list [30], [6], which may
not be suitable in some cases. Following the previous
example, even though block C is more active than block
D, according to the MRU algorithm, C may be evicted
before D from the second cache level because of more
demotions (block C has two demotions while D has only
one demotion). This therefore might neglect the more
active data, decreasing the hit ratio and thus the overall

performance of a multi-level cache system.

Fig. 2. Different K-step hint information among 6 data
blocks.

Another challenging issue is how to give a unified
management on demote and promote hints. Demote
and promote hints are managed separately in previous
research [30], [6], which may bring an incomplete view
on a data and an additional management cost. For
example, in Figure 2, according to the information given
by promote hints, block E is as active as block B. Block
F has the equal activeness as block D based on demote
hints. However if we use a global point of view on
demote and promote hints, obviously, E and F are more
active with higher probability.

To address the above challenges, we propose a new
approach using K-step hints, named Hint-K, to efficiently
demote and promote active data blocks. Hint-K uses
multiple step history hint information to handle data
blocks. If we make an analogy to LRU-K [23], which
keeps track of the times of last K references for blocks
within a single cache level, our Hint-K keeps track of the
information of the last K movements (either demote or
promote operation) of blocks among different cache levels.
Hint-K takes into account the history of the last K
reference hints (demote or promote hints), which are
generally the last K-step hints, K ≥ 1. Specifically, if we



3

keep track of the last two references, it’s referred to as
Hint-2. At the extreme, when K = 1, Hint-1 is equivalent
to PROMOTE algorithm [6].

Our contributions include:
• We present a novel multi-level cache scheme (Hint-

K) using multiple step history hint information to ef-
ficiently promote and demote data among different
levels to achieve high performance, which gives a
unified management on demote and promote hints.

• We develop a model to mathematically describe and
analyze our Hint-K scheme. This model can easily
compare the activeness of data blocks in any cache
level.

• We implement our Hint-K algorithms which show
higher efficiency compared to other popular multi-
level cache algorithms.

The rest of this paper continues as follows: In Section
2 we present the design, model and policies of Hint-K.
In Section 3, we present the simulation results of Hint-K
compared to various multi-level cache approaches. Sec-
tion 4 overviews related work and finally we conclude
the paper in Section 5.

2 DESIGN AND MODELING OF HINT-K
The purpose of our design is to improve the overall
cache performance from the application point of view
by putting more active data closer to the application
which is the upper level in the hierarchical structure.
To achieve this goal, we propose Hint-K, a multi-level
exclusive cache management scheme that makes the
decision whether to promote a data block or demote a
data block based on K-step history information known as
hints. We combine two existing hint methods to achieve
exclusivity: demote and promote hints. Although appli-
cation hints are useful, they depend on specific appli-
cation access patterns. In this paper we focus on more
general demote and promote hints to carry additional
information of data blocks from the upper level(s) or
the lower level(s).

The notation used to describe Hint-K are summarized
in Table 1. Our cache model consists of n levels as shown
in Figure 3, L1, L2, ..., Ln. For a random cache level Li,
demote hints (denoted by Di) are from the next upper
level Li−1 to the current level Li while Pi delegates
promote hints from the next lower level Li+1 to the
current level Li. Data blocks which are more active will
be placed in a higher cache level. Our approach focuses
on read I/O requests and write requests can be handled
by other separate hints as in TQ algorithm [20].

In our current design, each block can be promoted or
demoted by one level in a single transaction. Therefore,
initially the active data blocks will be promoted from
the lowest level (Ln) step by step up to the highest
level (L1). To record the movements of active data blocks
among various cache levels, K-step Hint Values (KHVs,
see detail in Section 2.1) are used to identify the status of
a data block. Based on the all KHVs of a random cache

Fig. 3. There are n
levels in our multi-level
cache model, with one
cache in each level.
Demote hints (Di, 2 ≤
i ≤ n+ 1) and pro-
mote hints (Pi, 1 ≤ i ≤
n) are communicated
among different cache
levels. And four sam-
ple blocks, “α, β, γ and
δ”, which have the cor-
responding hints Pi−1,
Di, Pi and Di+1.

TABLE 1
Parameters in Hint-K

Parameters Description
n number of cache levels

Li (1 ≤ i ≤ n) the ith cache level
(the uppermost is L1 and the lowest is Ln)

Di (2 ≤ i ≤ n+ 1) demote hint in Li cache (from Li−1 to Li)
Pi (1 ≤ i ≤ n) promote hint in Li cache (from Li+1 to Li)
HK
i K-step hint in Li cache

HK
ij (1 ≤ j ≤ K) jth step hint in HK

i (the latest is 1st step
hint and the oldest is Kth step hint)

V Ki (µ)
K-step hint value (KHV) of block µ in Li
(the corresponding K-step hint is HK

i )

V Kij (µ)
jth step hint value (SHV) of block µ in Li
(the corresponding jth step hint is HK

ij )
V Kim the minimum KHV in Li
Aµ activeness of block µ
Sb block size (Bytes)
Si Li cache size

M
total number of cache blocks in multi-level
cache

CK
space overhead ratio caused by Hint-K
algorithm

level, demotion or promotion policies will be applied
when the KHV of a data block is small or large (see
detail in Section 2.2). Once the system warms up, the
more active blocks will be promoted while less active
blocks will be demoted according to the corresponding
demote/promote policies.

Due to the space limit, detailed proofs of the theorems
presented in this section are given in Appendix A. We
also provide two case studies of Hint-K when K is 2 and
3 (Hint-2 and Hint-3) in Appendix B.

2.1 Hint-K Modeling
A K-step hint is shown in Figure 4, for a random data
block, the latest hint is 1st step hint while the oldest



4

hint is Kth step hint. A K-step hint is a sequence which
consists of 1st step, 2nd step, 3rd step, · · · , and Kth step
hints. To show hints for each step, we have the following
definitions and assumptions,

Fig. 4. A K-step hint.

Definition 2.1: For a random block µ in Li, the ac-
tiveness of this block is denoted by Aµ. Activeness
reflects the history of demotion/promotion operations of
an active data block. “>” and “<” are used to describe
“more active” and “less active” between different data
blocks with K-step hints.

Definition 2.2: For a random K-step hint HK
i , we use

HK
ij (1 ≤ j ≤ K) to denote jth step hint in HK

i .
Assumption 2.1: ∀i, 1 ≤ i ≤ n, more active data is put

in higher cache level, which is closer to the application.
Assumption 2.2: ∀i, 1 ≤ i ≤ n, both Di+1 and Pi exist

and are valid. D1 and P0 don’t exist and are invalid.
This is clearly shown in Figure 3 .

Assumption 2.3: According to the recency of hints, the
latest step hint plays the most important role and has
the highest priority to identify a block’s activeness. This
means that recent hints have more weight than older
hints.

Assumption 2.4: ∀i, 1 ≤ i ≤ n, if Pi and Di+1 are valid,
the data block with Pi hint is approximately the same
activeness as Di+1. This is reasonable because we simply
treat the activeness of a promote or demote hint equally
between cache levels Li and Li+1.

In a random cache level Li, there are four types of
1-step hints from the next lower/upper levels to Li or
from Li to these levels: Pi−1, Di, Pi and Di+1. They are
also the fundamental elements of K-step hints (K ≥ 2),
which can be represented by jth step hint in HK

i (1 ≤
j ≤ K). In our following discussion, we use four sample
blocks, “α, β, γ and δ”. They have hints Pi−1, Di, Pi
and Di+1, respectively. To identify the activeness among
these blocks, we have the following lemmas.

Lemma 2.1: ∀i, 1 ≤ i ≤ n+1, if Pi−1, Di, Pi and Di+1

are valid, the data block with Pi−1(Di) hint is more active
than the block with Pi(Di+1) hint.

Proof: Lemma 2.1 can be expressed by these four
sample blocks,

Aα > Aγ , Aβ > Aδ (1)

Based on Assumption 2.1, the data blocks in upper cache
level is more active than those in lower cache level. From
Figure 3, we know that Blocks β and γ are in Li cache
level, δ is in Li+1 while α is in Li−1. Therefore block α
is more active than γ, β is more active than δ.

Lemma 2.2: ∀i, 1 ≤ i ≤ n+1, if Di and Pi are valid, a
data block with Di hint is more active than a block with
Pi.

Proof: Lemma 2.2 can be denoted by blocks β and γ,

Aβ > Aγ (2)

According to Lemma 2.1, blocks β and γ are in Li
cache level now. They are different in history information
denoted by hints: β has been in Li−1 cache level while γ
has been in Li+1 cache level. We know that β has been
more active than γ. Therefore, according to the current
and history status, block β has more potential to be
active than γ.

Lemma 2.3: ∀i, 1 ≤ i ≤ n + 1, if Pi−1 and Di+1 are
valid, a data block with Pi−1 hint is more active than a
block with Di+1.

Proof: Lemma 2.3 can be presented by blocks α and
δ,

Aα > Aδ (3)

Based on Lemma 2.1 and Figure 3, this is true.
To explore the activeness impacted by 1st step, 2nd

step, 3rd step, · · · , or Kth step hints, we use two blocks
(θ and λ): θ with jth step hint while λ with qth step hint.
The corresponding activeness of these two blocks are Aθ
and Aλ. We find that the influence of two step hints are
different and have,

Lemma 2.4: For jth step and qth step hints in HK
i (1 ≤

j, q ≤ K), if j < q then,

Aθ > Aλ (4)

Proof: According to the Assumption 2.3, this is true.

To use K-step hints in a random cache level Li, our
next theorem shows how many types of K-step hints are
available.

Theorem 2.1: There are at most 2K types of K-step
hints in a random cache level Li (1 ≤ i ≤ n).

To identify data blocks with different hints, we use a
number to express K-step hints that easily indicates the
activeness of data blocks. If we use “1” to represent each
demote hint and “0” to represent each promote hint, a block
µ with K-step hint HK

i can be conveniently denoted by
a K-bit binary number, named as K-step Hint Value
(KHV, V Ki (µ)). A K-step hint value is the actual value of
its K-bit binary number, which can also be calculated by
the sum of 1st step, 2nd step, 3rd step, · · · , and Kth step
hint values (the jth Step Hint Value or SHV is V Kij (µ)),



5

V Ki (µ) =

K∑
j=1

2K−j · V Kij (µ) (V Kij (µ) = 0, 1) (5)

In Equation 5, if jth step hint is a demote hint, V Kij (µ)
will be 1; if jth step hint is a promote hint, V Kij (µ) will be
0. We then use KHVs to compare the activeness between
two data blocks and have the following theorem,

Theorem 2.2: For two random Blocks ψ and ω in Li
with KHVs V Ki (ψ) and V Ki (ω), if V Ki (ψ) > V Ki (ω) then,

Aψ > Aω (6)

Using Theorem 2.2, we can easily identify the most
active blocks in a random level Li for promotion and the
least active blocks for demotion by checking the KHVs.

2.2 Hint-K Algorithms

For each level in our multi-level cache design, we add K-
step hints into single level cache algorithms, which can
be any existing cache algorithms. For testing purpose,
we use Hint-K algorithms to describe the interaction
among cache levels while using LRU [5] to characterize
a block within a specific level. According to the previous
definitions and theorems, in a random cache level Li, we
develop Hint-K algorithms, which have the following
process on KHVs and two policies to decide whether a
data block should be demoted or promoted.

2.2.1 Initialization and Update of KHVs

We use the following rules to initialize and update KHVs
in the Hint-K algorithms as shown in Algorithm 1.

Algorithm 1: Initialization and Update of KHVs
Initialization of KHVs:
if block in storage devices then

the KHV will be set to 00 . . . 0 (all SHVs are zero).
end
if block in cache then

the KHV will be calculated by its K-step hint.
if jth step hint in K-step hint is “NULL” (1 ≤ j ≤ K)
then

the corresponding SHV will be set to 0.
end

end
Update of KHVs:
if original KHV exists && block is demoted or promoted to
another level then

move original KHV one digital to the right and the
original KHV will be changed to a (K-1)-step hint
value;
according to the latest step hint and calculate new
KHV based on Equation 8.

end

2.2.2 Demotion Policy

Our demotion policy is described in four steps as shown
in Algorithm 2, where the lowest active data block in
Li is demoted. We give an example of 3-step hints to
illustrate our demotion policy as shown in Figure 5. In
this example, some blocks (a, b, c, d, e, f, etc.) are in
the LRU list. According to our demotion policy, we first
get the minimum KHV (V 3

im = 000). Then we find the
block(s) with KHV V 3

i (ε) = 000. These blocks are: c, d,
e, etc., where c is closest to the bottom of LRU list. So
block c is demoted to the level Li+1 and placed to the
bottom of the LRU list at the level Li+1, and its KHV is
updated to 100.

Algorithm 2: Demotion Policy in Hint-K

Step 1: Get the minimum KHV in Li (denoted by V Kim);
Step 2: Find block(s) (for example, ε) with KHV is V Ki (ε),
which satisfies V Ki (ε) = V Kim;
Step 3: From the block(s) in Step 2, choose the one which
is closest to the bottom of LRU list. The selected block
will be demoted to the level Li+1;
Step 4: Demote the selected block to the bottom of the
LRU list in Li+1 and update its KHV.

Fig. 5. Demotion Policy Example: Blocks with 3-step hints
in Li.

2.2.3 Promotion Policy

When a data block in Li becomes more active than the
least active block in Li−1, it should be promoted. For
example, according to Lemma 2.1 and Assumption 2.4,
a block with K-step hints HK

i in Li has probability to
be more active than another block with HK

i−1 in Li−1.
We summarize the promotion condition of a data block
in Li (assuming that a random block (π) satisfies the



6

promotion condition and its K-step hint value is V Ki (π))
in the theorem below.

Theorem 2.3: A strict condition of block π in cache
level Li to be promoted to Li−1 is,

2K−1 + V K(i−1)m ≤ V
K
i (π) ≤ 2K − 1 (7)

For a read request to a random block (say σ in Li), our
promotion policy is described in the following four steps
as shown in Algorithm 3. To illustrate our promotion
policy, we use a 3-step hint example shown in Figure
6. In this example, blocks g, h, i, j, k, l · · · are in Li−1

while blocks a, b, c, d, e, f · · · are in cache level Li. Li
and Li−1 are full and there is a read request to block
c. Once this read request is received by Li−1 which
cannot satisfy the request since block c is not there.
Therefore the request is forwarded to the lower level
Li. Combined with this read request, Li−1 also sends its
minimum KHV (V 3

(i−1)m) to Li. When Li locates block
c where a cache hit occurs, according to our promotion
policy, Li should then justify the relationship between
the KHV of block c and “2K−1+V K(i−1)m”. In this example
V 3
i (c) = 101 while 23−1 + V 3

(i−1)m = 100 and block c
satisfies the promotion condition (101 > 100). Then a
read reply is sent and block c is promoted from Li to
Li−1. In Li−1 the read reply is forwarded to the upper
level until it reaches the client which initiates this read
request. Because Li−1 is full, block h is evicted according
to our demotion policy and gives its place in the LRU
list to block c. Finally the KHV of block c in Li−1 is
updated. The demoted block h is inserted to the LRU
list in Li and its KHV is also updated.

Algorithm 3: Promotion Policy in Hint-K
A read request to a random block σ in Li.
Step 1: If σ is not found in cache (from L1 to Li−1, we
use Li−1 for example), we calculate the minimum KHV in
this level (V K(i−1)m) and forward the read request along
with this minimum KHV to the next lower level (Li);
Step 2: Until σ is found in Li which is a cache hit, we
calculate the promotion condition of the block(s) with
K-step hints in Li (for example, a random block (π)
satisfies the promotion condition and its KHV is V Ki (π)):
2K−1 + V K(i−1)m ≤ Vi(π) ≤ 2K − 1;
Step 3: If σ meets the promotion condition, it will be
promoted from Li to Li−1 and the read request is
satisfied;
Step 4: If σ is promoted, it will be placed in Li−1 and its
KHV will be updated. We forward the read reply to the
upper cache level. If Li−1 is full, another block will be
demoted to Li to make room for σ. The demoted block
will be handled by the above demotion policy.

3 SIMULATION RESULTS AND ANALYSIS

To verify the effectiveness of Hint-K, we use trace
driven simulation to evaluate the Hint-K algorithms
and compare them with three popular multi-level cache
approaches: MQ [37], DEMOTE [30], PROMOTE [6] under
different workloads.

Fig. 6. Promotion Policy: Blocks with 3-step hints in Li−1

and Li.

3.1 Simulation Methodology

The simulator we used is a modified fscachesim which
has been widely used by researchers [30]. Within each
cache level, LRU is used. The experiment results using
Hint-K, MQ, DEMOTE, PROMOTE are denoted by Hint-K
(K = 2, 3, ...), MQ, DEMOTE, PROMOTE, respectively.

Five different traces are used in our simulation and
their statistics are summarized in Table 2:

(1) Auspex is an NFS file system trace and collected by
UC Berkeley. This trace has been used to simulate many
multi-level cache algorithms [37], [36], [4].

(2) Financial1 and Financial2 are collected in OLTP
applications and have been used in the PROMOTE al-
gorithms [6].

(3) Cello99 is collected by HP corporation and has been
used in the DEMOTE approach [30]. Because Cello99 is
huge, we randomly choose two days of traces.

(4) DB2 is generated in DB2 applications and has been
presented in many cache algorithms [30], [15], [25], [20].

(5) HTTPD is collected from web services and has been
appeared in many previous literatures [30], [15], [25].

Our Hint-K approach targets the applications where
many blocks are active among different cache levels,
therefore we set the warm-up time to be long enough in
fscachesim to make sure enough data blocks have been
flooded to all cache levels.

Unless otherwise mentioned, the following default
parameters are used: two cache levels (n = 2), 4KB
block size (Sb = 4KB). The default ratio of the cache
size between an upper cache level and the next lower
level is 1 : 4 (Si−1 : Si = 1 : 4). The aggregate cache size



7

0

10

20

30

40

50

60

70

80

90

100

5 10 20 40 80 160 320

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

O
pe

ra
tio

n 
nu

m
be

rs
 (
%
)

(a) Auspex

0

10

20

30

40

50

60

70

80

90

100

640 1280 2560 5120 10240 20480 40960

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

O
pe

ra
tio

n 
nu

m
be

rs
 (
%
)

(b) Cello99

0

10

20

30

40

50

60

70

80

90

100

5 10 20 40 80 160 320

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

O
pe

ra
tio

n 
nu

m
be

rs
 (
%
)

(c) Financial1

0

10

20

30

40

50

60

70

80

90

100

0.5 1 2 4 8 16 32

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Block Size (KB)

O
pe

ra
tio

n 
nu

m
be

rs
 (
%
)

(d) Financial2

0

10

20

30

40

50

60

70

80

90

100

0.5 1 2 4 8 16 32

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Block Size (KB)

O
pe

ra
tio

n 
nu

m
be

rs
 (
%
)

(e) DB2

0

10

20

30

40

50

60

70

80

90

100

0.5 1 2 4 8 16 32

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Block Size (KB)

O
pe

ra
tio

n 
nu

m
be

rs
 (
%
)

(f) HTTPD

Fig. 7. Operation number results under different traces (Auspex, Cello99 and Financial1 are with different aggregate
cache sizes

∑
Si, Financial2, DB2 and HTTPD are with different block sizes Sb).

0

10

20

30

40

50

60

70

80

90

100

10 20 40 80 160 320 640

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
gg
re
ga
te

hi
t 
ra
tio

 (
%
)

(a) Auspex (block size Sb = 1KB)

0

10

20

30

40

50

60

70

80

90

100

640 1280 2560 5120 10240 20480 40960

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
gg
re
ga
te

hi
t 
ra
tio

 (
%
)

(b) Cello99

0

10

20

30

40

50

60

70

80

90

100

5 10 20 40 80 160 320

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
gg
re
ga
te

hi
t 
ra
tio

 (
%
)

(c) Financial1

0

10

20

30

40

50

60

70

80

90

100

2.625 5.25 10.5 21 42 84 168

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
gg
re
ga
te

hi
t 
ra
tio

 (
%
)

(d) Financial2

0

10

20

30

40

50

60

70

80

90

100

1280 1920 2560 3200 3840 4480 5120

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
gg
re
ga
te

hi
t 
ra
tio

 (
%
)

(e) DB2

0

10

20

30

40

50

60

70

80

90

100

5.25 10.5 21 42 84 168 336

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
gg
re
ga
te

hi
t 
ra
tio

 (
%
)

(f) HTTPD

Fig. 8. Aggregate hit ratio results under different traces with various aggregate cache sizes
∑
Si (Auspex, Cello99,

Financial1 and DB2 are in two level cache hierarchy with S1 : S2 = 1 : 4, Financial2 and HTTPD are in a three level
cache hierarchy with S1 : S2 : S3 = 1 : 4 : 16).

is sum of all cache levels. Write requests are ignored in
our simulation. Based on the default settings of fscachesim
[30], the average access times of L1 cache, L2 cache and
disks are 0.2ms, 2ms and 10ms, respectively.

Due to the space limit, further discussion of Hint-
K to show its effectiveness under various scenarios is
provided in Appendix C.

3.2 Results and Analysis
3.2.1 Number of Demote/Promote operations
Our first experiment is to study whether Hint-K helps
avoid unnecessary cache block movements. We measure

the number of demote and promote operations under
different workloads as shown in Figure 7. The numbers
are relative to the baseline, which is the leftmost bar. The
number of operations decreases with increased cache
size because the possibility of replacement of a block is
decreased when the cache becomes larger. The number
of operations also decreases with increased block size
when the number of blocks is reduced. We also observe
that Hint-K reduces up to 12.3% of Demote/Promote
operations compared to the PROMOTE algorithm. This
is useful because it reduces the unnecessary movement
of blocks between different cache levels by keeping the



8

0

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

8.1

9

10 20 40 80 160 320 640

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
ve
ra
ge

re
sp
on

se
 t
im

e 
(m

s)

(a) Auspex (block size Sb = 1KB)

0

0.7

1.4

2.1

2.8

3.5

4.2

4.9

5.6

6.3

7

640 1280 2560 5120 102402048040960

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
ve
ra
ge

re
sp
on

se
 t
im

e 
(m

s)

(b) Cello99

0

1

2

3

4

5

6

7

8

9

10

5 10 20 40 80 160 320

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
ve
ra
ge

re
sp
on

se
 t
im

e 
(m

s)

(c) Financial1

0

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

8.1

9

2.625 5.25 10.5 21 42 84 168

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
ve
ra
ge

re
sp
on

se
 t
im

e 
(m

s)

(d) Financial2

0

1

2

3

4

5

6

7

8

9

10

1280 1920 2560 3200 3840 4480 5120

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
ve
ra
ge

re
sp
on

se
 t
im

e 
(m

s)

(e) DB2

0

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

7.2

8

5.25 10.5 21 42 84 168 336

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
ve
ra
ge

re
sp
on

se
 t
im

e 
(m

s)

(f) HTTPD

Fig. 10. Average response time results under different traces with various aggregate cache sizes
∑
Si (Auspex,

Cello99, Financial1 and DB2 are in two level cache hierarchy with S1 : S2 = 1 : 4, Financial2 and HTTPD are in a
three level cache hierarchy with S1 : S2 : S3 = 1 : 4 : 16).

TABLE 2
Summary of Traces

Trace Year Data Set Clients Length I/Os
(millions)

Auspex 1993 − 236 7 days 2.6
Financial1 − 17.2GB − 12.1 hours 5.3
Financial2 − 8.4GB − 11.4 hours 3.7

Cello99 1999 300GB 1 2 days 61.7
per day

DB2 − 5.2GB 8 2.2 hours 3.7
HTTPD 1995 0.5GB 7 24 hours 1.1

data at the most proper level. For smaller cache sizes, we
have also noticed slight improvement when K increases,
but that gain diminishes when cache becomes larger. We
have observed similar trends under other workloads and
in three level cache hierarchy as shown in Figure 8(d).

3.2.2 Aggregate hit ratio of different multi-level
cache schemes
Next, we evaluate the aggregate hit ratio of different
multi-level cache schemes, and these results are shown
in Figure 8. We can notice some improvement when K
increases where more information is collected to decide
whether to demote/promote a block (up to 5.5% in
hit ratio compared to PROMOTE), the overall impact

0

10

20

30

40

50

60

70

Level 3

Level 2

Level 1H
it
 r
at
io
 (%

)

Aggreagate Cache Size = 84 MB Aggreagate Cache Size = 168 MB

Fig. 9. Hit ratio breakdown results under Financial2 trace
in a three level cache hierarchy (S1 : S2 : S3 = 1 : 4 : 16).

of K seems to be marginal, which implies more room
for further improvement. It’s clear that Hint-2, Hint-
3 and Hint-4 achieve higher hit ratio compared to its
peers. And we can see that in some specific applications
like DB2 (in Figure 10(e)), exclusive caching methods
have obvious advantages compared to inclusive caching
methods as MQ. The simulation results on hit ratio in
each level can be found in Figure 9. From these results,



9

0
1
2
3
4
5
6
7
8
9

10 L2 Hit Time

L3 Hit Time

Miss Penalty

Demotion and 
Promotion 
CostA

ve
ra
ge

 b
lo
ck

ac
ce
ss
 t
im

e 
(m

s) Aggreagate Cache Size 
2.225 MB

Aggreagate Cache Size
5.25 MB

Fig. 11. Average access time breakdown results under
Financial2 trace in a three level cache hierarchy (S1 : S2 :
S3 = 1 : 4 : 16).

Hint-K achieve higher aggregate hit ratios because of it
plays well in L1 and L2 caches.

3.2.3 Average response time of different multi-level
cache schemes
Our last set of experiments are to compare Hint-K with
MQ, DEMOTE, and PROMOTE in terms of response time
under different workloads, which are shown in Figure
10. Compared to MQ, DEMOTE and PROMOTE, Hint-K
(K ≥ 2) have lower response time. For example, Hint-2
reduces the response time by up to 27.6% compared to
MQ in Figure 10(e) and by approximately 19.3% when
cache level increases in Figure 10(d). To analyze the aver-
age access time and the demote/promote operation time,
we conduct simulations on Financial2 trace as shown in
Figure 11. We find that our Hint-K scheme can decrease
the miss penalty and keep low overhead (the overhead
is discussed in detail in Appendix C3) as DEMOTE and
PROMOTE algorithms.

From Figure 10(d), Hint-2 achieves better performance
than Hint-3 and Hint-4. It is because that Hint-2 has
lower demotion/promotion cost as shown in Figure 11.

Overall, our Hint-K algorithms show promise to
achieve better performance compared to other typical
cache schemes. It is a simple and efficient approach to
handle demote and promote hints. When more hint in-
formation is used, a better decision can be made whether
to demote or promote a block.

4 RELATED WORK

Many different cache schemes have been proposed over
the past several decades, which can be classified into two
main categories: single level cache and multi-level cache.

4.1 Single level cache
LRU [5] is widely used in buffer cache management.
Since the 1990s, many LRU variants aim to improve
the performance of single level cache. LRU-K [23] keeps
track of the times of the last K references to popu-
lar pages, adapts in real time to the changing access

TABLE 3
Different Policies in Multi-level Cache Design

Multi-level Cache Application Hints orCache Level E1 D2 P 3
Application-based PoliciesAlgorithms

MQ 2nd level × × × access-based placement
DEMOTE 2nd level

√ √
× ∗

EV 2nd level
√ √

× eviction-based placement

GL-MQ 2nd level
√ √

× access-based and eviction-
based placement

ULC all levels
√ √

× application controlled
hints (RETRIEVE)

X-RAY 2nd level
√ √

× ∗

uCache all levels ×
√

× eviction-reference
placement

TQ 2nd level
√ √

× write hints (SYNCH,
REPLACE and RECOV)

Karma all levels
√ √

∗ application hints
PROMOTE all levels

√
×

√
T2 hint in PROMOTE-ARC

MC2 all levels
√ √

∗ approximate application
hints

CLIC 2nd level
√

∗ ∗ dynamic application hints
Hint-K all levels

√ √ √
∗

Notes:
E1: Exclusive Caching.
D2: Demote Hints or Demote-like Policies.
P 3: Promote Hints.
∗: not discussed but may be supported if needed.
all levels: at least perform well in the 1st level and the 2nd level.

patterns, and performs better than conventional buffer
cache algorithm. The optimality proof of LRU-K was
given in the later research [24]. Due to page limit, we
only list some famous LRU-based algorithms: such as
FBR [27], 2Q [16], UBM [17], LRFU [19], LIRS [14], ARC
[22], CAR [2], PCC [11], SARC [9], AMP [35], DULO [13],
CLOCK-Pro [12], WOW [10], RACE [38], STOW [8], etc.

4.2 Multi-level cache

Quite a few multi-level cache algorithms emerged to
improve the aggregate performance of distributed sys-
tems as summarized in Table 3, which also shows the
difference between Hint-K and other solutions. Detailed
background review on multi-level cache is provided in
Appendix D.

5 CONCLUSION

In this paper we present a new multi-level cache man-
agement scheme, Hint-K, to keep track of last K-step
history information about the movement of a data block
among multiple cache levels. The activeness of a block
is determined by the frequency of the demote/promote
operations of a block as well as the cache level. Hint-
K promotes active data to the upper cache level while
demotes cold data to the lower level more efficiently. A
mathematical model is developed to easily identify the
activeness of blocks. The simulation results show that
Hint-K achieves better performance compared to MQ,
DEMOTE and PROMOTE algorithms under different I/O
workloads.



10

ACKNOWLEDGMENTS

A preliminary version of this work was presented at
the 39th International Conference on Parallel Processing
(ICPP 2010) [31] and we have made substantial changes
in this manuscript. This research is partially sponsored
by the National Basic Research 973 Program of China
under Grant No. 2011CB302303, the National Natural
Science Foundation of China under Grant No. 60933002,
the Innovative Foundation of Wuhan National Labora-
tory for Optoelectronics, and the U.S. National Science
Foundation (NSF) Grants CNS-1218960, CCF-1102605,
and CCF-1102624. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the
views of the funding agencies.

REFERENCES

[1] L. Bairavasundaram, M. Sivathanu, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. X-RAY: A non-invasive exclusive caching
mechanism for RAIDs. In Proc. of the 31th Annual Int’l Symp.
on Computer Architecture, Munich, Germany, June 2004.

[2] S. Bansal and D. Modha. CAR: Clock with adaptive replacement.
In Proc. of the 3rd USENIX Conf. on File and Storage Technologies,
San Franciso, CA, March 2004.

[3] Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and B. Schiefer. Empirical
evaluation of multi-level buffer cache collaboration for storage
systems. In Proc. of the ACM SIGMETRICS Int’l Conf. on Measure-
ment and Modeling of Computer Sys., Banff, Canada, June 2005.

[4] Z. Chen, Y. Zhou, and K. Li. Eviction based cache placement for
storage caches. In Proc. of the 2003 USENIX Annual Technical Conf.,
San Antonio, TX, June 2003.

[5] P. Denning. The working set model for program behavior.
Communications of the ACM, 11(5):323–333, 1968.

[6] B. Gill. On multi-level exclusive caching: Offline optimality
and why promotions are better than demotions. In Proc. of the
6th USENIX Conf. on File and Storage Technologies, San Jose, CA,
February 2008.

[7] B. Gill. Systems and methods for multi-level exclusive caching
using hints. US Patent No. 7761664 B2, July 2010.

[8] B. Gill, M. Ko, B. Debnath, and W. Belluomini. STOW: A spatially
and temporally optimized write caching algorithm. In Proc. of the
2009 USENIX Annual Technical Conf., San Diego, CA, June 2009.

[9] B. Gill and D. Modha. SARC: Sequential prefetching in adaptive
replacement cache. In Proc. of the 2005 USENIX Annual Technical
Conf., Anaheim, CA, April 2005.

[10] B. Gill and D. Modha. WOW: Wise ordering for writes –
combining spatial and temporal locality in non-volatile caches.
In Proc. of the 4th USENIX Conf. on File and Storage Technologies,
San Franciso, CA, December 2005.

[11] C. Gniady, A. Butt, and Y. Hu. Program-Counter-Based pattern
classification in buffer caching. In Proc. of the 6th USENIX Symp. on
Operating Systems Design and Implementation, San Francisco, CA,
December 2004.

[12] S. Jiang, F. Chen, and X. Zhang. CLOCK-Pro: An effective
improvement of the CLOCK replacement. In Proc. of the 2005
USENIX Annual Technical Conf., Anaheim, CA, April 2005.

[13] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. DULO:
An effective buffer cache management scheme to exploit both
temporal and spatial locality. In Proc. of the 4th USENIX Conf.
on File and Storage Technologies, San Franciso, CA, December 2005.

[14] S. Jiang and X. Zhang. LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance. In Proc. of the ACM SIGMETRICS Int’l Conf. on Measure-
ment and Modeling of Computer Systems, Marina Del Rey, CA, June
2002.

[15] S. Jiang and X. Zhang. ULC: A file block placement and replace-
ment protocol to effectively exploit hierarchical locality in multi-
level buffer caches. In Proc. of the 24th Int’l Conf. on Distributed
Computing Systems, Tokyo, Japan, March 2004.

[16] T. Johnson and D. Shasha. 2Q: A low overhead high performance
buffer management replacement algorithm. In Proc. of the 20th Int’l
Conf. on Very Large Databases, Santiago, Chile, September 1994.

[17] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim. A Low-
Overhead High-Performance unified buffer management scheme
that exploits sequential and looping references. In Proc. of the 4th
USENIX Symp. on Operating Systems Design and Implementation,
San Diego, CA, October 2000.

[18] B. Lampson. Hints for computer system design. In Proc. of the 9th
ACM Symp. on Operating System Principles, Bretton Woods, NH,
October 1983.

[19] D. Lee, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim. LRFU:
A spectrum of policies that subsumes the least recently used and
least frequently used polices. IEEE Transactions on Computers,
50(12):1352–1361, 2001.

[20] X. Li, A. Aboulnaga, K. Salem, A. Sachedina, and S. Gao. Second-
tier cache management using write hints. In Proc. of the 4th
USENIX Conf. on File and Storage Technologies, San Francisco, CA,
December 2005.

[21] X. Liu, A. Aboulnaga, K. Salem, and X. Li. CLIC: Client-informed
caching for storage servers. In Proc. of the 7th USENIX Conf. on
File and Storage Technologies, San Francisco, CA, February 2009.

[22] N. Megiddo and D. Modha. ARC: A self-tuning, low overhead
replacement cache. In Proc. of the 2nd USENIX Conf. on File and
Storage Technologies, San Franciso, CA, March 2003.

[23] E. O’Neil, P. O’Neil, and G. Weikum. The LRU-K page replace-
ment algorithm for database disk buffering. In Proc. of the ACM
SIGMOD Int’l Conf. on Management of Data, Washington, D.C.,
May 1993.

[24] E. O’Neil, P. O’Neil, and G. Weikum. An optimality proof of the
LRU-K page replacement algorithm. Journal of the ACM, 46(1):92–
112, 1999.

[25] L. Ou, X. He, M. Kosa, and S. Scott. A unified multiple-level
cache for high performance storage systems. In Proc. of the 13th
IEEE Int’l Symp. on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, Atlanta, GA, September 2005.

[26] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka.
Informed prefetching and caching. In Proc. of the 15th ACM Symp.
on Operating System Principles, Cooper Mountain, CO, December
1995.

[27] J. Robinson and M. Devarakonda. Data cache management using
frequency-based replacement. In Proc. of the ACM SIGMETRICS
Conf. on Measurement and Modeling of Computer Sys., Boulder, CO,
May 1990.

[28] P. Sarkar and J. Hartman. Efficient cooperative caching using
hints. In Proc. of the 2nd USENIX Symp. on Operating Systems
Design and Implementation, Seattle, WA, October 1996.

[29] P. Sarkar and J. Hartman. Hint-based cooperative caching. ACM
Transactions on Computer Systems, 18(4):387–419, 2000.

[30] T. Wong and J. Wilkes. My cache or yours? Making storage more
exclusive. In Proc. of the 2002 USENIX Annual Technical Conf.,
Monterey, CA, June 2002.

[31] C. Wu, X. He, Q. Cao, and C. Xie. Hint-K: An efficient multi-level
cache using k-step hints. In Proc. of the 39th Int’l Conf. on Parallel
Processing, San Diego, CA, September 2010.

[32] G. Yadgar, M. Factor, K. Li, and A. Schuster. MC2: Multiple clients
on a multilevel cache. In Proc. of the 28th Int’l Conf. on Distributed
Computing Systems, Beijing, China, June 2008.

[33] G. Yadgar, M. Factor, K. Li, and A. Schuster. Management of
multilevel, multiclient cache hierarchies with application hints.
ACM Transactions on Computer Systems, 29(2):Article 5, 2011.

[34] G. Yadgar, M. Factor, and A. Schuster. Karma: Know-it-all
replacement for a multilevel cache. In Proc. of the 5th USENIX
Conf. on File and Storage Technologies, San Jose, CA, February 2007.

[35] F. Zhou, B. Behren, and E. Brewer. AMP: Program context specific
buffer caching. In Proc. of the 2005 USENIX Annual Technical Conf.,
Anaheim, CA, April 2005.

[36] Y. Zhou, Z. Chen, and K. Li. Second-level buffer cache man-
agement. IEEE Transactions on Parallel and Distributed Systems,
15(6):505–519, 2004.

[37] Y. Zhou, J. Philbin, and K. Li. The multi-queue replacement
algorithm for second level buffer caches. In Proc. of the 2001
USENIX Annual Technical Conf., Boston, MA, June 2001.

[38] Y. Zhu and H. Jiang. RACE: A robust adaptive caching strategy
for buffer cache. IEEE Transactions on Computers, 57(1):25–40, 2007.



11

Chentao Wu received the PhD degree in elec-
trical and computer engineering from Virginia
Commonwealth University (VCU), USA, in 2012.
Prior to that, he received the PhD degree in com-
puter architecture in 2010, ME degree in soft-
ware engineering in 2006, and the BE degree
in computer science and technology in 2004,
all from Huazhong University of Science and
Technology (HUST), China. He is currently an
assistant professor in the Department of Com-
puter Science and Engineering at Shanghai Jiao

Tong University (SJTU), China. His research interests include computer
architecture and data storage systems. He is a member of the IEEE and
China Computer Federation (CCF).

Xubin He received the PhD degree in electrical
engineering from University of Rhode Island,
USA, in 2002 and both the BS and MS degrees
in computer science from Huazhong University
of Science and Technology, China, in 1995 and
1997, respectively. He is currently an asso-
ciate professor in the Department of Electrical
and Computer Engineering at Virginia Common-
wealth University. His research interests include
computer architecture, storage systems, virtu-
alization, and high availability computing. He

received the Ralph E. Powe Junior Faculty Enhancement Award in 2004
and the Sigma Xi Research Award (TTU Chapter) in 2005 and 2010.
He is a senior member of the IEEE, a member of the IEEE Computer
Society, ACM, USENIX, and Sigma Xi.

Qiang Cao received the PhD degree in com-
puter architecture and MS degree in computer
technology both from Huazhong University of
Science and Technology, China, in 2003 and
2000, and BS degree in applied physics from
Nanjing University, China, in 1997. He is cur-
rently a professor at Huazhong University of
Science and Technology. His research interests
include computer architecture, large scale stor-
age systems, and performance evaluation on
computer systems. He is a senior member of

China Computer Federation (CCF) and a member of the IEEE.

Changsheng Xie received the BS and MS de-
grees in computer science both from Huazhong
University of Science and Technology (HUST),
China, in 1982 and 1988, respectively. He is
currently a professor in the Department of Com-
puter Engineering at HUST. He is also the di-
rector of the Data Storage Systems Laboratory
of HUST and the deputy director of the Wuhan
National Laboratory for Optoelectronics. His re-
search interests include computer architecture,
disk I/O system, networked data storage system

and digital media technology. He is the vice chair of the expert commit-
tee of Storage Networking Industry Association (SNIA), China.

Shenggang Wan received his PhD and BS de-
grees in computer science and technology in
2010 and 2003, the ME degree in software en-
gineering in 2005, all from Huazhong University
of Science and Technology (HUST), China. He
worked one year as a postdoc at Virginia Com-
monwealth University in 2012. He is currently a
post doctoral researcher at HUST. His research
interests include dependable storage systems
and coding theory.



12

APPENDIX

A. PROOF OF THEOREMS IN SECTION 2
Here, we give the detailed proofs of theorems in Section
2.

A1. Proof of Theorem 2.1

Proof: For jth step hint in a random K-step hint HK
i ,

there are two possibilities for a data block, demoted from
upper cache level or promoted from lower cache level,
so the type of K-step hints is no more than 2K .

A2. Proof of Theorem 2.2

Proof: (Mathematical Induction)
(1) For K = 1, there are two possible 1-step hints in

Li: Di and Pi, the corresponding KHVs are 1 and 0.
According to Lemma 2.2 this theorem is true.

(2) For K = 2, there are four possible 2-step hints
in Li: DiDi−1, DiPi−1, PiDi+1 and PiPi+1 (Assuming
these four corresponding blocks are υ, ρ, ς and τ ). The
corresponding KHVs are: V 2

i (υ) = 11, V 2
i (ρ) = 10,

V 2
i (ς) = 01 and V 2

i (τ) = 00. According to Lemmas 2.2,
2.3 and 2.4, we have,

Aυ > Aρ > Aς > Aτ (8)

Therefore, this theorem is also correct.
(3) Assume that Theorem 2.2 is correct when K = n−1

and there are four blocks: two blocks (υ and ρ) with
(K-1)-step hints in Li−1 which will be demoted to Li,
and the other two blocks (ς and τ ) with (K-1)-step hints
in Li+1 which will be promoted to Li. Based on the
assumption, if V K−1

i−1 (υ) > V K−1
i−1 (ρ), so Aυ > Aρ; if

V K−1
i+1 (ς) > V K−1

i+1 (τ), so Aς > Aτ . As shown in Figure
4, a random block (η) with K-step hint HK

i , can be
considered as another data block with (K-1)-step hint
with 1st step hint is Di or Pi. So for K = n, according to
Equation 5, V Ki (η) can be calculated by (K-1)-step hint
value,

V Ki (η) =

{
2K−1 + V K−1

i−1 (η) (HK−1
i1 = Di)

V K−1
i+1 (η) (HK−1

i1 = Pi)
(9)

According to Equation 9, Lemma 2.2 and Lemma 2.4, to
compare the activeness among blocks υ, ρ, ς and τ , we
have,

2n−1 + V K−1
i−1 (υ) > 2n−1 + V K−1

i−1 (ρ)

> V K−1
i+1 (ς) > V K−1

i+1 (τ)
⇒ V Ki (υ) > V Ki (ρ) > V Ki (ς) > V Ki (τ)
⇒ Aυ > Aρ > Aς > Aτ

(10)

Therefore this theorem is also correct when K = n.

A3. Proof of Theorem 2.3

Proof: Consider the 1st step hint value of the least
active block in Li−1 (assuming this block is ϕ).

(1) If the 1st step hint value of ϕ is “1” (V K(i−1)1 = 1),
this implies its 1st step hint is Di−1. In this situation,
2K−1 +V K(i−1)m > 2K − 1, which means no block in Li is
more active than the least active block in Li−1.

(2) If the 1st step hint value of ϕ is “0” (V K(i−1)1 = 0),
this implies its 1st step hint is Pi−1. In this situation,
2K−1 + V K(i−1)m ≤ 2K − 1. According to Assumption 2.4,
we can find block(s) with 1st step hint Di−1 in Li, which
has the possibility to be more active than the blocks in
upper cache level. Based on Equation 9,

V Ki (π) = 2K−1 + V K−1
i−1 (π)

V K(i−1)m = V K−1
i−1 (ϕ)

(11)

We consider the block status before 1st step hint. Block
π has been in Li−1 before 1st step hint while block ϕ is
in Li before 1st step hint. If V K−1

i−1 (π) = V K−1
i−1 (ϕ), this

means V Ki (π) = V K(i−1)m + 2K−1 based on Equation 11,
so π is more active than ϕ (Aπ > Aϕ). Therefore if a
block in Li is to be promoted, it must satisfy V Ki (π) ≥
V K(i−1)m + 2K−1.

B. CASE STUDIES

In this section, we apply our Hint-K to two specific
scenarios where K is 2 and 3, which means we look
back 2 steps (Hint-2) or 3 steps (Hint-3) when we make
decisions to promote or demote a block.

B1. 2-step Hints (Hint-2)

Figure 12 describes both Hint-2 and Hint-3, where 2-
step and 3-step hints and their mathematic expressions
are illustrated. Due to the page limit, here we only
discuss Hint-2 in more detail. Hint-2 uses 2-step history
hint information to determine the demotion/promotion
of a block. In Li cache, there are four possible 2-step
hints: DiDi−1, DiPi−1, PiDi+1 and PiPi+1, which is a
demonstration for Theorem 2.1 in Section 2. The KHVs of
them are 11, 10, 01 and 00. From Equation 8 in the proof
of Theorem 2.2, the most active block has hint DiDi−1

while the least active block has PiPi+1, which can be
easily detected by comparing their corresponding KHVs
(11 > 00).

In Theorem 2.2 we don’t discuss the effects of the
number of cache levels (denoted by “n”). If n is not large
enough or i is very small/large (e.g., i = 1 or i = n), we
should consider some exceptions where some hints may
not exist. Depending on n and i, we list all possibilities
about 2-step hints as follows.

(1) If all 2-step hints are valid, this means all four 2-
step hint combinations exist. Hence both Di−1 and Pi+1

are valid, according to the Assumption 2.2 in Section 2,
it must satisfy,

i− 1 ≥ 2
i+ 1 ≤ n

}
⇒ 3 ≤ i ≤ n− 1 (12)

From Equation 12, n should satisfy,

n ≥ 4 (13)

(2) If n ≥ 4, some special cases need to be considered
when i = 1, i = 2 and i = n:



13

Fig. 12. 2-step and 3-step hints and their KHVs.

In L1 cache (when i = 1), DiDi−1 and DiPi−1 are
invalid while other two 2-step hints exist: PiDi+1 (P1D2)
and PiPi+1 (P1P2);

In L2 cache (when i = 2), DiDi−1 is invalid, while
other three 2-step hints exist: DiPi−1 (D2P1), PiDi+1

(P2D3) and PiPi+1 (P2P3);
In Ln cache (when i = n), PiPi+1 is invalid and

other three 2-step hints exist: DiDi−1 (DnDn−1), DiPi−1

(DnPn−1) and PiDi+1 (PnDn+1).
(3) If n < 4, there are two special cases: n = 2 and

n = 3.
If n = 3, similar to above discussion, in L1 cache, two

2-step hints exist: P1D2 and P1P2; in L2 cache, three 2-
step hints exist: D2P1, P2D3 and P2P3; in L3 cache, three
2-step hints exist: D3D2, D3P2 and P3D4.

If n = 2, in L1 cache, two 2-step hints exist: P1D2 and
P1P2; in L2 cache, two 2-step hints exist: D2P1 and P2D3.

Based on the design and modeling of multi-level cache
in Section 2, all possible 2-step hints and their relation-
ships are summarized in Table 4. The KHVs easily show
the activeness of blocks with different hints.

B2. 3-step Hints (Hint-3)

3-step hint (Hint-3) is shown in Figure 12 and similar
to Hint-2, all possibilities for 3-step hints are summa-
rized in TABLE 5 as well as the mathematic expressions
to compare the activeness of blocks with different hints.

C. FURTHER DISCUSSION
In this section we discuss some other aspects about
Hint-K which we believe helps better understand this

TABLE 4
2-step Hints

n
Cache 2-step Hints KHVsLevel

n ≥ 4

L1 P1D2, P1P2 01 > 00
L2 D2P1, P2D3, P2P3 10 > 01 > 00

Li (3 ≤ i DiDi−1, DiPi−1, 11 > 10 > 01 > 00≤ n− 1) PiDi+1, PiPi+1

Ln
DnDn−1, DnPn−1, 11 > 10 > 01
PnDn+1

n = 3
L1 P1D2, P1P2 01 > 00
L2 D2P1, P2D3, P2P3 10 > 01 > 00
L3 D3D2, D3P2, P3D4 11 > 10 > 01

n = 2
L1 P1D2, P1P2 01 > 00
L2 D2P1, P2D3 10 > 01

cache scheme. Hint-K achieves high performance in our
simulations, in the rest of this section we discuss more
other options which might affect the effectiveness of
Hint-K.

C1. Hint-K combined with LFU

The Hint-K algorithms can also be integrated with
LFU as a solution for multi-level cache, where LFU is
used for replacement policy for each level and Hint-K is
used for global management. Some changes on demotion
policy are needed to adapt the LFU algorithm (as shown
in Algorithm 4). The block which has the minimum
KHVs with the least access frequency will be evicted to
the next lower cache level.

Algorithm 4: Demotion Policy in Hint-K combined
with LFU

Step 1: Get the minimum KHV in Li (denoted by V Kim);
Step 2: Find block(s) (for example, ε) where KHV is
V Ki (ε), which satisfies V Ki (ε) = V Kim;
Step 3: From the block(s) in Step 2, find the block which
has the least access frequency. The selected block will be
demoted to the level Li+1;
Step 4: Demote the selected block to the bottom of the
LFU list in Li+1 and update its KHV.

We present some simulation results where Hint-K is
combined with LFU in Figure 13. It is clear that Hint-K
also achieves better performance than other approaches.

C2. Asymmetric promote and demote

In our design, we treat PROMOTE and DEMOTE hints
symmetrically in Lemma 2.4. Actually, we design our
Hint-K approach from a balance in recency and fre-
quency which is suitable for typical applications and
workloads. However, in some applications which are
recency or frequency dominated, the performance gain
of Hint-K might be limited as shown in Figure 8(c) and
10(c). To further improve the performance, we can revise
our promotion policy easily as follows,

• For recency or frequency dominated applications or
workloads, some flags are added to detect the real-
time recency/frequency of a data block.



14

TABLE 5
3-step Hints

n Cache Level 3-step Hints (KHVs)

n ≥ 6

L1 P1D2P1, P1P2D3, P1P2P3 (010 > 001 > 000)
L2 D2P1D2, D2P1P2, P2D3D2, P2D3P2, P2P3D4, P2P3P4 (101 > 100 > 011 > 010 > 001 > 000)
L3 D3D2P1, D3P2D3, D3P2P3, P3D4D3, P3D4P3, P3P4D5, P3P4P5 (110 > 101 > 100 > 011 > 010 > 001 > 000)
Li DiDi−1Di−2, DiDi−1Pi−2, DiPi−1Di, DiPi−1Pi, PiDi+1Di, PiDi+1Pi, PiPi+1Di+2, PiPi+1Pi+2

(4 ≤ i ≤ n− 2) (111 > 110 > 101 > 100 > 011 > 010 > 001 > 000)
Ln−1 Dn−1Dn−2Dn−3, Dn−1Dn−2Pn−3, Dn−1Pn−2Dn−1, Dn−1Pn−2Pn−1, Pn−1DnDn−1, Pn−1DnPn−1,

Pn−1PnDn+1 (111 > 110 > 101 > 100 > 011 > 010 > 001)
Ln DnDn−1Dn−2, DnDn−1Pn−2, DnPn−1Dn, DnPn−1Pn, PnDn+1Dn, PnDn+1Pn

(111 > 110 > 101 > 100 > 011 > 010)

n = 5

L1 P1D2P1, P1P2D3, P1P2P3 (010 > 001 > 000)
L2 D2P1D2, D2P1P2, P2D3D2, P2D3P2, P2P3D4, P2P3P4 (101 > 100 > 011 > 010 > 001 > 000)
L3 D3D2P1, D3P2D3, D3P2P3, P3D4D3, P3D4P3, P3P4D5, P3P4P5 (110 > 101 > 100 > 011 > 010 > 001 > 000)
L4 D4D3D2, D4D3P2, D4P3D4, D4P3P4, P4D5D4, P4D5P4, P4P5D6 (111 > 110 > 101 > 100 > 011 > 010 > 001)
L5 D5D4D3, D5D4P3, D5P4D5, D5P4P5, P5D6D5, P5D6P5 (111 > 110 > 101 > 100 > 011 > 010)

n = 4

L1 P1D2P1, P1P2D3, P1P2P3 (010 > 001 > 000)
L2 D2P1D2, D2P1P2, P2D3D2, P2D3P2, P2P3D4, P2P3P4 (101 > 100 > 011 > 010 > 001 > 000)
L3 D3D2P1, D3P2D3, D3P2P3, P3D4D3, P3D4P3, P3P4D5 (110 > 101 > 100 > 011 > 010 > 001)
L4 D4D3D2, D4D3P2, D4P3D4, D4P3P4, P4D5D4, P4D5P4 (111 > 110 > 101 > 100 > 011 > 010)

n = 3
L1 P1D2P1, P1P2D3, P1P2P3 (010 > 001 > 000)
L2 D2P1D2, D2P1P2, P2D3D2, P2D3P2, P2P3D4 (101 > 100 > 011 > 010 > 001)
L3 D3D2P1, D3P2D3, D3P2P3, P3D4D3, P3D4P3 (111 > 110 > 101 > 100 > 011 > 010)

n = 2
L1 P1D2P1, P1P2D3 (010 > 001)
L2 D2P1D2, D2P1P2, P2D3D2, P2D3P2 (101 > 100 > 011 > 010)

0

10

20

30

40

50

60

70

80

90

100

10 20 40 80 160 320 640

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
gg
re
ga
te

hi
t r
at
io
 (%

)

(a) Aggregate hit ratio (block size Sb = 1KB)

0

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

8.1

9

10 20 40 80 160 320 640

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
ve
ra
ge

re
sp
on

se
 ti
m
e 
(m

s)

(b) Avg. response time (block size Sb = 1KB)

Fig. 13. Performance results of Hint-K with LFU under Auspex trace with different aggregate cache sizes (
∑
Si).

• For a data block which has very high recency or
frequency, a bonus credit (e.g., a predefined number)
can be added to the KHVs of this block.

• For a data block which has a rapidly increasing
trend on recency or frequency, some extra promo-
tion operations can be applied to this block (shown
in Appendix C4).

C3. Overhead Analysis

Hint-K has very low operation cost as shown in
Figure 11. In this section we briefly discuss the space
and bandwidth overhead of our Hint-K scheme. For a
random data block, it costs only one bit to save the hint
information in multi-level cache when a demotion or
promotion occurs. Assuming that the cache size at the
level Li is Si and the block size is Sb. The total number of
blocks (M ) will be

∑
Si

Sb
. The extra space needed to store

the K-step hint information for each block is K bits and
the upper bound of the overhead ratio caused by our
Hint-K algorithms is CK . We have:

CK =

∑
Si

Sb
· K8∑
Si

=
K

8Sb
(14)

Figure 14 plots the overhead for different steps (K)
and cache block sizes (Sb). It clearly shows that the
overhead is consistently low. For example, considering
the typical case where K = 2 or K = 3, the overhead
ratio is below 0.05%, which is negligible.

Next, to investigate the overhead of bandwidth con-
sumed by demote/promote operations, we compare
Hint-K with LRU which offers optimal inter-cache band-
width [6], since LRU doesn’t use any hint at all. We
collect the results as shown in Figure 15, which clearly
show that Hint-K achieves nearly the same inter-cache
bandwidth as LRU (less than 10% difference) under
different workloads. From previous literature [6], 10%
bandwidth reduction can approximately increase the
average response time up to 0.2ms, which is a minor
impact on the overall average response time (6ms). It
demonstrates that Hint-K has a low overhead on inter-



15

Fig. 14. Maximum space cost percentage of the Hint-K
algorithms (CK) with different block sizes (Sb) and steps
(K).

cache bandwidth.

0

20

40

60

80

100

Available 
Inter‐Cache 
Bandwidth 
(LRU)

Available 
Inter‐Cache 
Bandwidth 
(Hint‐K)In

te
r‐
Ca
ch
e 
Ba

nd
w
id
th
 (
%
)

K=2 K=3

Fig. 15. Comparison on inter-cache bandwidth between
LRU and Hint-K when the average response time is 6ms
(the inter-cache bandwidth in LRU is normalized to 100%).

C4. Cross-level promote and demote

In our current design, a block can only be promoted
or demoted by one level in any single operation. This
might not be the optimal approach sometimes particu-
larly when a block is frequently accessed during a very
short period (very high temporal locality). Hint-K can be
modified slightly to deal with this type of block using
two approaches: to promote them from the bottom level
to the highest cache level directly instead of being pro-
moted step-by-step, or to define some additional policies
to award an extra promotion to a block when this block
has been continuously promoted many times. Similar
policies can be made to support cross-level demote.

C5. Two Level Cache Hierarchy vs. Three Level
Cache Hierarchy

We also conduct simulations to compare the results
between two level and three cache hierarchy, which are
shown in Figures 16 and 17. Compared to the results
shown in Figures 8 and 10, we notice that Hint-K has a

larger performance gain in three level cache hierarchy.
As shown in Tables 4 and 5, with the larger number of
cache hierarchy, the types of step hints are increased.
Hint-K can identify these hints while other approaches
[30] [6] cannot. That’s why Hint-K performs better in
three level cache hierarchy.

D. BACKGROUND REVIEW OF MULTI-LEVEL
CACHE

Origin of hints (1983 − 2000). Hints were first in-
troduced and used for computer system design [18].
Later, hints were brought into informed caching [26] to
reduce the execution time of computational physics and
contributed to the performance improvement. Sarkar et
al. [28], [29] uses hints for cooperative caching. They are
used to reduce the dependence of clients which reduces
the system overhead, such as manager workload and
replacement traffic.

Application-based policies (2001 − 2005). There
are many multi-level cache solutions based on access
patterns of real applications, which laid the foundation
for the emergence of application hints. Considering the
difference on temporal locality and access frequency
between the first and the second cache levels, MQ [37]
identifies three properties for a good second level buffer
cache: minimal lifetime, frequency-based priority and
temporal frequency to efficiently manage the second
level buffer cache. While EV [4] presents an eviction-
based placement policy for the second cache level. GL-
MQ [36] takes advantage of both MQ and EV, and gives
an efficient global management for the second cache
level. Later Chen et al. [3] presents ACCA (Content-
aware Caching) to better utilize the access patterns.
uCache [25] proposes an eviction-reference placement
approach, which takes advantages of both inclusive and
exclusive caching methods.

Demote hints (2002 − 2005). Exclusive caching ap-
proach DEMOTE [30] first uses demote hints to describe
evicted data information from the upper cache level.
Through demote hints, the dynamic behavior of evicted
caching data is well captured which increases the cache
hit rate and decreases the average latency in different
applications. From then on, demote hints and demote-like
policies1 have been extensively used in multi-level cache
solutions. X-RAY [1] is another sample which use demote
hints in disk arrays. It gives the array cache the data
information on the content through file-node operations
and write log updates. Algorithms using application-
based policies are also combined with demote-like poli-
cies to increase cache performance, such as in EV [4],
GL-MQ [36], uCache [25], etc.

Application hints (2004−). Application hints ap-
peared in ULC [15] algorithm. Combined with demote
hints and application controlled hints (RETRIEVE), ULC

1. Although there are no demote hints in some solutions, evicted
data information from the upper cache level is also used to improve
cache performance, we call these methods “demote-like policies”.



16

0

10

20

30

40

50

60

70

80

90

100

2.5 5 10 20 40 80 160

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
gg
re
ga
te

hi
t 
ra
tio

 (
%
)

(a) Financial2

0

10

20

30

40

50

60

70

80

90

100

5 10 20 40 80 160 320

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
gg
re
ga
te

hi
t 
ra
tio

 (
%
)

(b) HTTPD

Fig. 16. Aggregate hit ratio results under Financial2 and HTTPD traces in two level cache hierarchy with different
aggregate cache sizes (

∑
Si).

0

0.9

1.8

2.7

3.6

4.5

5.4

6.3

7.2

8.1

9

2.5 5 10 20 40 80 160

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
ve
ra
ge

re
sp
on

se
 t
im

e 
(m

s)

(a) Financial2

0

0.8

1.6

2.4

3.2

4

4.8

5.6

6.4

7.2

8

5 10 20 40 80 160 320

MQ

DEMOTE

PROMOTE

Hint‐2

Hint‐3

Hint‐4

Aggregate  cache size (MB)

A
ve
ra
ge

re
sp
on

se
 t
im

e 
(m

s)

(b) HTTPD

Fig. 17. Average response time results under Financial2 and HTTPD traces in two level cache hierarchy with different
aggregate cache sizes (

∑
Si).

effectively exploits hierarchical locality in multi-level
cache. Unlike other multi-level algorithms focusing on
read requests, TQ [20] is proposed to improve the ef-
ficiency of the second cache level using write hints.
According to the data access patterns in database appli-
cations, there are three types of write hints used: SYNCH,
REPLACE and RECOV. These write hints provide strong
indications about the current state and future access
patterns of the first cache level and manage the second
cache level effectively. Recently, CLIC [21] uses dynamic
application hints in various database applications and
has achieved good results.

Karma [34] uses demote hints for exclusivity, but it
adds two additional operations: READ and READ-SAVE.
READ and READ-SAVE operations deliver data informa-
tion from the lower level to the upper level when a read
request occurs, which are be considered as promote oper-
ations. Karma also uses different access patterns (such
as sequential accesses, random accesses and looping
accesses) to improve cache hit ratio, which is transmitted
by application hints with different priorities. Based on
the Karma algorithm, MC2 [32] presents a solution for

multiple clients on a multi-level cache with approximate
application hints. A state of the art of implementation
combined with Karma and MC2 is presented in [33].

Promote hints (2007−). The PROMOTE [6], [7]
method is proposed when hot data needs to be pro-
moted to the higher cache level. Different from READ
and READ-SAVE operations in Karma, promotion may
cross layers and is decided by more factors (like cache
size and hint frequency). PROMOTE method achieves
better performance when it is combined with the ARC
algorithm.

Our Hint-K algorithms characterize dynamic behavior
of data among multi-level systems and K-step hints are
used to effectively make decision to promote or demote a
block, while existing multi-level cache schemes typically
only use the latest history information2. Hint-K also
gives a unified management on demote and promote
hints, which is different from previous designs.

2. Although LRU-K also keeps track of the last K references, it is a
single level cache algorithm and cannot capture the dynamic behavior
of data movement among different cache levels.


