An Adaptive Write Buffer Management Scheme for Flash-Based SSDs

GUANYING WU and XUBIN HE, Virginia Commonwealth University
BEN ECKART, Carnegie Mellon University

Solid State Drives (SSD’s) have shown promise to be a candidate to replace traditional hard disk drives. The
benefits of SSD’s over HDD’s include better durability, higher performance, and lower power consumption,
but due to certain physical characteristics of NAND flash, which comprise SSD’s, there are some challenging
areas of improvement and further research. We focus on the layout and management of the small amount
of RAM that serves as a cache between the SSD and the system that uses it. Of the techniques that
have previously been proposed to manage this cache, we identify several sources of inefficient cache space
management due to the way pages are clustered in blocks and the limited replacement policy. We find that in
many traces hot pages reside in otherwise cold blocks, and that the spatial locality of most clusters can be fully
exploited in a limited time period, so we develop a hybrid page/block architecture along with an advanced
replacement policy, called BPAC, or Block-Page Adaptive Cache, to exploit both temporal and spatial locality.
Our technique involves adaptively partitioning the SSD on-disk cache to separately hold pages with high
temporal locality in a page list and clusters of pages with low temporal but high spatial locality in a block list.
In addition, we have developed a novel mechanism for flash-based SSD’s to characterize the spatial locality
of the disk I/O workload and an approach to dynamically identify the set of low spatial locality clusters.
We run trace-driven simulations to verify our design and find that it outperforms other popular flash-aware
cache schemes under different workloads. For instance, compared to a popular flash aware cache algorithm
BPLRU, BPAC reduces the number of cache evictions by up to 79.6% and 34% on average.

Categories and Subject Descriptors: D.4.2 [Operating Systems]: Storage Management
General Terms: Design, Measurement, Performance
Additional Key Words and Phrases: SSD, NAND flash memory, flash-aware cache, write buffer

ACM Reference Format:

Wu, G., He, X., and Eckart, B. 2012. An adaptive write buffer management scheme for flash-based SSDs.
ACM Trans. Storage 8, 1, Article 1 (February 2012), 24 pages.

DOI = 10.1145/2093139.2093140 http://doi.acm.org/10.1145/2093139.2093140

1. INTRODUCTION

Solid state drives (SSD’s) are set to supplant traditional hard disk drives (HDD’s) in
nearly every domain of storage computing, from server applicationsto home desktops

A preliminary version of this work was published as “BPAC: An adaptive write buffer management scheme
for flash-based solid state drives.” In Proceedings of the IEEE 26th Symposium on Mass Storage Systems and
Technologies(MSST’10), IEEE.

This research was supported by the U.S. National Science Foundation (NSF) under Grant Nos. CCF-1102605,
CCF-1102624, and CNS-1102629. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the funding agency.
Authors’ addresses: G. Wu and X. He, Monroe Park Campus, School of Engineering, West Hall, 601 W
Main Street, P.O. Box 843072, Richmond, VA 23284-3072; email: {wug, xhe2}@vcu.edu; B. Eckart, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA 15213-3890; email: eckart@cmu.edu. Correspondence
email: xhe2@vcu.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2012 ACM 1553-3077/2012/02- ARTl $10.00

DOI 10.1145/2093139.2093140 http://doi.acm.org/10.1145/2093139.2093140

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:2 G. Wu et al.

Table I. Compare SSD and HDD [Western Digital 2008; Intel 2009; Shimpi 2009]

Intel X-25M Western Digital

G2 SSD VelociRaptor HDD
Technology NAND MLC Flash 10k RPM Platters
Capacity (GB) 160 300
Cache Size (MB) 32 16
Energy Consumption 0.15/0.75 4.53/6.08
(Idle/Maximum Watts)
Operating Temperature (C) 0-70 5-55
MTBF (hours) 1,200,00 1,400,00
Shock Resistance 1500 g, 0.5 ms 300 g, 2 ms
Latency (us) 65-85 3000
Acoustics (dBA) 0 29-34
Sequential R/W (MB/s) 257.5/78.1 120.8/120.2
Random R/W (MB/s) 58.5/34.5 0.68/1.59
Price (USD) 440 [Newegg 2009a] | 230 [Newegg 2009b]

to MP3 players. These drives are predominantly made from banks of NAND flash
memory, and though significantly different from platter drives, are exported to the OS
as simple block devices. As prices have dropped over 100x in the last 5 years [Mason
2009], consumer interest is growing in many markets since SSD’s have many inherent
benefits over HDD'’s.

From a reliability standpoint, solid state drives have no moving parts, no mechanical
wearout, and are silent, heat resistant, and shock resistant. Solid state drives also ex-
hibit astoundingly good performance for synthetic random workloads when compared
with traditional hard drives, and equivalent or better performance for sequential work-
loads. Though the price per Gigabyte remains in the HDD’s favor, the gap is somewhat
narrowing. Table I shows some of the more salient differences between the two storage
devices. Compared in this table are two high-performance drives, representative of the
current top-of-the-line consumer-level offerings from both technologies. The Western
Digital VelociRaptor [Western Digital 2008] is a 10,000 RPM hard disk drive aimed at
the home enthusiast market and is one of the highest benchmarking drives at its price
point. The Intel X-25M [Intel 2009] has the potential for a much larger niche, being
eminently important for OLTP and other server applications due to its outstanding
random I/O performance. On the Intel SSD, random reads are roughly 86 times faster
and random writes are about 21 times faster when compared to the Western Digital
HDD. Clearly, solid state drives represent a fundamental leap in performance at the
storage level.

The swift and almost inevitable rise to ubiquity notwithstanding, SSD’s do suffer
from several performance quirks arising from the physical nature of NAND flash and
architectural constraints of their controllers. The most notable problems include: the
inability to modify data in-place, read/write performance asymmetry, and slow and
constrained erase functionality. There have been a wealth of techniques developed to
circumvent these issues, including work at the Flash Translation Layer (FTL), new
caching mechanisms, and new ways to exploit the parallelism of the flash device. Our
work presented in this article falls into the area of caching.

The on-disk write cache works as a buffer in-between the disk interface and the
FTL. The actual commitment of writes, which happens at buffer replacement, is the
major cause of the write latency. To be specific, upon a write request, the FTL writes
the new data on a clean flash page and marks the old data as invalid; when there are
insufficient clean pages, the FTL executes a process commonly referred to as “garbage
collection” in order to free the flash pages with invalid data. Thus, a good flash-aware
write cache scheme should absorb repeated writes, so as to reducing the number of
cache destages, and should reform random workloads and export them to the FTL as

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:3

sequential, which minimizes the chance or the overhead of expensive garbage collection
processes. Among the various flash-aware disk cache management schemes in the
literature, BPLRU [Kim and Ahn 2008], FAB [Jo et al. 2006], and CLC [Kang et al.
2009] are the most representative. By carefully examining the ways these schemes
organize data structures in the cache and the schemes they use to perform cache
replacement, we found that there exist a few problems that may cause inefficient use
of the cache space, which can result in unnecessary cache destages and low level of
spatial locality.

In this paper, we present a novel cache management scheme, called Block-Page
Adaptive Cache (BPAC), for buffering write requests to the SSD in the small RAM
portion of the drive. Specifically, our contributions include the following.

—A new cache data structure, Dual-list, is proposed to partition the SSD on-disk cache
space into a page-based list and a block-based list for buffering write requests, and
we show that this particular architecture uses cache space more efficiently compared
to the pure block-based list, which is commonly used in existing schemes.

—We develop a new metric (BIRD) to evaluate the spatial locality of SSD I/O workload.

—We present an approach adaptive to different workloads to dynamically differentiate
the low spatial locality clusters from high spatial locality ones. For the former ones,
we develop a replacement policy that makes differential treatments based on access
patterns. We find that the combined architecture and replacement policy achieves
better performance compared to existing flash-aware schemes. For instance, our
simulation experiments show that, compared to BPLRU, BPAC reduces the number
of cache evictions by up to 79.6% and increases the average destage size of cache
evictions by up to 350%.

The rest of the article is organized as follows. Section 2 gives a brief overview of the
physical design of SSD’s along with the architectural and major software techniques
used to ameliorate its shortcomings. In Section 3, we discuss the potential problems
of previous flash-aware cache schemes and derive our BPAC’s design guidelines. In
Section 4 we discuss BPAC’s design in detail. We analyze its performance with respect
to other proposed flash-aware caching policies in Section 5, and summarize popular
traditional cache policies and the flash-aware ones as well as the other SSD-related
techniques in Section 6, and then conclude with our final comments in Section 7.

2. BACKGROUND
2.1. NAND Flash and SSD Architecture

In general, the data retention of NAND flash memory is done by the charge trapped
in the floating gate of the flash cell, and the amount of charge determines the logical
level of a certain cell. According to the maximum number of levels defined when the
data are retrieved, there are two primary types of NAND flash memory: Single-level
cell (SLC) and Multi-level cell (MLC). As one would expect, single-level cell flash stores
one bit per transistor, while multi-level cell flash stores multiple bits per transistor.
MLC is one of the efforts made for increasing the storage density of the flash. Among
the others, the 20nm technologies [Intel 2010; Eetimes 2010; Engadet 2010] that have
merged this year (2010) push the capacity per chip up to 32GB.

The NAND flash by itself exhibits relatively poor performance. The high performance
of an SSD comes from leveraging a hierarchy of parallelism. At the lowest level is the
page. I/0 read and write requests are sent in terms in pages, which are typically on
the order of 4 kB. Erase operations operate at the block level, which are sequential
groupings of pages. A typical value for the size of a block is 64 or 128 pages. Further
up the hierarchy is the plane, and on a single die there could be several planes. Planes

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:4 G. Wu et al.

Table Il. Parameters of a Samsung 4 GB
Flash Module [Agrawal et al. 2008]

Page Read to Register 25 us
Page Program from Register | 200 us
Block Erase 1.5 ms
Serial Access to Register 100 us

operate semi-independently, offering potential speed-ups if data is striped across sev-
eral planes. Additionally, certain copy operations can operate between planes without
crossing the I/O pins.

An upper level of abstraction, the chip interfaces, free the SSD controller from the
analog processes of the basic operations, that is, read, program, and erase, with a set
of defined commands. NAND interface standards includes ONFI [ONFI 2010], BA-
NAND [ONFT 2010], OneNAND [Samsung 2010], LBA-NAND [Toshiba 2010], etc.

Although SSD’s show some promise including good read performance and low power
consumption, they do have inherent drawbacks resulting from NAND flash architec-
ture, particularly the slow erase times at block-level granularity, lack of overwrite
capabilities, read/write asymmetry, and wear-out from repeated accesses. As shown in
Table II, an erase operation is over 7 times slower than a write operation; reading to reg-
ister is 8 times faster than programming a register. To address these challenges, there
have been many approaches working on the garbage collection process, wear-leveling,
logical to physical mapping scheme, etc., as well the on-disk cache management scheme.
Two of these important techniques, FTL and flash-aware cache schemes, are described
in next two sections.

2.2. Flash Translation Layer

An SSD exports itself as a block device by adopting a software layer called Flash
Translation Layer (FTL) in between the host interface and raw flash memory. FTL is a
key component of an SSD in that it not only is responsible for managing the “logical to
physical” address mapping, but it also works as a flash memory allocator, wear-leveler,
and garbage collection engine. The two functionalities most related to on-disk buffer
schemes are mapping and garbage collection; we discuss both subjects in this section.

2.2.1. Mapping Schemes. The mapping schemes of FTL’s can be classified into two types:
page-level mapping, with which a logical page can be placed onto any physical page;
or block-level mapping, with which the logical page LBA is translated to a physical
block address and the offset of that page in the block. Since with block-level mapping,
one logical block corresponds to one physical block, we refer to a logical block on a
physical block as a data block. As the most commonly used mapping scheme, Log-block
FTLs [Rosenblum and Ousterhout 1992] reserve a number of physical blocks that are
not externally visible for logging pages of updated data. In log-block FTL’s, block-level
mapping is used for the data blocks, while page-level mapping is for the log blocks.
According to the block association policy (how many data blocks can share a log block),
there are mainly three schemes, block-associative sector translation (BAST) [Kim et al.
20021, fully-associative sector translation (FAST) [Lee et al. 2005], and set-associative
sector translation (SAST) [Kang et al. 2006]. In BAST, a log block is assigned exclusively
to one data block; in FAST, a log block can be shared among several data blocks; SAST
assigns a set of data blocks to a set of log blocks.

2.2.2. Garbage Collection Process. In the context of log-block FTL’s, when free log blocks
are not sufficient, the garbage collection process is executed, which merges clean pages
on both the log block and data block together to form a data block full of clean pages.
Normally this process involves the following routine: read clean pages from the log

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:5

Table Il. Overhead Difference among Full Merge, Partial Merge and
Switch Merge

Full merge | Partial merge | Switch merge
Clean page reading N N, 0
Page programming N N, 0
Block erase 2 1 1

N stands for the number of pages per block; N, means the number of
clean pages in the data block.

block and the corresponding data block(s) and form a data block in the buffer; erase
the data block(s) and log block; program the data on a clean physical block (block that
contains no data at all). Sometimes the process can be quite simplified: if we consider
a log block that contains all the clean pages of an old data block, the log block can just
replace the old data block; the old data block can be erased, making one clean physical
block. We refer to the normal process as full merge and the simplified one as switch
merge. A Partial merge happens when the log block contains only (but not all) clean
pages of one data block, and the garbage collection process only requires that the rest
of the clean pages get copied from the data block to the log block. Afterwards, the log
block is then marked as the new data block and the old data block gets erased.

To make a quantitative view of the overhead of different merge routines, Table III
compares the numbers of clean page reading, page programming, and block erase,
which are involved in garbage collection routine of the BAST FTL. The former two are
in the order of number of pages, and the last one is in number of blocks.

2.3. Flash-Aware Cache Schemes

The FTL presents an SSD with an HDD interface to the host system and conducts
garbage collection, wear-leveling, and mapping, all of which cause additional overhead.
To address the extra complexity of the FTL as well as the read/write asymmetry and the
erase penalty, an on-disk cache is needed that takes SSD features into account. Due
to read/write asymmetry, where reads are much faster than writes, it is considered
more cost-effective to dedicate the small space of on-disk buffer exclusively for writes
to reduce overall latency. Among the various flash-aware cache schemes, BPLRU, FAB,
and CLC are the most representative ones:

BPLRU or block-level LRU [Kim and Ahn 2008]. This scheme is proposed to exploit
the spatial locality of the workload by grouping pages that belong to the same data
blocks (the following two schemes do this as well) into page clusters and ordering the
clusters in an LRU fashion; the recency of a cluster depends on the most recently ac-
cessed page of the cluster. BPLRU’s replacement policy is simple: the clusters on the
very end of the LRU list are considered to have the least temporal and spatial local-
ity, and as such, evicting such clusters is reasonable. BPLRU also detects sequential
pattern clusters and evicts them as soon as cache space is needed.

FAB or Largest Cluster [Jo et al. 2006]. This scheme maintains a list of page clusters
sorted by their size in the cache, and the largest cluster is always the replacement
victim. Using this replacement policy, more cache space is expected to be made while
it is needed by the new pages, and thus the number of cache destages can be reduced.

CLC or Coldest and Largest Cluster [Kang et al. 2009]. It is a mixture of block-level
LRU and FAB: the cluster list is manually partitioned into a “size-independent” region
for clusters of high locality, which are ordered in an LRU fashion; a “size-dependent”
region of low locality clusters ordered by the size. Clusters get evicted only if they are
the largest of the clusters in the size-dependent region. The ratio of the number of
clusters in the size-independent region to the total number of clusters is denoted as «.
For comparison purposes, these same terms are used in this article.

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:6 G. Wu et al.

3. MOTIVATION AND DESIGN GUIDELINES

In this section, we discuss the potential problems of the popular flash-aware on-disk
cache schemes. We find most problems are rooted in the ways that locality is exploited.
We conclude this section with a list of guidelines for our cache scheme design.

3.1. Potential Problems of Flash-Aware Schemes

Pure Block-Based List. With this data structure, both temporal and spatial localities
determine the recency of clusters. Consider a cluster containing a small number of hot
pages and mostly cold ones (for single pages, hot/cold refer to the temporal locality).
The spatial locality causes pages to be grouped together, while the temporal locality,
which is represented by the repeated accesses to the hot pages, will keep updating the
recency of a cluster. Thus, the cold pages will stay in the cache with the hot ones if they
belong to the same block, causing a waste of cache space.

Early Eviction. One major problem of FAB is that it does not protect the clusters that
have high temporal or spatial locality from being evicted. Take the spatial locality for
an example: In a sequential access stream {64, 65, 66, ,127}, assuming a data
block is 64 pages (we hold this assumption all throughout this article), a cluster of
block #1 is formed; if this cluster is evicted before the page 127 is added-in, one new
cluster of the same block will be formed by the rest pages. We call this situation an
early eviction. Avoiding this condition makes the FTL log the pages in the cluster in
one log block, and the chance of switch merge increases. But for early eviction, the FTL
may log it in one log block, and if the garbage collection process is executed on this log
block before FTL logs the subsequently formed cluster in the same log block, a costly
partial or full merge is inevitable. For the FAB scheme, when the cache size is small
and the spatial locality of the clusters can not be fully exploited, FAB’s replacement
policy of picking up the largest cluster would cause early evictions [Jo et al. 2006; Kang
et al. 2009].

Efficiency of the LRU Replacement Policy. This is one major drawback of BPLRU.
Considering the LRU-order cluster list (BPLRU), the set of clusters in the least recently
used region (tail) may be assumed to have the same “coldness” and the temporal and
spatial locality can be considered minimal. Thus, selecting the largest one in such a
region can make more room than selecting the cluster on the exact end of the list,
for future residents as well as the hot ones on the MRU (Most Recently Used) region,
without compromising the hit ratio or causing early evictions. This situation is also the
reason why CLC applies the Largest Cluster policy on its size-dependent region.

Non-adaptiveness in the partitioning scheme. By experimental trials with the work-
load, the CLC scheme finds out the optimal proportion (1 — «) of the size-dependent
region upon which the largest cluster policy is applied; and the tuned « remains invari-
ant throughout the workload. As said in Kang et al. [2009], accurately identifying the
size-dependent region is crucial: if its size is smaller than the optimal, CLC regresses
towards BPLRU; if its size is larger than the optimal, CLC will have the early eviction
problem as FAB does. As we will show in Section 5, the optimal proportion depends on
the workload as well as the size of cache space, and thus deciding it with experimental
trials is not applicable in real-world practice.

3.2. Design Guidelines

Given the above potential problems we have described, we have the following design
guidelines to be used in the development of BPAC.

Decouple the Temporal Locality with the Spatial Locality. To solve the problem of the
pure block-based data structure, we intend to detach the hot pages with the cold ones,
so that the two localities can be treated separately.

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:7

: | Workload BIRD

Monitor monitor

Block /0 PIRD

PP P PTTPPPON ‘ JRRTT monitor
:8SD Host Interface Logic :

I
BIRD_thd
: | Write Buffer (BPAC) Workload : . Block Number R :
Monitor : B s || Number of Pages 1
: :—jv 1 N v ! 7
icum ata
; Selector : | Page Data | : Page Data
: I
I
I
I

Host System 7S stem

Buffer Cache

Pages evicted (iifetime expired) o l

Block List

Block Number

Number of Pages

Victim
Selector

Destage to FTL

: Incoming Write
I Requests

FTL Size-independent
Flash Memory

(a) (b)

Fig. 1. BPAC overview.

Automatically Determine the Size-Dependent Region. In order to apply the largest
cluster replacement policy on the clusters of which the spatial locality is already fully
exploited, we need to first identify those clusters (the size-dependent region) with an
dynamic method of estimating the spatial locality, instead of manually tuning the
parameters as in CLC.

Differential Treatments for Various Access Patterns. There are mainly three kind of
access patterns: sequential, looping and random, which show different characteristics
on the spatial locality. Sequential patterns have a short inter-reference distance. Once
a sequential cluster is “full” (containing all pages of the corresponding data block), its
spatial locality can be considered fully exploited. Looping patterns are simply repeated
sequential patterns, but they are different from hot pages in the random pattern in
that the repeatedly accessed pages of a looping pattern have the same hotness, and due
to its high spatial locality, a looping pattern should be considered as a whole. A random
pattern’s spatial locality is less predictable, so a method of measuring and estimating
its spatial locality is needed.

4. BPAC ARCHITECTURE AND DESIGN

In this section, we follow our guidelines to propose a hybrid adaptive write buffer
management scheme for SSD’s called BPAC (Block-Page Adaptive Cache).

An overview of the system structure is depicted in Figure 1(a). The SSD’s host
interface receives block I/O requests from the host system, the BPAC scheme takes
charge of buffering the write requests and managing the cache, and beneath BPAC,
the FTL receives the cache destages from BPAC and handles the actual page writes on
flash memory. Specifically, we propose the following three techniques of BPAC.

—To decouple temporal and spatial locality, we adopt a new data structure, dual-list,
which consists of a page-based list (p-list) to hold the hot pages for exploiting the
temporal locality and a block-level list (b-list), in which pages of the same data block
get grouped into clusters, to exploit the spatial locality. See Figure 1(a) for details.

—We derive the duration of the temporal and spatial locality of pages and clusters by
an online workload monitor. We use this method and its estimations to automatically
partition the cache space, solving the nonadaptiveness problem that exists in CLC.

—The victim selector detects various access patterns and applies different replacement
policies based on the detected pattern.

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:8 G. Wu et al.

2500 T T T = 2500 T T T 22500
120000
117500
4115000
112500

LBA

410000
17500
45000

12500
-,

Time (epochs) Time (epochs)
(a) Financial 1 (b) Financial 2

Fig. 2. X axis is time grouped into 20 epochs, Y axis is block number. The “hotter” a block is, the lower its
average temporal distance, which is reflected by the gray scale (darker).

4.1. Workload Analysis and the Motivation for Dual-List

We wish to know if clustering solely by block, as in BPLRU, leads to poor cache utiliza-
tion. If a cold page gets accessed while a hot page from the same block is in the cache
(or vice versa), the cold page has the danger of being “dragged along” by the nature
of pure block-based caches. For our analysis, we look at two popular traces, Financial
1 and 2 (F1, F2) from the UMASS Trace Repository [UMASS 2007], which are large
OLTP traces having write instructions on the order of 1 million.

To verify our assumption of poor cache utilization, we need to look at the “heat
distribution” of a representative block. We calculated the temporal locality at block
level, and plotted a 2-dimensional histogram in Figure 2, showing the “heat” of blocks
over epochs of time. The horizontal lines represent blocks with high locality regardless
of time. The diagonal lines are series of sequential accesses, which have low temporal
locality, as shown by the gray scale in one epoch and the absence of that gray scale
in the next epoch. MRU (Most Recently Used) is the optimal policy for low locality
sequential accesses. Also, the parallel diagonal lines represent looping patterns. The
rest of the accesses (the dots) are blocks with high locality at certain times and low
locality at other times. LRU can be applied effectively to these types of accesses. The
heat maps show that both traces offer a mix of different types of locality.

To avoid to the task of setting an arbitrary point at which to call a page hot or cold,
we found it useful to rank pages by hotness. Thus, we sidestep the issue since it is
easier to say that one page is hotter than another page, instead of trying to define a
page’s hotness in some objective, universal sense. We decided to rank by both average
temporal distance and by frequency. Ranking by temporal distance means that the page
with the lowest average temporal distance between accesses is ranked first, and the
page with the highest reuse distance is ranked last. Frequency is more straightforward,
with pages ranked by how frequently they were used in the trace.

We decided to investigate how many unique blocks the hottest pages use up. If hot
pages reside in otherwise cold blocks, then the hottest pages will be spread out over
many different blocks. If not, relatively few blocks will house the hottest pages. Thus,
if we graph how many unique blocks are present for the x hottest pages, we can get an
accurate depiction of how spread out the heat is, and if clustering by block will keep
unwanted cold pages in the cache.

From Figures 3(a) and 3(b), we can see that hot pages are spread out among many
different blocks. The hottest pages reside in many blocks, shown by the steepness of
the curves at the leftmost part of the graphs. Cold blocks are spread out over the same
blocks that contain hot pages, shown by the flat regions on the middle and rightmost

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:9

1600}

1400} 1500}

1200f
S 1000 2
[+4] ol m

1000}

[o ()
g a0 — H
= L+ [=4
> 600F R >

400 - = Ranked by lowest temporal distance |] 500 - - Ranked by lowest temporal distance [

— Ranked by highest access frequency —— Ranked by highest access frequency
200, "hot blocks, hot pages" scenario 1 e "hot blocks, hot pages" scenario
% 20000 40000 60000 80000 100000 % 20000 40000 60000 80000
Page Rank Page Rank
(a) Financial 1 (b) Financial 2

Fig. 3. Number of unique blocks vs. ranked pages. Hottest pages reside in many blocks, shown by the
steepness of the curve at the leftmost part of the graph. Cold blocks are spread out over the same blocks
that contain hot pages, shown by the flat regions on the middle and rightmost parts of the graph. The “hot
blocks, hot pages” scenario represents an ideal case where the hot pages reside in a small number of blocks,
which is opposite to the actual observation represented by the blue and green curves.

parts of the graphs. Grouping by block only will bring along unwanted cold pages, since
very few hot pages actually reside in each block. It is clear that a scheme is needed
that can detach hot pages with cold pages yet still evict by cluster.

4.2. BPAC Data Structure: The Dual-List

In our BPAC scheme, the cache space is partitioned into two parts, as shown in
Figure 1(b), one for the p-list consisted of single pages, and the other for the b-list of
page clusters. P-list serves as the repository of pages with high temporal locality (hot)
ordered in an LRU fashion; b-list holds pages with low temporal locality (cold). The
b-list is further divided into size-independent (clusters with high spatial locality) and
size-dependent (clusters with low spatial locality) regions, in which the positions of
clusters are determined by recency and size, respectively.

Due to the fact that new incoming pages’ (cache misses) “hotness” is unknown,
they are first accommodated in the b-list, in which pages are always merged together
into a cluster if they belong to the same data block. It is commonly held that if a
page is accessed more than once, its temporal locality tends to be much higher than
pages accessed only once [Karedla et al. 1994]. Thus, in our design we consider the
“second” access (the first hit) as a sign of hotness. If a particular page in the b-list is
accessed again, this page is moved to the p-list. When a page’s “lifetime” of staying
in the p-list (the mechanism determining the lifetime is discussed in the next part)
expires, it is moved back to the b-list.

While the recencies of pages in the p-list are determined by their hits, the recencies
of clusters in the b-list are affected by both newly added pages or the “first hit” of the
hot pages of a cluster. Since BPAC keeps the hot pages in the p-list, the repeated (the
“second hit” and so on) hits are expected to happen mostly in p-list. Thus, the recency
of a cluster is determined by the first hit pages (spatial locality).

4.3. Flash-Aware Locality Metrics

For SSD’s, assuming a block-level mapping scheme common to most FTL's, the spatial
locality of page accesses on different data blocks can be considered to be minimal. So
for a flash-aware cache scheme design, it is important to keep in mind that only the
spatial locality among pages of the same data block (intra-block) is meaningful. Hence
we introduce a new measurement BIRD or Block-level Inter-Reference Distance, to

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:10 G. Wu et al.

describe the spatial locality for SSD’s. In the context of flash devices, spatial locality is
about how close in virtual time the references are to the unique pages in the same data
block. We refer to this block-level inter-reference distance as BIRD. For example, if two
consecutive references to block #0 happens at time 10 and 34, respectively, then this
BIRD is (34 — 10 — 1) = 23; in an example access sequence {10, 13, 13, 4, 5, 8, 70, 75,
10, 64} (LBA’s), pages from two blocks (block #0 and #1) are accessed. For block #0, its
BIRD’s are {0 (10, 13), 0 (13, 4), 0 (4, 5), 0 (5, 8), 2 (8, 10)}; for block #1, its BIRD’s are
{0 (70, 75), 1 (75, 64)}. Note in Section 4.2, with dual-list, a cluster’s recency mainly
depends on the spatial locality, which is measured by BIRD.

To measure temporal locality, the traditional inter-reference gap or IRG is used, but
for comparison purpose, we refer to IRG as PIRD (Page-level Inter-Reference Distance).
For example, in this sequence, the PIRD of page 10 is 7, while the PIRD of page 13 is 0.

4.4. Locality Estimation and Adaptive Partitioning: A Distribution-Based Approach

Our BPAC scheme requires that the p-list and b-list share the cache space, and that the
size-dependent region is dynamically adjusted in the b-list. Both requirements demand
partitioning mechanisms, which we intend to make adaptive to various workloads.
Considering that the dual-list differentiates pages of high and low temporal locality,
and that the size-independent and size-dependent regions contain clusters of high
and low spatial locality respectively, we may measure the two localities, and from the
measurement results, we may have hints about the time/duration for a page to stay
“hot” or for the cluster to be “growing larger”.

4.4.1. Partitioning between P-List and B-List with PIRD Distribution. BPAC keeps the hot pages
in the p-list, however, most of the hot pages are only temporarily hot, and for these
kind of temporary hot-spots, there must be some method to determine their lifetime in
the p-list. We use the PIRD, which represents the interval of re-accesses to the same
page to quantify the temporal locality. Our speculation is that, if a page is repeatedly
requested by the application, such as when there are updates to some key data, the
access sequence may show certain regularity. For example, the intervals within the
sequence will tend to be stable; thus, the future accesses should also follow the same
interval. As a result, if a hot page has not been accessed for such an interval, it is highly
possible that this page’s temporary hotness is gone, and thus the page should be evicted
from the p-list. However, due to the interference among the access streams of different
applications, the variance within a single hot page’s PIRD sequence is found to be high:
to analyze the PIRD sequences of each hot page, Figure 4(a) plots the distributions of
the standard deviations of all hot pages’ PIRD sequences using the F1 trace, and as
shown in the figure, a large portion of hot pages (the “peak” in the distribution) have
deviations on the scale of 10%. This observation implies that it is infeasible to use the
PIRD average of a single page to predict its future access interval.

To eliminate the impact of interference among access streams arising from the mix-
ture of workloads of various applications, we turn into the “overall” PIRD distribution:
by putting together the PIRD’s of all hot pages’ PIRD sequences, we have the distribu-
tion of the occurrence counts of all these PIRD’s. Although due to the interference, the
regularity of a single page’s PIRD sequence is compromised, with the overall distribu-
tion, we found that a set of PIRD values that contribute the most in the distribution
is within a short range starting at 0. In Figure 5(a), the overall PIRD distribution is
obtained with the entire F1 trace; as shown in the figure, a threshold of about 200
is enough to cover most of the distribution. The cause of this phenomenon is that, as
the main contributor of the overall distribution, the set of hottest pages tend to have
low PIRD’s: Figure 5(b) presents the correlation between the PIRD averages of the

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:11

10 250

S 8 E

S

S wn

¢ © 1 5

g 5

I hut

s b

o 4 1 £

[9] 5

et =3

€

2 2 1

00 10 20 30 40 50 60 70 80 20 40 60 80 100 120
PIRD STD (x1074) BIRD STD (x1073)
(a) PIRD standard deviation (b) BIRD standard deviation

Fig. 4. Distributions of the standard deviation of PIRD/BIRD sequences, with F1 trace. Y axis represents
the number of pages that have a corresponding PIRD or BIRD standard deviation value, which is marked
by X axis.

9x10 12
8
10

7
8
g6 g8
5
b 6
S 4 £
73 o
£3 S 4
=}
=z

2

2
1 . .‘-a. - owm
o
0 ‘ ‘
0 50 100 150 200 250 a0 % 200000 400000 600000 800000 1000000
PIRD value Average PIRDs of hot pages
(a) The Overall PIRD Distribution (b) Correlation between PIRD Average and Fre-

quency

Fig. 5. Overall PIRD Distribution Analysis. (a) is the histogram of PIRD value occurrence. (b) plots the
relationship between access frequency (Y axis) and average PIRD value (X axis); each dot represents a page.

hot pages and their frequencies (hotness) with the F1 trace; as the “hotness” increases
along the y axis, the corresponding PIRD average decreases.

Based on the above observations, if a small threshold is used as an estimation of
the upper bound of the access intervals of the hot pages, most of PIRD sequences are
expected to be covered. We refer to it as “PIRD_thd”. If a hot page is not accessed for this
upper bound interval, the chance is minimal that there will still be more accesses to
this page in the near future. A series of overall distributions are sampled by collecting
the PIRD’s for each consecutive period (e.g., every 10k virtual time) of the workload,
and they are very similar to the overall distribution with the entire workload (Figure 5).
Upon such a series of distributions, a series of PIRD_thd’s are located.

PIRD_thd is found stable within each workload of the traces we used, and the stability
of PIRD _thd allows it to be used as the predicted lifetime of the hot pages: PIRD_thd is
derived from the last period’s overall distribution since the next period which will have
a similar PIRD_thd, and thus most of the hot pages can be protected by the lifetime

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:12 G. Wu et al.

1200 1400
1000 1200
1000
800
< 2 800
£ £
> 600 >
= £ 600
400
400
200 200
0 0
NN T N OIS0 DO NN T N O 0D O
DO DD DD D O DO OO O O
2 ? 2 2 1 2 2 2 2 — 2 2 2 2 2 2 2 2 2 —
O " N M S 1N OIS 0 2 O = AN M < 1N O N 0 2
x% interval x% interval
(a) F1 (b) F2

Fig. 6. BIRD Distribution Sparseness, with F1 and F2. The labels on X axis denote the interval of x% ~
(x — 1)%, while the Y axis values are the (y,, — y,,_1) series.

determined by the former threshold. However, in catching up with the variance while
making predictions about the behavior of the workload, a trade-off has to be made on
the sampling period. With the F1 and F2 traces (as well as the other two traces used in
Section 5) containing write requests on the order of 1 million, we found that a sampling
period of 10k virtual time, which results in about a few hundred of samples, are good
for making such a trade-off.

4.4.2. Partitioning between Size-Dependent and Size-Independent Region with BIRD Distribution.
As proposed earlier in this section, we use BIRD sequence of a cluster as a metric
of measuring the spatial locality (how fast a cluster grows). The deviations of single
cluster’s BIRD sequences are high, as shown in Figure 4(b). Taking PIRD_thd as an
analogy, we use the “BIRD_thd” that covers the most of the overall BIRD distribution
(consisting of BIRD’s from all BIRD sequences) as the lifetime of the cluster staying
in the size-independent region: if a cluster’s lifetime expires, we state that the chance
that there will be new pages to be added into this cluster (due to the spatial locality)
any time soon is very low, and the largest cluster policy is applied to it while avoiding
the early eviction problem. With the lifetime determined by BIRD_thd, the b-list is
adaptively partitioned into size-independent region and size-dependent region, and
thus BPAC achieves an automatic « instead of a manually-tuned one in CLC.

4.4.3. Adaptive PIRD_thd and BIRD_thd with the Inflection Point. The proposed method for
locating the PIRD_thd and BIRD_thd raises a question: What is the optimal “x%” for
these two thresholds to cover? Is 90% better than 99% or not? Since we do not consider
manually-tuned thresholds to be acceptable since this would require experimental,
offline trials, we need an adaptive way of locating the optimal thresholds.

Upon close consideration of the overall distributions, we have decided to inspect
them in another way: the sparseness of the occurrences of the PIRD’s and BIRD’s.
First, we find the PIRD_thd/BIRD_thd series y1, 2, ¥3, Y4, «+ ... , that cover the x%,
x+1%,(x+2)%,(x+3)%,...... of the distribution. Then we get the series (ys — y1),
(ys —2), (Yg —¥3)y oo v v With a larger (y,, — ¥,—1), the probability that a PIRD/BIRD
within this range occurs becomes smaller. We plot such data for the BIRD distribution
in Figure 6 for the F1 and F2 traces. We can easily find the inflection points where
the curves abruptly go vertical: in F1, the point is 97 ~ 98, and in F2 it is 94 ~ 95.
This phenomenon can be explained by the random part of the distribution: beyond the

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:13

inflection point, the occurrences of PIRD’s/BIRD’s reflect the kind of PIRD’s/BIRD’s
that barely repeat. Thus, we use the inflection points as the optimal thresholds, since
in this way, only the non-random (popular) PIRD’s/BIRD’s are taken into consideration.
The workload monitor (Figure 1(b)) detects the incoming page and searches in its
memory for the last reference time (upon page hit) of the page or last reference time of
the corresponding cluster (upon page miss). The monitor then derives the PIRD/BIRD
for this access, and then inserts this PIRD/BIRD into the PIRD/BIRD distribution.
When a sampling period is over, the workload monitor will derive both PIRD_thd and
BIRD_thd as the lifetimes for hot pages and hot clusters, respectively, for the next
period; then it flushes the distributions and start sampling PIRD and BIRD again.

4.5. Replacement Policy: Differential Treatments

Due to different spatial locality features, various access patterns require different
treatment:

Sequential Patterns. In most cache schemes, a sequential pattern stream’s “marginal
gain” is considered to be zero. However, for flash-aware schemes, in which the early
evictions should be avoided, such stream’s spatial locality must be fully exploited (the
cluster contains an entire block, or for the case that the stream is not aligned to block
size, a sequential cluster already contains the last page of the corresponding block; we
refer to the first case as “full” and the second as “done”), before it can be evicted to the
FTL. In most cases, the BIRD of sequential pattern clusters is small and stable, and
thus assigning such clusters’ lifetime with BIRD _thd is unnecessary. Since BIRD _thd is
used to predict the lifetime of random and looping pattern clusters, of which the BIRD
sequences are more variant, the BIRD sequences of sequential pattern clusters are not
included in the BIRD distribution. If a sequential cluster is found “full” or “done”, this
cluster is considered to be ready to give up its cache space.

Looping Patterns. Within a short period (shorter than the looping period), a looping
pattern can be considered to be a sequential pattern. For small cache, in which the
“stack distance” of one looping cluster may be larger than the cache size, such cluster’s
repeated accesses cannot be captured by the cache. For large cache, a looping pattern
stream appears as looping cluster(s) being sequentially scanned over and over again,;
the scanning/looping periods are found unstable. Looping patterns are detected in
BPAC, and pages of looping clusters are kept in the b-list so as to not compromise
their spatial locality. BPAC’s workload monitor includes the BIRD sequences of looping
pattern clusters in the overall BIRD distribution, and the their lifetime is determined
by BIRD_thd.

Random Patterns. These clusters are neither sequential nor looping. Due to their low
predictability of BIRD sequence, their lifetime is determined by BIRD_thd.

The victim selector selects the cluster to be evicted in the order of “full” and se-
quential cluster, “done” and sequential cluster, followed by the largest cluster in the
size-dependent region (containing looping or random clusters that run out of lifetime).

A detailed algorithm of BPAC is described in Algorithm 1.

4.6. Overhead Analysis

4.6.1. Memory Overhead. BPAC has a few sources of memory overhead as discussed in
the following.

—First, like most cache algorithms, BPAC has an index table for all the cached pages
to determine the cache hit or miss.

—Second, each cache element, either a page or a block, has to keep its recency value.
This is implemented as a timestamp denoting the virtual time at which this element
is accessed most recently. This time-stamp merely requires a byte per element.

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:14 G. Wu et al.

ALGORITHM 1: BPAC Algorithm

foreach each requested page, p, which belongs to cluster b do
if cache hit then
PIRD = current_time - last_reference_time(p)
if hit in b-list then
if b is not looping then
‘ update the recency of p
move p to p-list
end
update the recency of b
end
else if hit in p-list then
‘ update the recency of p
insert PIRD in PIRD distribution
end
nd
if cache miss then
if cache full then
| call victim_selector()
end
BIRD = current_time - last_reference_time(b)
insert p in b and update the recency of b
if b is not sequential then
| insert BIRD in BIRD distribution
end
end
if pages out of lifetime (recency < current_time — PIRD_thd) exist then
| move them to b-list
end
if sampling period is over then
PIRD thd = get_threshold(PIRD distribution)
BIRD _thd = get_threshold(BIRD distribution)
dﬂush PIRD distribution and BIRD distribution
en
end

0

—Third, the PIRD and BIRD distributions are built with all the PIRD and BIRD values
collected during one sampling period. The sampling period determines the amount
of these values, which means at each virtual time, a PIRD or BIRD value is produced
(according to Algorithm 1) and inserted into the distributions. Thus, PIRD and BIRD
distributions maintain up to 10k values at the end of one sampling period. Therefore,
assuming each value consumes one byte, BPAC ends up with extra memory usage of
10KB for those distributions, which is very small and acceptable.

4.6.2. Computational Overhead. The computational overhead is discussed for the follow-
ing scenarios.

—For each new request, BPAC examines whether there are pages that are out of life-
time in p-list and moves them to b-list. This operation is implemented with minimal
overhead by going through p-list from the LRU tail, examining whether the cur-
rent page is out of lifetime, if so, re-linking the selected pages to b-list; otherwise,
terminating the scanning process.

—Upon a cache hit, BPAC mainly involves the repositioning of the corresponding page
or block (by updating the recency value) and the insertion of one PIRD value into the
PIRD distribution.

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:15

Table IV. Statistics of Disk I/O Traces

F1 F2 Cell099-Disk3 | Cello99-Disk8
Total Requests(108) 1 0.65 0.72 1
Unique pages 113561 98239 267894 249387
Total pages 1930249 | 1029983 1516588 2315396

—Upon a cache miss, the new page is inserted in the b-list. If necessary, cache replace-
ment is performed by calling victim _selector(), which searches the size-dependent
region of b-list and selects the victim by the criteria described in Section 4.5. The
potential victims, for example, sequential blocks, are kept track of by the victim
selector to avoid scanning through the entire b-list to search for them.

—At the end of each sampling period, two critical parameters, PIRD_thd and BIRD_thd,
are calculated with the corresponding distributions. This computation is simply to
wipe out a portion of PIRD/BIRD values that barely repeat.

To conclude, the computational overhead of BPAC is kept minimal.

5. EVALUATION
5.1. Evaluation Methodology and Experiment Configuration

To verify the effectiveness of BPAC, we have conducted trace-driven simulations and
compared BPAC with BPLRU and FAB, which are supported by a modified the sim-
cache module of the simplescalar tool set [SimpleScalar LLC 2009].

Three well-known real-world disk I/O traces are used as summarized in Table IV.
Where, Financial 1 and Financial 2 [Storage Performance Council 2010] are ob-
tained from OLTP applications running at two large financial institutions; the Cello99
[Hewlett-Packard Laboratories] trace pool is collected from the “Cello” server that runs
HP-UX 10.20. Because the entire Cello99 is huge, we randomly use one day traces
(07/27/99) of two disks (Disk 3 and Disk 8).

Since a typical page size in most SSD’s is 4KB, we convert the LBA’s of the entries
in the original traces to 4KB page LBA’s. In our experimental tests, each SSD block
consists of 64 pages by default and the cache size ranges from 8M to 128M bytes.

5.2. Experimental Results and Analysis

In this section we first compare BPAC with BPLRU and FAB; since BPAC adopts the
mechanism of BIRD _thd to adaptively tune its own « value while CLC uses a fixed o, we
will then compare BPAC with CLC after the derivation of the optimal case CLC. Note
that in our simulation tests, the sampling period of both PIRD and BIRD distributions
is 10k virtual time.

5.2.1. Eviction Counts. Our first experiment is to measure the eviction count under dif-
ferent cache schemes. Here the eviction count is the number of clusters evicted/destaged
to the FTL. The results are shown in Figure 7. Note that due to its relatively poor perfor-
mance, FAB is excluded from Figure 7. The results clearly show that BPAC outperforms
BPLRU constantly in reducing the eviction count by 34% on average. The maximum
reduction of 79.6% is observed for F2 trace when the cache size is 128MB. We attribute
the performance gain of BPAC to two aspects.

First, the Effectiveness of the Largest Cluster(LC) Policy on the Size-Dependent Re-
gion. As shown in Figure 1, we use a size-dependent region to hold the clusters of low
spatial locality, where the largest cluster is the candidate to be evicted. We found this
policy works better than BPLRU to make more room in the cache for future new pages
and existing hot pages. BPAC adopts the same policy on sequential patterns (evict
sequential clusters as soon as cache space is needed), hence applying the LC policy on
the random/looping pattern clusters of the size-dependent region is the main difference

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

G. Wu et al.

1:16
mBPLRU mBPAC
=30 5100 g 160 5 450
g g 90 - S0 }b— 8 a00-
R 25 % 80 = =
= = =120 - £ 350 -
S 2 5 701 5 S 300 -
g 8 60 - 81007 € 250
5 151 8 50 § 80 s
g g 40 - g o § 200
2 10- & 39 . Q@ & 150 -
5 20 - 40 1 100 -
10 - 20 - 50 -
0 - 0 - o0 - 0 -
8 16 32 64 128 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
Cache size (MB) Cache size (MB) Cache size (MB) Cache size (MB)
(a) F1 (b) F2 (c) Cello99-disk3 (d) Cello99-disk8
Fig. 7. Performance comparison: eviction counts.
m Sequential mLC
__ 70 _. 120 _ 350
20— ——— 109)
g 8 60 8 100 € 300
S = = 2
% 15 w 50 w 8o o 250
T“:" s 40 s H 200
S I B L 60 kel
T 10 2 30 H 3 150
3 s % 40 s
%5 20 b = 100
o 5 2 2 2
2 I E 10 g 20 E 50 i
£ 5 |
30 z L.z Lz
8 16 32 64 128 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
Cache size (MB) Cache size (MB) Cache size (MB) Cache size (MB)
(a) F1 (b) F2 (c) Cello99-disk3 (d) Cello99-disk8

Fig. 8. Comparison between the numbers of evictions contributed by Largest Cluster (L.C) policy and the
“sequential” policy.

W BPLRU mFAB © BPAC
70

8

70 60 9

N60 - Nso 887

@] w 7

w50 . o

g $40 -8

340 - % w5

o] [

-] - 30 o

3% 1 -1 3 37

S20 20 3

o] o

> > > 2

<40 <10 “

0 0 [¢]

16 32 64 128 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
Cache size (MB) Cache size (MB) Cache size (MB) Cache size (MB)
(a) F1 (b) F2 (c) Cello99-disk3 (d) Cello99-disk8

Fig. 9. Average destage size.

between the replacement policy of BPAC and BPLRU. In Figure 8, we break down the
eviction counts of BPAC into two parts, one from the “L.C” policy on random/looping
patterns, and the other from the “sequential” policy on sequential patterns. As we can
see, the main contributor for reducing the eviction count is “L.C”, which is the main
source of the performance gain BPAC has over BPLRU.

Additionally, we measure the average size of the destaged clusters in Figure 9.
It’s obvious that BPAC increases the average destage size under different workloads.
Specifically, compared to BPLRU, BPAC increases the destage size by 94.5% on average
for all workloads and up to 350% for F'2 trace when the cache size is 128MB. We notice

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:17

BPAC =i=CLC

0.12 0.25 0.5 0.6
0.45

0.1 —i—i——a—a 02 04 0.5
0.35
0.3
0.25
0.2
0.15
0.05 0.1
0.05

£ 008 0.4

0.3

0.1

0.04 0.2

Average proportion

o

[=]

a
Average proportion
Average proportion
Average proportion

0.02 0.1
8 16 32 64 128 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
Cache size (MB) Cache size (MB) Cache size (MB) Cache size (MB)

(a) F1 (b) F2 (c) Cello99-disk3 (d) Cello99-disk8

Fig. 10. The proportion of size-independent region: .

that the average destage size is inversely proportional to the eviction count, which
also shows that the idea of “L.LC” on the size-dependent region is effective. In contrast,
FAB does not protect the hot clusters with a size-independent region and takes the
entire list as a size-dependent region, and so FAB may produce many early evictions.
As shown in Figure 9, FAB’s average destage size is smaller than others, particularly
under small cache sizes.

As the cache size increases, the average destage size increases as well, since with
larger cache space the spatial locality of the workload is better exploited. Considering
BAST FTL, a larger destage size has another merit: the FTL programs pages of the
destaged cluster on a log block, and when garbage collection process is executed on
this log block (assuming there is no repeated writes on this log block, so a switch or
partial merge can be formed), the more pages on the log block, the less clean pages will
be on the dirty data block; so, the overhead of copying the clean pages from the data
block to the log block is less. As discussed later in Section 5.2.2, our BPAC scheme, by
reducing the number of cache destages and increasing the average destage size, results
in a lighter overhead on the FTL.

Second, the Effectiveness of BPAC’s Adaptive a. The «a value is the key factor that
affects the eviction count, as we discussed about CLC in Section 3.1. To learn about the
effectiveness of BPAC’s mechanism of adaptively tuning «, the BIRD_thd, we average
the « value of each sampling period, and compare it with the manually obtained optimal
a of the CLC scheme. The results are shown in Figure 10. Due to our adaptive tuning,
BPAC approaches optimal « value automatically, in contrast to CLC, which can only
achieve an optimal « manually. Figure 10 shows that the « values of BPAC and optimal
CLC approximate each other. It is worth noting that, for certain workloads, as the cache
size increases, the proportion of the size-independent region (in which the clusters are
growing larger) is expected to decrease. In Figure 10, as the cache size increases, the
decreasing trend of @ in both CLC and BPAC is observed.

However, there exist differences, up to 0.1, between the « values of BPAC and optimal
CLC. The reason is, BPAC updates its « according to BIRD_thd for every sampling
period, so BPAC is more adaptive to the variances within the workload, while achieving
a more accurate «. In contrast, CLC’s static « parameter is a prime hindrance in its
design as manually tuning is not practical or even feasible in most cases under changing
workloads. Furthermore, as shown in Figure 10, different «’s should be applied to
different workloads to achieve better performance. For example, the largest a’s of F1,
F2, Cello99-disk3, and Cello99-disk8, are 0.1, 0.2, 0.4 and 0.5, respectively. If the
duration of spatial locality of clusters is longer in a particular workload, this means
that more cache space of the size-independent region is needed to fully exploit the

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:18 G. Wu et al.

=4=F1 =li=F2 C99_disk3 ==¢=C99_disk8 =——=F1 =@=F2 C99_disk3 ===C99_disk8

12 12

E sl N . g 115
o 4 @
H < /L g 1 o
§ 11 < ® s Py
E \/ E X » e
- ~_ _ S f < ~
° Q
R S— %. £ oo
g £ 09
£ 095 S
S 2 o085

0.9 0.8

8 16 32 64 128 8 16 32 64 128
Cache size (MB) Cache size (MB)
(a) Eviction Count (b) Average Destage Size

Fig. 11. Comparison between BPAC and CLC: eviction counts (CLC over BPAC) and average destage size
(BPAC over CLC).

spatial locality, and thus the corresponding « should be larger. This observation is the
main reason that the optimal « values vary among workloads. To conclude, BPAC’s
ability to adapt to different workloads and the variances inside a certain workload is
the major improvement over CLC.

The « not only affects eviction counts, but also affects the destage size: if o is smaller
than the optimal, early evictions occur, which split one cluster into multiple ones; if «
is larger than optimal, the victims may not be the largest of all cold clusters. Thus, to
support our claim of “BPAC achieves more accurate «”, we compare the performance
of BPAC with that of the optimal case CLC in Figure 11. For a clear view of the im-
provement BPAC has over CLC, the normalized eviction counts (normalized to BPAC)
are given in Figure 11(a). BPAC has higher improvement over CLC under the cello
traces than it does under F1 and F2 traces, with most cache sizes. For example, with
cello99_disk3, BPAC is 10% better than CLC on average; while with F2, the improve-
ment is between 0% to 5%. BPAC’s improvement in the average destage size over CLC
is given in Figure 11(b) (results are normalized to CLC).

5.2.2. Overhead on the FTL. Our next experiment is to evaluate how BPAC helps reduce
the overhead on the FTL, particularly the overhead of the destaged clusters. In our
experiments, we measure the overhead as the time the FTL spends on merge operations
due to the shortage of log blocks. We focus on BAST FTL since FAST FTL shows similar
trends. Typically a merge operation in BAST involves three steps: read valid pages
(from the flash to page registers), copy valid pages (or program pages into the flash)
and erase dirty blocks. Since the time to read valid pages is trivial compared to copy
and erase, we do not report it in the figures. In the simulation, the number of log blocks
is set to 50 and other key parameters are taken from Table II.

As we discussed previously, the average destage size is inversely proportional to the
eviction count. Thus, the impact of the eviction count is clear: not only do smaller
evictions and larger destages result in reduced numbers of merge operations, but each
merge operation on average has lower overhead due to fewer clean page copy events.
The results in Figure 12 show lower overhead in the FTL using BPAC (FAB is not
shown in (b), (¢) and (d) since its results are much larger than the others). For example,
the overhead in the FTL using BPAC is 40% of the overhead using BPLRU with
Cell099-disk3 trace and 64 MB cache.

5.2.3. Write Performance. To evaluate the impact of BPAC on the write performance,
we integrated BPAC algorithm into flashsim [Gupta et al. 2009] simulator, which is
configured using the flash parameters listed in Table I1. The write performance in terms
of average write latency under the four traces is illustrated in Figure 13. Compared

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:19

mErase m Valid page copy 140 W Erase m Valid page copy

FTL overhead (x10s)
FTL overhead (x10s)

=) S =R =C} =] S 9 > v =] > v =]
2% 2% 25F 2§ 2% 25 2§ 2% 2§ B¢
8 16 32 64 128 8 16 32 64 128
Cache size (MB) Cache size (MB)
(a) F1 (b) F2
200 mErase M Valid page copy HErase M Valid page copy

FTL overhead (x10s)
FTL overhead (x10s)

BPAC
BPAC
BPAC
BPAC

Q
<
a
o

BPAC
BPAC
BPAC
BPAC

=}
=
pur}
o
@©

BPLRU
BPLRU
BPLRU
BPLRU

=]
x <
S a
a o
)

8

 BPLRU

6 32 64 128 8 16 32 64 128
Cache size (MB) Cache size (MB)
(c) Cello99-disk3 (d) Cello99-disk8

Fig. 12. Overhead on BAST FTL.

= BPLRU m BPAC 1.6 -

%035 — @ —g— 2 q = 4
E E 4 E 138 E
< 03 14 = 35
g g T 16 g
£ S 124 £ € 3
20.25 2 214 2
K] 3 1 - 3 1 8 55 -
9 9 g 12
£ 027 £ 08 - £ 1. £ 2.
£ . £ i
Eo.ls % 0.6 - @ 08 1 E 15 |
¥ g ? o6 @
g 01 g 04 - g g 1-
2 z 204 2

0.05 - 02 - 02 < 05 -

o - o - o0 - 0 -
8 16 32 64 128 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
Cache size (MB) Cache size (MB) Cache size (MB) Cache size (MB)
(a) F1 (b) F2 (c) Cello99-disk3 (d) Cello99-disk8

Fig. 13. Performance comparison: average write latency (in milliseconds).

to BPLRU, BPAC reduces the write latency by 37.1% on average and at most 75.1%
(F2, 128MB). It is observed that the latency performance of BPAC, compared to that of
BPLRU, substantially resembles the eviction counts (Figure 7).

5.2.4. Effectiveness of PIRD_thd for Partitioning P-List and B-List. Our last experiment is to
evaluate the efficiency of BPAC’s cache partitioning between its p-list and b-list. In our
design, a threshold PIRD_thd is used to adaptively partition the cache space to hold
pages with high temporal locality in the p-list and clusters of pages with low temporal
locality in b-list. Figure 14 shows the breakdown of the page hits in the p-list and b-list.
We can see from the figure that both the p-list and b-list contribute to cache hits. We also
observe that the contribution of the p-list under Cello99 workload is smaller than that
under F1 and F2 traces. The reason for this is the smaller number of hot pages present
in the Cello99 traces, which can be seen in Table IV. By separating hot pages from the
cold ones, we expect that the b-list absorbs the “first hit” of hot pages. Therefore, with

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:20 G. Wu et al.

M Hits in b-list Hits in p-list
160

~ 140 100 160 250

g g 9 S 140 5]

S 120 S 8o 8 S 200

bS] = S 120 =}

x L] 70 - -

<= 100 < x X

F] S 60 5 100 > 150

< 80 E = =

- £ 50 = 80 =

S 60 s 40 % s 100

3 3] g

£ 40 a8 30 a2 4 8

5 E 20 E E 50

z 20 2 1 2 20 z

0 0 0 0

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
Cache size (MB) Cache size (MB) Cache size (MB) Cache size (MB)
(a) F1 (b) F2 (c) Cello99-disk3 (d) Cello99-disk8

Fig. 14. Comparison between the numbers of hits in p-list and b-list of the BPAC scheme.

a larger cache space, the b-list will contribute to the increase of the total hits; while
for the p-list, regardless of the cache space, it should absorb the hits of hot pages, and
the hits in it should be constant. In Figures 14(a) and 14(b), we notice that as cache
size increases from 8MB to 128MB, the number of hits in the p-list remains constant,
which demonstrates that the dual-list data structure of BPAC effectively detaches hot
pages from cold ones.

6. RELATED WORK
6.1. Traditional Cache Policies

There has been a wealth of cache research over many decades to take advantage of the
locality of reference, resulting in a wide variety of techniques to achieve ever higher
hit ratios [Karedla et al. 1994]. In the LRU and LFU families, there are two main
directions that cache research tends towards. The first direction concerns efficiency,
while the second concerns gathering more history in an effort to glean more dependable
statistics about the likelihood of a page being accessed again. CLOCK/GCLOCK [Nicola
et al. 1992] is a more efficient approximation of LRU, and LRU-k [O’Neil et al. 1993]
looks at k accesses ago to get a mathematically tractable expectation of how hot a
particular page is. 2Q [Johnson and Shasha 1994] is an approximation to LRU-2 with
constant overhead. There is also LRFU [Lee et al. 2001], which seeks to generalize both
the LRU and LFU families.

Recently, many polices emerged to utilize both frequency and recency (Inter-reference
Gap or IRG) to determine the longevity of data in cache such as MQ [Zhou et al. 2001,
2004]. UBM [Kim et al. 2000] tries to identify sequential and looping references, and
uses a marginal gain technique to evict data from cache. LIRS [Jiang and Zhang
2002] uses inter-reference recency to hold and discard data. ARC [Megiddo and Modha
2003, 2004] and CAR/CART [Bansal and Modha 2004] are scan-resistant and adaptive
Clock variants. Motivated by the fact that no single caching policy could adapt to all
workloads, SOPA [Wang et al. 2010] selects the optimal policy according to the on-line
workload analysis.

Why not just apply one of these caching strategies to SSD’s? The erase operation
is at block granularity and the write operation is much slower than read: thus, read
and writes are not equal and no operations have seek time. Cache policies which take
advantage of disk locality are not applicable (e.g., CSCAN looks at the disk head and
arranges writes to move in one direction). SSD’s can not modify data in-place, thus, an
SSD cache must minimize erase operations incurred by the updating of data. The erase
and read-modify-write penalties can be ameliorated by evicting entire clusters from the
cache. There exists a natural trade-off between a high hit ratio (exploiting temporal

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:21

locality) and low erase count through entire cluster evictions (exploiting spatial locality
at block level). Dual-locality has been explored before, such as in DULO [Jiang et al.
2005] and WOW [Gill and Modha 2005], but not in the domain of SSD’s.

6.2. Flash-Aware Cache Schemes

In addition to the schemes discussed earlier, there are a few more in the literature:

PUD-LRU [Hu et al. 2010] shares many common points with BPAC, for example, it
also partitions a block based buffer list to a “hot” part and a “cold” part and applies a
FAB-like replacement policy on the cold part; it also adopts a history-based method to
evaluate the hotness of a certain block. Compared to BPAC, its major problem is that
it uses an pre-defined threshold in partitioning the cache, which would not adapt to
different workloads.

Griffin [Soundararajan et al. 2010]. Griffin is proposed to use a HDD as a write cache
for SSD. By converting the update writes into a HDD-based log, which is eventually
merged with the data on the SSD, Griffin takes advantage of HDD’s high sequential
write speed and large capacity to reduce the amount of writes directly serviced by the
SSD while improve the sequentiality of the workload. Similarly, I-CASH [Ren and Yang
2011] uses SSD to store seldom-changed and mostly read data blocks and uses HDD
to store the logs of changes made to the cold data on the SSD.

CFLRU [Park et al. 2006]. Clean-first LRU tries to leverage the read/write asymme-
try by picking out pages to evict which are not dirty. Thus, the eviction will not lead to
any actual write to the drive. Although it is not applicable for on-disk write cache, this
technique gives is an interesting attempt at an OS-level flash-aware cache scheme.

Shim et al. [2010] proposed an adaptive method for partitioning the on-disk cache
to the data buffering and the mapping table caching. The cost and benefit of assigning
cache space to both parts are evaluated and the partition is adjusted on-line to achieve
the optimal overall performance, which is evaluated by both read/write performance
and mapping translation overhead.

NOR flash’s support for byte-access makes it widely used for program execution on
embedded system; however, NOR flash’s storage capacity per chip is normally smaller
than that of NAND flash. Motivated by the market demand for replacing NOR flash
with NAND flash, Chang et al. [2010] provided a prediction-based prefetching strategy
in the SRAM, for the sake of improving NAND flash’s performance on the program
execution workloads.

6.3. Other SSD-Related Techniques

File Systems. Early flash file systems such as YAFFS [Manning 2010] and JFFS2 [Hat
2010] are designed for embedded systems and work on the raw flash. On the contrary,
DFS [Josephson et al. 2010] is implemented over the virtualized flash interface offered
by Fusion-IO driver. By leveraging this interface, it avoids the complexity of physical
block management of traditional file systems.

FTLs. For block level mapping, many FTL schemes have been proposed to use a
number of physical blocks to log the updates. Examples include the former-mentioned
FTLs (FAST [Lee et al. 2005], BAST [Kim et al. 2002], SAST [Kang et al. 2006]), and
LAST [Lee, S. et al. 2008]. For page level mapping, DFTL [Gupta et al. 2009] is proposed
to cache the frequently used mapping table in the on-disk SRAM so as to improve the
address translation performance; u-FTL [Lee, Y.-G. et al. 2008] adopts the u-tree on
the mapping table to reduce the memory footprint. Two-level FTL [Wu and Kuo 2006]
is proposed to dynamically switch between page and block mapping. Recently, data
deduplication is included in the FTL to boost up write performance and to reduce the
actual write commitment on the flash [Chen et al. 2011; Gupta et al. 2011].

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:22 G. Wu et al.

Heterogeneous Material. Utilizing advantages of PCRAM, such as the in-place update
ability and faster access, Sun et al. [2010] describe a hybrid architecture to log the
updates on PCRAM for flash. Frash [Jung et al. 2010] harbors the in-memory data and
the on-disk structures of the file system on a number of byte-addressable NVRAMs.
FlexF'S [Lee et al. 2009], on the other hand, combines MLC and SLC as trading off the
capacity and erase cycle.

Reliability-Enhancing Techniques. To alleviate the reliability problem caused by the
limited life cycle of flash memory, a few techniques have been applied on various levels
of the storage system: storage redundancy can be achieved by using ECC at the page
level [Bez et al. 2003] and by using a RAID organization at the chip level [Agrawal
et al. 2008; Hutsell et al. 2008] or at the device level [Balakrishnan et al. 2010], while
the wear-leveling techniques [SiliconSystems 2005; Chang et al. 2007] try to evenly
distribute the amount of wear on individual blocks.

7. CONCLUSION

In this article, we present BPAC, an adaptive flash-aware write cache that minimizes
evictions by exploiting both spatial and temporal locality. According to temporal locality,
hot pages are absorbed in the p-list, and blocks (clusters of pages) are cached in size-
independent and size-dependent regions in the b-list according to their spatial locality.
Simulation results show that compared to existing popular flash-aware schemes, BPAC
reduces the number of evictions and increases the size of destages which, in turn,
reduces the overhead on the FTL, and thus improves the overall performance.

REFERENCES

AcrawarL, N., PRABHAKARAN, V., WOBBER, T., Davis, J. D., Manassg, M., anp Panicrany, R. 2008. Design tradeoffs
for SSD performance. In Proceedings of the USENIX 2008 Annual Technical Conference on Annual
Technical Conference.

BaLAKRISHNAN, M., KaDAV, A., PRABHAKARAN, V., AND MaLkHI, D. 2010. Differential RAID: Rethinking RAID for
SSD reliability. ACM Trans. Storage 6, 2, 1-22.

BansaL, S. AND MobHa, D. S. 2004. CAR: Clock with Adaptive Replacement. In Proceedings of the 3rd USENIX
Conference on File and Storage Technologies (FAST04). 187-200.

Brz, R., CaAMERLENGHI, E., MoDELLI, A., AND VisconTi, A. 2003. Introduction to flash memory. Proc. IEEE 91,
489-502.

CHaNG, Y., LiN, J., HsieH, J., AND Kuo, T. 2010. A strategy to emulate NOR flash with NAND flash. ACM Trans.
Storage 6, 2, 1-23.

CHANG, Y.-H., HsigH, J.-W., anD Kvo, T.-W. 2007. Endurance enhancement of flash-memory storage systems:
An efficient static wear leveling design. In Proceedings of the IEEE /| ACM Design Automation Conference
(DAC).

CuEN, F., Leg, R., aND ZHaNG, X. 2011. Essential roles of exploiting internal parallelism of flash memory
based solid state drives in high-speed data processing. In Proceedings of the 17th IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE.

EermvEs. 2010. http://www.eetimes.com/electronics-news/4207194/Toshiba rolls 24 nm _NAND flash.

EncapET. http://www.engadget.com/2010/04/19/.

GiLL, B. S. AND MoDHA, D. S. 2005. WOW: Wise Ordering For Writes—Combining spatial and temporal locality
in non-volatile caches. In Proceedings of the 4th Conference on USENIX Conference on File and Storage
Technologies (FAST05). USENIX Association, Berkeley, CA.

Gupta, A., Kiv, Y., aND UrcaonNkar, B. 2009. DFTL: A flash translation layer employing demand-based
selective caching of page-level address mappings. In Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’09). ACM, New
York, 229-240.

GUPTA, A., PISOLKAR, R., URGAONKAR, B., AND S1vASUBRAMANIAM, A. 2011. Leveraging value locality in optimizing
NAND flash-based SSDs. In Proceedings of the 9th USENIX Conference on File and Stroage Technologies.
USENIX Association.

Har, R. 2010. The journalling flash file system, version 2. http:/sourceware.org/jffs2/.

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

Adaptive Write Buffer Management Scheme for Flash-Based SSDs 1:23

HewLETT-PACKARD LABORATORIES. cello99 traces. http:/tesla.hpl.hp.com/opensource/.

Hu, J., Jiang, H., Tian, L., anp Xu, L. 2010. PUD-LRU: An erase-efficient write buffer management algorithm
for flash memory SSD. In Proceedings of the International Symposium on Modeling, Analysis, and
Simulation of Computer Systems. 69—78.

HurseLL, W., BoweN, J., AND ExkEr, N. 2008. Flash solid-state disk reliability. Tech. rep.

INTEL. 2009. Intel X25-M SATA Solid State Drive. http://download.intel.com/design/flash/nand/mainstream/
322296.pdf.

INTEL. 2010. http:/www.intel.com/pressroom/archive/releases/20100201comp.htm.

Jiang, S., Ding, X., CHEN, F., Tan, E., aND ZHang, X. 2005. DULO: An effective buffer cache management
scheme to exploit both temporal and spatial locality. In Proceedings of the 4th Conference on USENIX
Conference on File and Storage Technologies (FAST'05). USENIX Association, Berkeley, CA.

JIANG, S. AND ZHANG, X. 2002. LIRS: An efficient low inter-reference recency set replacement policy to im-
prove buffer cache performance. In Proceedings of the ACM SIGMATRICS International Conference
Measurement and Modeling of Computer Systems, 31-42.

Jo, H., Kang, J.-U,, Park, S.-Y., Kiv, J.-S., anND LEE, J. 2006. FAB: Flash-Aware Buffer management policy for
portable media players. IEEE Trans. Consum. Elect. 52, 2, 485—-493.

JoHNsON, T. AND SHASHA, D. 1994. 2Q: A low overhead high performance buffer management replacement
algorithm. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB’94).
Morgan Kaufmann Publishers Inc., San Francisco, CA, 439-450.

JosepHSoN, W., Bonco, L., Li, K., anp FrLynn, D. 2010. DFS: A file system for virtualized flash storage. ACM
Trans. Storage 6, 3, 1-25.

Jung, J., Won, Y., Kiv, E., SHiN, H., anp JeoN, B. 2010. FRASH: Exploiting storage class memory in hybrid
file system for hierarchical storage. ACM Trans. Storage 6, 1, 1-25.

Kang, J. U, Jo, H., Kiv, dJ. S., AND LEE, J. 2006. A superblock-based flash translation layer for nand flash
memory. In Proceedings of the International Conference on Embedded Software.

Kang, S., Parg, S., Jung, H., SHim, H., AND CHa, J. 2009. Performance trade-offs in using NVRAM write buffer
for flash memory-based storage devices. IEEE Trans. Comput. 58, 6, 744-758.

KagrEDLA, R., LOVE, J. S., AND WHERRY, B. G. 1994. Caching strategies to improve disk system performance.
IEEE Comput. 27, 3, 38—-46.

Kim, H. aND AHN, S. 2008. BPLRU: A buffer management scheme for improving random writes in flash storage
abstract. In Proceedings of 6th USENIX Conference on File and Storage Technologies (FAST'08).

K, J. M., CHor, J., Kiv, J., Non, S. H., Min, S. L., CHo, Y., anp Kiv, C. S. 2000. A low-overhead, high-
performance unified buffer management scheme that exploits sequential and looping references. In
Proceedings of the 4th Symposium on Operating System Design and Implementation (OSDI’00). 119—
134.

Kiv, J., Kim, J. M., NoH, S., My, S. L., anp CHo, Y. 2002. A space-efficient flash translation layer for compact-
flash systems. IEEE Trans. Consum. Electron. 48, 2, 366-375.

Leg, D., CHoi, J., Kiv, J., Nos, S., Min, S., CHo, Y., anD Kiv, C. 2001. LRFU: A spectrum of policies that
subsumes the least recently used and least frequently used policies. IEEE Trans. Comput. 50, 12, 1352—
1361.

LEE, S., Ha, K., ZHANG, K., Kiv, J., anD K, J. 2009. FlexFS: A flexible flash file system for MLC NAND flash
memory. In Proceedings of the USENIX Annual Technical Conference. USENIX.

LEeE, S., SaiN, D., Kiv, Y.-J., anp Kiv, J. 2008. LAST: Locality-aware sector translation for NAND flash
memory-based storage systems. SIGOPS Oper. Syst. Rev. 42, 6, 36—42.

LEE, S.-W., PArkg, D.-J., CaHUNG, T.-S., LEE, D.-H., PARK, S.-W., AND Song, H.-J. 2005. FAST: An FTL scheme with
fully associative sector translations. In Proceedings of the UKC Conference. UKC.

LEE, Y.-G., Jung, D., Kang, D., anD K, J.-S. 2008. uFTL: a memory-efficient flash translation layer supporting
multiple mapping granularities. In Proceedings of the 8th ACM International Conference on Embedded
Software (EMSOFT08). ACM, New York, 21-30.

ManniNg, C. 2010. Yet another flash file system. http:/www.yaffs.net/.

Mason, L. 2009. Rethinking SSDs. http:/www.denali.com/wordpress/index.php/dmr/2009/07/23/rethinking-
ssds.

Mecmpo, N. anpD Mob#a, D. 2003. ARC: A self-tuning, low overhead replacement cache. In Proceedings of the
2nd USENIX Conference on File and Storage Technologies (FAST’03). 115-130.

Mecmpo, N. anp MopHa, D. S. 2004. Outperforming LRU with an adaptive replacement cache algorithm.
Computer 37, 4, 58—-65.

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

1:24 G. Wu et al.

Neweca. 2009a. Intel X25-M Mainstream SSDSA2MH160G2C1 2.5-inch160GB SATA II MLC Internal Solid
state disk (SSD). http://www.newegg.com/Product/Product.aspx?Item=N82E16820167017.

Neweca. 2009b. Western Digital VelociRaptor WD3000HLFS 300GB 10000 RPM 16MB cache SATA
3.0Gb/s 3.5-inch internal hard drive—OEM. http://www.newegg.com/Product/Product.aspx?Item=
N82E16822136322.

Nicora, V., Dan, A., anD Dias, D. 1992. Analysis of the generalized clock buffer replacement scheme for
database transaction processing. In Proceedings of the ACM SIGMETRICS Joint International Confer-
ence on Measurement and Modeling of Computer Systems. ACM, 35—46.

O’NEm, E. J., O'Nemn, P. E., anp Weikum, G. 1993. The LRU-K page replacement algorithm for database
disk buffering. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’93). ACM, New York, 297-306.

ONFI. 2010. http://onfi.org/.

Parg, S.-Y., Jung, D., Kang, J.-U., Kiv, J.-S., anp LEE, J. 2006. CFLRU: A replacement algorithm for flash
memory. In Proceedings of the International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES’06). ACM, New York, 234-241.

REN, J. AND YaNG, Q. 2011. I-CASH: Intelligently Coupled Array of SSD and HDD. In Proceedings of the 17th
IEEE International Symposium on High Performance Computer Architecture (HPCA).

RosenBLUM, M. AND OUSTERHOUT, J. K. 1992. The design and implementation of a log-structured file system.
ACM Trans. Comput. Syst. 10, 1, 26-52.

Samsuna. 2010. http://www.samsung.com/global/business/semiconductor/products/fusionmemory/Products-
OneNAND.html.

Suiv, H., Seo, B.-K., Kiv, J.-S., aND MaENG, S. 2010. An adaptive partitioning scheme for DRAM-based
cache in solid state drives. In Proceedings of the 26th IEEE Symposium on Mass Storage Systems and
Technologies (MSST). 1-12.

Sumvpi, A. L. 2009. Intel x25-m g2: Dissected and performance preview. http://www.anandtech.com/storage/
showdoc.aspx?i=3607.

StLicoNSYSTEMS. 2005. Increasing flash solid state disk reliability. Tech. rep.

SmvpLEScALAR LLC. 2009. The simplescalar tool set. http://www.simplescalar.com/.

SOUNDARARAJAN, G., PRABHAKARAN, V., BALAKRISHNAN, M., AND WOBEBER, T. 2010. Extending SSD lifetimes with
disk-based write caches. In Proceedings of the 8th USENIX Conference on File and Storage Technologies
(FAST’10). USENIX.

STORAGE PERFORMANCE CounciL. 2010. SPC trace file format specification. http://traces.cs.umass.edu/index.
php/Storage/Storage.

Sun, G., Joo, Y., CHEN, Y., N1y, D., Xig, Y., CHEN, Y., aND L1, H. 2010. A hybrid solid-state storage architecture
for the performance, energy consumption, and lifetime improvement. In Proceedings of the 16th IEEE
International Symposium on High-Performance Computer Architecture (HPCA-16). IEEE, 141-153.

TosHiBA. 2010. http://www.toshiba.com/taec/news/press-releases/2006/memy-06-337.jsp.

UMASS. 2007. Umass trace repository. http:/traces.cs.umass.edu/index.php/Storage/Storage.

Wang, Y., Suy, J., ZHANG, G., XUE, W., aND ZHENG, W. 2010. SOPA: Selecting the optimal caching policy
adaptively. ACM Trans. Storage 6, 2, 1-18.

WEesTERN Dicrtar. December 2008. WD VelociRaptor SATA hard drives. http://www.wdc.com/en/library/sata/
2879-701282.pdf.

Wu, C.-H. anp Kuvo, T.-W. 2006. An adaptive two-level management for the flash translation layer in em-
bedded systems. In Proceedings of the IEEE | ACM International Conference on Computer-Aided Design
(ICCAD’06). ACM, New York, 601-606.

Znou, Y., CHEN, Z., AND L1, K. 2004. Second-level buffer cache management. IEEE Trans. Parallel Distrib.
Syst. 15, 6, 505-519.

Znou, Y., PHILBIN, J., AND L1, K. 2001. The multi-queue replacement algorithm for second level buffer caches.
In Proceedings of the USENIX Annual Technical Conference (General Track). USENIX Association,
Berkeley, CA, 91-104.

Received November 2010; revised May 2011; accepted June 2011

ACM Transactions on Storage, Vol. 8, No. 1, Article 1, Publication date: February 2012.

