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Abstract

Multi-level cache hierarchies are widely used in high-
performance storage systems to improve I/O performance.
However, traditional cache management algorithms are not
suited well for such cache organizations. Recently proposed
multi-level cache replacement algorithms using aggres-
sive exclusive caching work well with single or multiple-
client, low-correlated workloads, but suffer serious per-
formance degradation with multiple-client, high-correlated
workloads. In this paper, we propose a new cache man-
agement algorithm that handles multi-level buffer caches
by forming a unified cache (uCache) which uses both ex-
clusive caching in L2 storage caches and cooperative client
caching. We also propose a new local replacement algo-
rithm, Frequency Based Eviction-Reference (FBER), based
on our study of access patterns in exclusive caches. Our
simulation results show that uCache increases the cumula-
tive cache hit ratio dramatically. Compared to other pop-
ular cache algorithms, like LRU, the I/O response time is
improved by up to ����� for low-correlated workloads and�
	 � for high-correlated workloads.

1 Introduction

Caching is a common technique for improving the per-
formance of I/O systems. Researchers have developed
many algorithms to manage the buffer cache, such as LRU
[6], LFU, 2Q [11], LIRS [9], and ARC [13]. These algo-
rithms were designed for local cache replacement because
they do not need any information from other caches. They
worked well for a single system. In a distributed I/O envi-
ronment, buffer caches are mostly organized as multi-level
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cache hierarchies residing on multiple machines. For exam-
ple, in a distributed file system, the upper level caches reside
on file servers (storage clients), and the lower level caches
reside on storage servers. We refer to upper level storage
client caches as L1 buffer caches and lower level storage
caches as L2 buffer caches [21]. L1/L2 buffer caches are
very different from L1/L2 processor caches because L1/L2
buffer caches refer to main-memory caches distributed in
multiple machines. The access patterns of L2 caches show
weak temporal locality [3, 8, 21] after filtering from L1
caches, which implies that a cache replacement algorithm,
such as LRU, may not work well for L2 caches. Addi-
tionally, local management algorithms used in L2 caches
are inclusive [20], which try to keep blocks that have been
cached by L1 caches, and waste aggregate cache space.
Thus, though the aggregate cache size of the hierarchy is
increasingly larger, the system may not deliver the expected
performance commensurate to the aggregate cache size.

Several attempts have been made to improve cache per-
formance of multi-level buffer caches for distributed I/O
systems. Recent research [20, 21, 4, 2, 10] characterizes the
behavior of accesses to L2 caches, and introduces multiple
algorithms based on the characteristics to improve the L2
cache hit ratio. Except for multi-queue replacement [21], all
the other algorithms try to achieve exclusive caching [20]
through quick eviction of duplicated blocks in L2 caches.
Implementing aggressive exclusive caching may get a high
hit ratio in case of a single storage client, but multiple-client
systems introduce a new complication: the sharing of data
among clients. It may no longer be a good idea to dis-
card a recently read block from the L2 cache after it has
been sent to a client cache, because the block may be refer-
enced again by other clients in the recent future. Real work-
loads show behavior between two extremes: disjoint work-
loads, in which the clients each issue references for non-
overlapping parts of the aggregate working set, and con-
joint workloads, in which the clients each issue exactly the
same references in the same order at the same time [20].
Nearly disjoint workloads are low-correlated workloads,
and nearly conjoint workloads are high-correlated. For low-
correlated workloads, aggressive exclusive caching is ef-
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fective, but for high-correlated workloads, since the same
blocks may be referenced by multiple clients within a rela-
tively short time period, inclusive caching is more attractive.
Thus, for a multiple-client system, it is important to design
an algorithm which balances between aggressive exclusive
caching and inclusive caching according to workload char-
acteristics. Wong and Wikes [20] propose SLRU and an
adaptive cache insertion policy to decide how to cache du-
plicated blocks according to their previous hit ratios. The
simulation results show that it could achieve up to a ��
 	��
speedup for low-correlated workloads and an approximate��
���� speedup for high-correlated workloads over the LRU
algorithm. It trades a hit ratio for low-correlated workloads
for a speedup for high-correlated workloads.

In this paper, we propose a new unified cache man-
agement algorithm, uCache, for multi-level I/O systems
to provide high cumulative hit ratios in multiple storage
client cache systems, for both high-correlated and low-
correlated workloads. We use cooperative client caches
[5] to provide inclusive caching for high frequency block
reuse among multiple L1 caches with high-correlated work-
loads, while implementing exclusive caching in L2 caches
to improve the hit ratio for low-correlated workloads. We
study the access patterns of exclusive caching and find that
LRU and other traditional algorithms are not suitable even
for local replacement of L2 caches. Based on our study,
we propose a new local L2 cache management algorithm,
FBER, for exclusive caching environments. We compare
the uCache algorithm with the traditional LRU and other
typical multi-level cache management algorithms such as
exclusive caching [20, 21], 2Q [11], and SLRU [20], using
simulations under different workloads. The results show
that compared to LRU, uCache can dramatically increase
the overall cache hit ratio and improve the average I/O re-
sponse time by up to ����� for low-correlated workloads and�
	 � for high-correlated workloads.

The rest of the paper is organized as follows. Section 2
discusses access patterns of L2 caches in exclusive caching
environments. Section 3 describes our idea and design is-
sues in detail. Section 4 describes our simulation method-
ology. We compare our work to previous efforts to improve
L2 cache performance in Section 5 and examine related
work in Section 6. We draw our conclusions in Section 7.

2 Analysis of access patterns of exclusive
caching

Exclusive caching is different from current inclusive
caching in several aspects. First, after it is reloaded into
the storage cache, and then referenced by a client, a block is
quickly discarded by the management algorithm, no matter
how many times it has been referenced before, but tradi-
tional algorithms try to keep a block with a recently good

Table 1. Characteristics of traces
Trace Clients IOs (millions) Volume

Cello92 1 0.5 per day 10.4GB
HTTPD 7 1.1 0.5GB

DB2 8 3.7 5.2GB

hit history in the cache as long as possible. Second, the
reference sequences of storage caches are totally different
from traditional caches. The access sequences of traditional
caches consist of continuous references of blocks, and re-
searchers use some metrics, like reuse distance [21], inter
reference gap [15], and inter reference recency [9], to de-
scribe characteristics of workloads, which are then used to
design replacement algorithms to manage buffer caches. In
exclusive caching, the access sequence of storage caches
consists of two types of continuous operations: evictions,
which inform storage systems to reload blocks that have
been replaced by client caches, and references, such as read
or write, provided by a standard I/O interface. A typical ac-
cess sequence of exclusive caching is interleaved randomly
with references and evictions. With these differences, we
need to analyze the access patterns of exclusive caching,
and design a replacement algorithm dedicated for exclusive
caching based on those patterns.

2.1 Traces

To study L2 buffer cache access patterns and evaluate
caching algorithms and policies, we use three buffer cache
access traces. These traces are chosen to represent differ-
ent types of workloads: high-correlated and low-correlated.
In our study, we use ����� as the cache block size for our
access pattern analysis and our experimental evaluation of
various algorithms. We have examined other block sizes,
with similar results. Table 1 shows the characteristics of
traces.

The HP Cello92 trace was collected at Hewlett-Packard
Laboratories in 1992 [17]. It captured all L2 disk I/O re-
quests in Cello, a timesharing system used by a group of
researchers to do simulations, compilation, editing, and e-
mail, from April 18 to June 19. We use the trace collected
on April 18 as the workload for the single client simula-
tion. Cello is an HP 9000/877 server with one �
����� CPU,� ����� memory and � disks. Since requests of the traces
collected in different days access the same data set, we also
use them as workloads for the multiple-client simulation:
each trace file collected within one day acts as the workload
of one client. These workloads are high-correlated.

The HTTPD workload was generated by a seven-node
IBM SP2 parallel web server [12] serving a

��� ����� data
set. Multiple http servers share the same files, although
they seldom read files at the same time. We use the HTTPD
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workload as the high-correlated workloads for the multiple-
client simulation.

The DB2 trace-based workload was generated by an
eight-node IBM SP2 system running an IBM DB2 database
application that performed join, set and aggregation oper-
ations on a

� 
 �
� � data set. Uysal et al. used this trace
in their study of I/O on parallel machines [19]. Each DB2
client accesses disjoint parts of the database. No blocks are
shared among the eight clients. We use the DB2 workload
as the low-correlated workload for the multiple-client sim-
ulation.

Since L1 buffer cache sizes clearly affect an L2 cache’s
performance, we carefully set the L1 buffer cache sizes for
the three traces to achieve a reasonable L1 hit ratio. The
cache size of HP 9000/877 server is only ����� 	 ����� ,
which is very small by current standard. The Cello92 trace
and the HTTPD trace show high temporal locality, and a
small client cache may achieve a high hit ratio. In the sim-
ulations, we assume the cache size of each client is �������
for the Cello92 traces, and ����� for the HTTPD trace, pro-
viding an L1 hit ratio of approximately

� ��� . The DB2
trace shows very low temporal locality, and a

� � � ��� client
cache just provides an L1 hit ratio of no more than � � � .
But if the cache size increases to ��������� , the L1 hit ratio
suddently increases to � � � , because reuse distances [21] of
most blocks are less than � � ��� ( ��������� divided by block
size ��� ). To reserve enough cache misses for L2 caches,
we assume the cache size of each client for the DB2 trace
is

� � � ��� . Since the number of compulsory cache misses
in the DB2 trace is large, we use approximately ����� of the
requests to warmup the cache space.

2.2 Access patterns of exclusive caching

Because of the uniqueness of reference sequences, the
metrics used before may not correctly describe the charac-
teristics of access patterns for exclusive caching. Thus, we
need to define new metrics to describe the access pattern.
The Eviction-Reference-Gap (ERG) indicates the distance
(the number of distinct evictions) between an eviction of
a block from an L1 cache and the later reference by that
cache. ERG describes how long a block will stay in the
L2 cache space before it is referenced again. The replace-
ment algorithm should keep blocks with small ERG values.
The Eviction Frequency defines how many times a block
has been evicted from the L1 caches, and hence reloaded
into the storage cache. Not every eviction of a block will
be referenced by an L1 cache again within a reasonable
ERG: some of them are never referenced again, and some
of them are referenced, but with an ERG that is much larger
than a real cache space can provide. These kinds of evic-
tions are dead evictions. Evictions referenced by L1 caches
again within a reasonable ERG are reusable evictions. Ob-

0


100000


200000


300000


400000


500000


1
 64
 512
4K
32K
256K
2M


N
um

be
r 

of
 E

vi
ct

io
ns




Eviction-Reference-Gap


(a) 7 clients HTTPD trace

0


40000


80000


120000


160000


1
 64
 512
 4K
 32K
256K


Eviction-Reference-Gap


(b) 4 clients Cello92 trace

Figure 1. Eviction-Reference-Gap histograms
of storage caches

viously, a good replacement algorithm should discard dead
eviction blocks as quickly as possible, and for reusable evic-
tion blocks, keep those with relatively small ERGs.

We first study the Eviction-Reference-Gap of blocks in
storage caches. The data in Fig. 1 shows the distribution
of evictions over ERGs grouped by powers of two1. Sig-
nificantly, blocks evicted from L1 caches are not referenced
quickly: most evictions have relatively large ERGs (from	�� � to ����� in the Cello92 trace, and from ��� to � ��� in
the HTTPD trace). Furthermore, the curves descend slowly
from peak to foot (the largest ERG even extends to more
than � � ), which means it is difficult for a replacement al-
gorithm to retain most blocks before they are referenced by
clients. A good replacement algorithm for storage caches
should at least retain blocks that reside in the hill portion of
the histogram for a longer period of time to provide more
than a

� ��� hit ratio. Obviously, the distribution of ERG in
Fig. 1 shows that LRU is not an appropriate local replace-
ment algorithm for exclusive caching in an L2 cache.

Using the same traces. we have also examined the be-
havior of storage buffer cache accesses in terms of eviction
frequency. The data in Fig. 2 shows the distribution of
the percentages of reusable and dead evictions over evic-
tion frequencies grouped by powers of two2. It is obvi-
ous that blocks with high eviction frequencies result in high
percentage of the reusable evictions and low percentage of
the dead evictions. The percentage of the dead evictions
decreases with the eviction frequency, but the peak of the
reusable evictions does not appear at the point of the highest
eviction frequency ( � � � in the HTTPD trace and � � in the
Cello92 trace). That does not mean that blocks with evic-
tion frequencies higher than peak point will reduce the hit
ratio, because the dead evictions of those blocks are close to
zero, which means that almost all evictions of those blocks

1ERGs that are not powers of two are rounded down to the nearest
power of two.

2Eviction frequencies that are not powers of two are rounded down to
the nearest power of two.
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Figure 2. Distribution of reusable and dead
eviction among different eviction frequencies
for different traces. A point (f, p) on the per-
centage of reusable (respectively, dead) evic-
tions curve indicates that p percent of total
number of reusable (respectively, dead) evic-
tions are to blocks evicted f times.

are referenced later. Since dead evictions absolutely cause
cache misses, caching blocks with high eviction frequencies
is helpful for increasing cache hit ratios. We also studied
how the average ERG distribution changes with the eviction
frequency. The data in Fig. 3 shows that the blocks with
higher eviction frequencies always have smaller means of
ERGs, which indicates that those blocks have high proba-
bilities to be hit before they must be discarded by the re-
placement algorithm. From Fig. 2 and Fig. 3, we conclude
that higher eviction frequencies of blocks result in higher
contributions to the total cache hits and lower contributions
to the total cache misses.

We studied the 8-client DB2 trace and got similar re-
sults. Since the percentage of dead evictions and the av-
erage ERGs quickly decrease with the eviction frequency, a
good replacement algorithm could retain blocks with a high
eviction frequency as long as possible to achieve a high hit
ratio.

3 Design of uCache

The basic idea of uCache is based on a simple obser-
vation. In a multiple-client system, a higher correlation of
workloads means that it is more likely that a block requested
by one client is found in caches of other clients, because a
block used by one client may have been or will be refer-
enced by other clients within a limited time period. From
this observation, the uCache algorithm implements exclu-
sive caching in L2 caches for low-correlated workloads, but
tries to utilize client buffer caches to improve cumulative hit
ratios for high-correlated workloads.

In uCache, all storage client caches related to a storage
server are organized as cooperative client caches [5]. A
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Figure 3. Change of Mean of ERGs with the
eviction frequencies for the different traces.

block is discarded by storage caches after it is sent back to a
client, and is loaded again if evicted by that client. The stor-
age cache space is reserved for blocks that cannot be found
in the client caches. With a miss in the storage cache, a re-
quest may be redirected to an appropriate cooperative client
cache if the block can be found in that client, or a hard disk
action must be issued.

uCache is inherently adaptive to both low-correlated and
high-correlated workloads. For low-correlated workloads,
although cooperative client caches have low hit ratios, be-
cause of the small number of blocks reused among multiple
clients, a high hit ratio is expected in the exclusive storage
cache. For high-correlated workloads, similar to previous
aggressive exclusive caching, a low hit ratio in the stor-
age cache is predicted, but cooperative client caches pro-
vide considerable additional cache hits, according to our
earlier observation. Thus the final cumulative hit ratio is
still higher than the ratio for traditional inclusive caching,
like LRU.

To implement the uCache algorithm, we consider three
major issues. The first is how clients and storage collaborate
to achieve exclusive caching; the second is how the storage
system tracks blocks cached by cooperative client caches;
and the last is how to replace blocks in storage caches. We
discuss the first two issues in 3.1 and the last one in 3.2.

3.1 Collaboration between clients and the storage
systems

The storage systems need to collaborate with clients to
decide when to reload blocks that have been evicted by
client caches, to track which blocks are cached by which
clients, and to send a request to an appropriate cooperative
client after an access miss in the storage cache. Actually, as
long as storage systems know when a block is evicted from
a client cache, they can make correct decisions for both
reloading blocks and where to redirect requests. Thus, for
uCache, one of the key design issues is to choose a mecha-
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/* procedure to be invoked upon a reference to block b */

blockGet(block b)

{

  if b is in cache

      remove b from FIFO queue;

  check HRF;

  if eviction mark of block b was set {

      increase reference frequency of block b by one;

      clear eviction mark of block b;

  }

}


/* procedure to be invoked upon a eviction of block b */

blockPut(block b)

{

  if b is not in cache {

    check HRF;

    if an item is found for block b in HRF

       get reference frequency;

    else {

       add a new item for block b in HRF;

       set reference frequency of block b to 0;

    }

    set eviction mark for block b;

    insertintoFIFO (reference frequency, block b);

  }

}


insertintoFIFO (reference frequency, block b)

{

   insertPoint = log2(reference frequency);

   if insertPoint > m       // m is the point at tail of the queue

       insertPoint = m;

   insert block b into FIFO at insertPoint;

}


Figure 4. FBER algorithm

nism for storage caches to learn when a block is evicted by
L1 caches.

The most intuitive way is to design a new interface be-
tween clients and storage systems to send notifications of
block evictions from the L1 to the L2 caches, like the de-
motion operation [20]. Although this mechanism is the
most accurate, client software must be modified, and net-
work overhead between the clients and storage systems is
introduced. Another possible mechanism is to guess evic-
tions of clients from access sequences and existing inter-
faces, without any modification of the L1 software. uCache
obtains L1 cache replacement information by maintaining
a data structure to track client content, similar to the idea
proposed in [21]. Chen et al. [4] concluded that the per-
formance of the latter design is very close to the former
one if appropriate local optimizations are applied. Some
distributed I/O systems implement block-level cache con-
sistency algorithms, in which storage servers track blocks
cached by clients. From those systems, the uCache get
enough L1 replacement information, thus does not need to
implement the collaboration mechanism itself.

3.2 Local Replacement Algorithm

Based on the study of access patterns of exclusive
caching in Section 2, we design a new replacement algo-
rithm, called Frequency Based Eviction-Reference (FBER).

The main idea of this algorithm is to maintain blocks with
different access frequencies for different periods of time
in a storage cache. According to Section 2, it is impor-
tant to retain blocks with high eviction frequency as long
as possible. In exclusive caching, once referenced by the
L1 caches, blocks are discarded from the L2 cache spaces,
so FBER maintains a data structure, called history reference
frequency (HRF) table, to record past reference information
of a block evicted by the L1 caches at least once. For each
following reference to the block, no matter if it still stays
in the cache, FBER increases the reference frequency of the
block in HRF. Each time a block is evicted from the clients
and reloaded into a storage cache, FBER checks the HRF
according to the block number and gets the previous refer-
ence frequency, then inserts the block into a FIFO queue.
The insertion point of a block is determined by its previous
reference frequency: the higher the frequency, the closer to
the tail of the queue, so a block with high frequency has
a longer lifetime than one with low frequency. To achieve
this we set ! insertion points, from "$# to "$%'&)( , for the
real queue, where ! is a tunable parameter. " %*&+( is the
point at the the tail of the queue, and blocks inserted at "-,
have a longer lifetime in the cache than those inserted at"$.0/2143�5�6 . The insertion point " 7 of a block is a function
of the reference frequency, 198;: < =?>A@4B?1C8)>$/CD)6 . In our current
design, 198;: < =?>A@4B?1C8)>$/CD)6 is defined as EFB G�H�/CD)6 . Our experi-
ments also show that six insertion points are enough to sep-
arate high frequency blocks from others. Fig. 4 outline the
FBER algorithm.

The highest cumulative hit ratio is provided by totally ex-
clusive caching, since no blocks exist in both the clients and
the storage caches, but this configuration degrades the stor-
age hit ratio dramatically for high-correlated workloads. A
small inclusive cache in storage is very helpful to increase
local hit ratio, but the size of the small cache needs to be
tuned carefully. uCache use Adaptive Space Allocation al-
gorithm (ASA) to manage storage cache and provide optimal
inclusive cache space dynamically. LRU algorithm is used
to manage the small inclusive cache. Blocks referenced by
clients are placed into the LRU cache, either from the FBER
cache, or from hard disks because of local misses, to pro-
vide cache hits for further references. The size of the small
LRU cache is determined dynamically by its hit ratio. One
hit of the LRU cache will increase its size by one block,
and one hit of the FBER cache will shrink its size by one
block. Since the highest cumulative hit ratio is provided by
total exclusiveness, a ghost cache which simulates a totally
exclusive storage cache is implemented to provide a refer-
ence for each moment of accesses. If the current cumulative
hit ratio is too low compared to that of the ghost cache, the
LRU cache size will be reduced. The ASA algorithm tries to
maximum local hit ratio while not sacrifice cumulative hit
ratio too much.
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Table 2. Access times for different levels in
the cache hierarchy

Storage Cache Remote Client Caches Storage Disk
250us 360us 9,500us

4 Simulation Methodology

We compare cumulative L2 cache hit ratios and average
response times of uCache (implementing HBER and ASA
for storage cache) and other algorithms, including LRU, 2Q
[11], exclusive caching [20], and SLRU [20].

We use trace-driven simulation to evaluate cumulative
hit ratios. We have developed a simulator to simulate two-
level buffer cache hierarchies with multiple clients and one
storage system. LRU is used as the replacement algorithm
in the L1 caches, and multiple algorithms mentioned be-
fore are implemented in the L2 cache. Thus in our simula-
tions, when refer to LRU, we talk about LRU-LRU (L1-L2
caches). We assume a cache block size of ����� . The traces
we used for the simulator are described in Section 2.1.

The following formula describes the calculation of the
average response times for the L2 caches.

I %KJAL-MON I+P �0Q PSRTI)U �0Q UVRTI)W � !X1A:?:
I P

and
I U

are costs of hits in the storage cache and the
remote cooperative client caches, respectively.

I W
is the

cost of reading a block from a storage disk. Q P and Q U are
the hit ratios (output by our simulator) of the storage cache
and the remote cooperative client caches, respectively, and!X1A:?:*NY�K�Z/ Q PSR Q U 6 .

We have designed a program to compute average value
of

I+P
,
I)U

, and
I+W

for a ���[� block in our lab. The stor-
age server is a Dell PowerEdge 2500, with a ��
 � � �]\ In-
tel Xeon microprocessor, � � � ����� memory, and a Dell
PercRaid Raid5

� �^
 �
� Disk. The client is a Dell Dimen-
sion 4500, with a

� 
 � � �]\ Intel Pentium-4 microproces-
sor,

��� ��� memory and a ��� � IDE disk. All machines
are equipped with a

	��
bit PCI 100/1000Mbps network in-

terface card, and connected through a Dell PowerConnect
5224 Gigabit Ethernet switch. RedHat 9.1 is installed on
each machine, with Linux kernel

� 
 �_
 � �`�a� . For each ac-
cess time, we performed ����� experiments and calculated the
average value. The results are summarized in Table 2. Note
that we do not include any queuing delays in our response
time figures. Since the uCache algorithm reduces server
loads by directing parts of requests to other machines, and
popular high performance networks use a switched topol-
ogy, we do not expect queuing to alter our results signifi-
cantly.

5 Simulation Results

5.1 Low-correlated traces

We use the DB2 trace as a multiple-client low-correlated
workload. Fig. 5(c) shows that uCache provides the best hit
ratio among all the algorithms. Since no blocks are shared
among the eight clients, the additional hit ratio for coop-
erative caching is zero. The temporal locality of the DB2
workload is very weak, so the LRU and 2Q algorithms pro-
vide very low cache hit ratios, even when the storage cache
size increases to ��� � ����� . SLRU is much better than LRU,
but still lags behind exclusive caching and uCache, because
it is designed to be compatible with high-correlated work-
loads by not completely implementing exclusiveness in the
L2 cache. The difference between uCache and exclusive
caching is not obvious, because the highest eviction fre-
quency of the DB2 trace is only four, which is not enough
for FBER to utilize. The ASA algorithm successfully allo-
cates all storage cache space to FBER, since there are almost
no blocks reused among different clients. Fig. 6(c) shows
that the average response time follows the same trend of the
hit ratio. The biggest improvement from LRU to uCache is����� , with a � � � ����� storage cache.

5.2 High-correlated traces

We use the Cello92 trace and the HTTPD trace as
multiple-client high-correlated workloads. Fig. 5(a) and
Fig. 5(b) shows the hit ratios of different algorithms. The
uCache always provides the best hit ratio among all the al-
gorithms. LRU provides a relatively high hit ratio because
each block in an LRU cache has a long life before it is
discarded, and thus has a high possibility to be referenced
again and again by different clients with high-correlated
workloads. The gain becomes smaller as the storage cache
is larger, since a large cache size retains a block for a long
enough time, within which it is accessed by most clients.
Exclusive caching suffers serious performance degradation
even compared to LRU, because discarding a block imme-
diately after it is referenced once causes many cache misses
for following references from other clients. We notice that
even the storage hit ratios of uCache, which does not count
the benefits from the cooperative client caches, are much
higher than exclusive caching and is very close to the re-
sult of three inclusive cache algorithms. The ASA algorithm
works perfectly to both increase local hits and maintain high
cumulative hit ratios. Fig. 6(a) and Fig. 6(b) show that the
average response time follows the same trend as the hit ra-
tio. The biggest improvement from LRU to uCache is

�
	 � ,
with a

	�� ��� storage cache for the 7-client HTTPD trace.
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Figure 5. L2 cache hit ratios of various clients under different traces. Hit ratios of uCache Storage
does not include hits from cooperative client caches
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Figure 6. Average response time of various clients under different traces.

6 Related Work

Muntz and Honeyman [14] and Froese and Bunt [8]
showed that L2 caches have poor hit ratios. Further studies
show that the poor hit ratio is caused by both weaker tempo-
ral locality [3, 21] and duplicated blocks [20]. After study-
ing behavior of NFS servers, Reed and Long [16] found that
LRU algorithm may still exploit temporal locality caused
by frequent accesses of file system metadata. Many new al-
gorithms have been proposed recently to improve cumula-
tive hit ratios, such as MQ [21], Demotion-based algorithm
[20], Global L2 buffer cache management [21], X-Ray [2],
and client-controlled cache replacement [10]. Chen et al.
[4] classified all those algorithms into two types: hierarchy-
aware caching, and aggressively-collaborative caching, and
compared the performance among typical algorithms be-
longing to the two types. Ari et al. proposed ACME [1]
to adaptively select the best replacement policy for each
cache-level to achieve high accumulative hit ratios. Our
work in multi-level cache hierarchies builds upon but is
different from previous studies because the uCache algo-

rithm is adaptive to multiple-client systems, with either
high-correlated workloads or low-correlated workloads.

Researchers have used metrics such as reuse distance
[21], inter reference gap [15], and inter reference recency
[9] to analyze access patterns of workloads, but none of
them studies the characteristics of reference streams of L2
caches in exclusive caching. Our study shows that the
Eviction-Reference Gap is very large and high eviction fre-
quency blocks contribute most to cache hits in exclusive
caching. Based on our study, we propose a new algorithm,
Frequency Based Eviction-Reference (FBER), to improve
hit ratios for exclusive caching.

Researchers have considered using cooperative client
caching to improve cumulative hit ratios in multi-level
cache hierarchies. Dahlin et al. [5], proposed four repre-
sentative cooperative caching algorithms and demonstrated
that N-Chance Forwarding can provide the best perfor-
mance. GMS [7] is more general than N-chance in that
it is a distributed shared-memory system, for which co-
operative caching is only one possible use. Sarkar et al
[18], introduced a hint-based algorithm to reduce overhead
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of cooperative caches. Our work is related to but differ-
ent from those previous algorithms, because we use ex-
clusive caching in storage caches to improve hit ratios for
low-correlated workloads, while using cooperative client
caching to cache blocks reused frequently among clients in
high-correlated workloads.

7 Conclusions

In this paper, we propose a new unified buffer cache
management algorithm: uCache, to improve performance
of L2 caches in multi-level cache hierarchies, in multi-
ple client environments. uCache combines both exclusive
caching in storage caches to improve hit ratios for low-
correlated workloads, and cooperative client caching to im-
prove hit ratios for high-correlated workloads.

We have studied the characteristics of reference streams
of exclusive caching. Our results show that the average
Eviction-Reference Gap of exclusive caching with multiple
clients is very large in that it is difficult for a replacement al-
gorithm utilizing temporal locality of workloads to provide
high hit ratios. A frequency based algorithm is highly pre-
ferred because high eviction frequency blocks contribute the
most to cache hits but cause the least cache misses in exclu-
sive caching. Based on the study, we propose a new local re-
placement algorithm, Frequency Based Eviction-Reference
(FBER), and Adaptive Space Allocation (ASA), to improve
the hit ratios of exclusive caching.

We have evaluated our uCache algorithm and other typ-
ical multi-level caching algorithms using simulations under
both high-correlated and low-correlated workloads. The re-
sults show that uCache can dramatically increase the cumu-
lative cache hit ratio over LRU and improve the average I/O
response time by up to 46% for low-correlated workloads
and

��	 � for high-correlated workloads.
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