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Abstract

In this paper we introduce SPEK (Storage Performance

Evaluation Kernel module), a benchmarking tool for

measuring and characterizing raw performance of data

storage systems at block level. It can be used for both

DAS (Direct Attached Storage) and block level networked

storage systems. Each SPEK tool consists of a controller,

several workers, and one or more probers. Each worker

is a kernel module generating I/O requests to lower level

SCSI layer directly. Compared to traditional file system

and disk I/O benchmarking tools, SPEK is highly accurate

and efficient since it runs at kernel level and eliminates file

system overheads. It is specially suitable for accurately

measuring raw performance of data storages at block

level without influence of file system cache or buffer cache.

Using SPEK, a user can easily simulate realistic workloads

and produce detailed profiling data for networked storage

as well as DAS. We have built a prototype on Linux and our

experiments have demonstrated its accuracy and efficiency

in measuring block level storage systems.

�
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1. Introduction

Data storage has evolved from “secondary peripheral”

to a primary and central part of a computing system be-

cause of importance of data. There are generally two types

of storage systems, DAS (Direct Attached Storage) such as

IDE/SCSI disks and disk arrays [1], and networked storage

such as NAS (Network Attached Storage) [2, 3] and SAN

(Storage Area Network) [4]. To satisfy ever-growing de-

mands for data storage systems with high performance, re-

liability, and availability, new architectures, standards, and

products emerge rapidly [1, 4, 5, 6]. In order to quantita-

tively evaluate various storage systems, accurate and effi-

cient benchmark tools are needed. Such benchmark tools

helps researchers, designers, and users to measure, charac-

terize, and compare different storage systems.

Under many circumstances, the performance of a storage

available to users is the performance result gotten from file

systems. Since it is influenced by many other factors such

as file system cache, data organization, and buffer cache be-
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Figure 1. Measured throughput of PostMark (left), IoZone (middle), and Bonnie++ (right). Although
using the same hardware, measured performance change dramatically with changes of file system
options

sides the storage system, it cannot represent the real per-

formance of the evaluated system. Only the raw perfor-

mance, or block level performance, can be used to accu-

rately compare different storages. Some applications, such

as database, can utilize this raw performance directly and

thus it is important to know how much they can get from a

storage system. And raw performance values are also im-

portant for file system and OS designers to know how much

raw performance they can exploit and how much optimiza-

tion they make.

Existing benchmark tools such as PostMark [7], IoZone

[8], Bonnie++ [9], and IoMeter [10] are widely used to mea-

sure various storage systems. PostMark, IoZone, and Bon-

nie++ run at file system level and therefore are mainly for

characterizing file system performance. While they can be

used for both DAS and networked storage, they are not suit-

able for measuring raw performance or block level perfor-

mance. Measurement results using these benchmark tools

are often skewed because of file system cache. Figure 1

shows experimental performance measurements of a same

SCSI disk under different file systems (Ext2, Ext3, and Ext2

with Sync flag) using PostMark, IoZone, and Bonnie++, re-

spectively. It is clearly shown that although our measured

storage target is exactly same, these benchmark tools pro-

duce completely different performance results because of

different file systems. Such deviations can be attributed

to effects of file system cache as well as different char-

acteristics of file systems [11]. Therefore, these kinds of

benchmarks cannot provide accurate assessment of block

level storage systems. While IoMeter can run below file

systems, its measured performance on Linux fluctuates dra-

matically due to the effects of buffer cache at Linux block

device layer. As will be evidenced in Section 3, measured

results using IoMeter can differ from actual performance by

as much as 600%. An important issue is that although these

benchmark tools are not accurate when measuring block

level performance, they are popularly used to measure raw

performance in real life.

Besides the accuracy problem of existing benchmark

tools, there is also an efficiency issue. Because these bench-

marks run in user space above file system level, there are ex-

cessive system calls and context switches resulting in large

amounts of overhead. This efficiency problem is more pro-

nounced when measuring high performance networked stor-
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age systems because intensity of traffic generated by these

benchmarks is limited due to excessive system overheads.

As a result, a large number of clients is needed to saturate a

high performance block level networked storage.

In this paper, we propose a new benchmark tool called

SPEK (Storage Performance Evaluation Kernel module),

for measuring and characterizing data storage systems such

as DAS and networked storages at block level. SPEK con-

sists of a SPEK Controller, several SPEK Workers that gen-

erate I/O requests, and several SPEK Probers recording sys-

tem status. Each SPEK Worker runs as a kernel module

and sends all I/O requests to storage device drivers directly,

bypassing file system cache and buffer cache. It is highly

efficient since it runs at kernel space and minimizes over-

heads caused by system calls and context switching. It al-

lows a user to configure workload parameters and define

performance metrics of interest through an easy-to-use Java

GUI interface. A set of utilities and scripts is also provided

for users to automate testing process. Prototyping code has

been developed on Linux as an open source tool under GPL

license. Our experiments have shown that SPEK is highly

accurate and highly efficient for measuring block level stor-

age systems.

The paper is organized as follows. In Section 2, we de-

scribe the design of our SPEK in detail. Experimental vali-

dation in comparison with existing benchmarks is presented

in Section 3. We briefly discuss existing I/O benchmark

tools in Section 4 and conclude the paper in Section 5.

2. Structure and Behavior of SPEK

The overall structure of SPEK is shown in Figure 2. It

consists of three main components, one SPEK Controller,

SPEK Controller

SPEK Worker

SPEK Worker

SPEK Worker
SPEK Prober

Storage

Figure 2. SPEK structure

several SPEK Workers, and one or more SPEK Probers.

SPEK Controller resides on a controller machine which

is used to coordinate SPEK Workers and Probers. It can

start/stop SPEK Workers and Probers, send commands and

receive responses from them. A Java GUI interface of a

SPEK Controller allows a user to input configuration pa-

rameters such as workload characteristics and to view mea-

sured results. Each SPEK Controller also has a data analysis

module to analyze measured data.

There is one SPEK Worker running on each testing client

to generate storage requests via the low level device driver

and record performance data. A SPEK Worker is a Linux

kernel module running in kernel space. Each SPEK Worker

has one main thread, one working thread, and one probe

thread. The main thread is responsible for receiving instruc-

tions from SPEK Controller and controlling the working

thread to execute the actual I/O operations. The working

thread keeps sending requests to SCSI layer that are even-

tually sent to remote targets by lower level device driver.

By using an event-driven architecture, SPEK is able to per-

form several outstanding SCSI requests concurrently, which

is useful and necessary when testing SCSI tagged com-

mands [12] feature and exploring the maximum through-

put of a remote SCSI target. Many modern SCSI storages

have the command queue feature that allows hosts to send

several tagged commands and decide the specific execution
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sequence based on their own scheduling policies to get max-

imum overall throughput. The probe thread records system

status data periodically and reports to SPEK Controller once

a test completes. On each target device, there is a SPEK

Prober thread that records system status for post-processing.

Currently, we have developed a SPEK Prober for Linux and

plan to build SPEK Probers for other platforms. Its func-

tionality is similar to probe thread in a SPEK Worker.

2.1. Configuring Workload Characteristics

SPEK workloads are generated by user configurable pa-

rameters similar to IoMeter. Each Worker generates work-

loads independently from other SPEK Workers allowing re-

alistic networking environment to be simulated. Some of

the parameters are:

� Block size. It is data block size of a storage request

and is a multiple of sector size (512 Bytes). Currently

we support up to 8 different block sizes in one test run

and there is a frequency weight associated with each

request block size. A sample workload may contain

10% of 8KB, 20% of 16KB, 30% of 32KB, and 40%

of 64KB.

� Number of transactions. It controls how many trans-

actions to be carried out in a test run. A transaction is

defined as a block level read/write access.

� Ramp up count. It is a number used to bypass transient

period of measurement process. Performance record-

ing starts after number of requests finished exceeds this

number.

� Burstiness is defined by the length of a bursty request

and interval between two successive bursts. As a spe-

cial case, when the interval is zero, SPEK sends re-

quests continuously till all requests are finished with-

out delay.

� Maximum outstanding request number. In order to test

the SCSI tagged commands feature, the outstanding

I/O request number is also configurable.

� Read/Write Ratio and sequential/random ratio. SPEK

Worker generates random read/write requests based on

these parameters. We use a random number generator

that can generate numbers evenly distributing between

two integers.

� Request Address Alignment. It defines how request

address should align to.

� Report time interval. It defines the interval for a SPEK

Worker to report performance data. Specially, if it is

zero, a SPEK Worker only reports all data at the end of

one test run.

2.2. Performance Metrics

SPEK reports mainly two performance values: through-

put and response time. Throughput is represented in two

forms: average I/O per second (IOPS) and average mega

bytes per second (MBPS). Response time includes aver-

age response time and maximum response time. All av-

erage values we mention are mean values, while users can

use raw data to get median value or other statistics easily.

During each test run, SPEK collects data related to perfor-

mance and system status. There are two options to record

and transfer such data to SPEK Controller, periodically at

run time or one time at the end of each run. Unlike many

other benchmark tools that collect some statistical data and

compute them on the fly, SPEK provides two options: (1)

deferring computation/analysis while allowing more data to
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be collected or (2) computing/analyzing on the fly. The for-

mer requires more memory space whereas it provides more

detail data to analyze performance dynamics of measured

targets and gives users more flexibility to process and ana-

lyze measured raw data. A user can play trade-offs between

memory and flexibility when doing performance testing.

In addition to throughput and response time, SPEK

records other profiling data such as CPU utilization, user

time, system time, interrupts per second, and context

switches per second. Furthermore, network related load

status including receive/send packets per second and re-

ceive/send bytes per second, and memory load status such

as free memory size, shared memory size, buffered mem-

ory size, swap size, swap exchange rate and so forth are

also collected. All these system status data are recorded pe-

riodically with a user configurable interval.

3. Experimental Validation

In order to verify the promises of SPEK, we have carried

out experiments to measure performance of DAS as well

as networked storage using SPEK in comparison with ex-

isting benchmark tools. As mentioned in the introduction,

most existing benchmark tools run at file system level with

few exceptions such as IoMeter. We therefore compare our

SPEK with IoMeter in terms of accuracy and efficiency.

3.1. Experiment Environment

Several PCs are used in our experiments. One acts as

SPEK Controller, three act as test clients, and one as test tar-

get. All PCs are connected by an Intel NetStructure 470T

Gigabit Switch via Intel Pro1000 Gigabit NICs. The de-

tailed hardware configurations of these PCs are shown in

Test Client Test Target
CPU 1 PIII 800MHZ 1 PIII 866MHZ
Memory 256M PC133 512M PC133
NIC Intel Pro1000T Intel Pro1000T
DISK IBM and Seagate SCSI disks
Controller Adaptec 39160

Table 1. Test machines configuration

Table 1. All PCs run Redhat Linux 7.3 with recompiled

2.4.18 kernel. Detail specifications of the measured SCSI

disks are shown in Table 2.

In our first experiment, we measured the random write

performance of Seagate SCSI disk in terms of IOPS with

each request size being 16KB as shown in Figure 3. It is

interesting to observe that throughputs produced by IoMe-

ter fluctuate dramatically between 0 and 300 IOPS while

those produced by SPEK are fairly consistent over time.

The fluctuation of the throughputs produced by IoMeter re-

sults mainly from the buffer cache. Because of the existence

of the buffer cache, throughputs are high at times. However,

Linux flushes the buffer cache when large enough sequen-

tial blocks are accumulated, every 30 seconds, or when dirty

data exceeds a threshold value. Since our workload is ran-

dom write, it is very unlikely to accumulate large sequential

blocks. Most of flushing is caused by timeout and excessive

dirty data. During a flushing period, measured throughput

approaches zero because the system is busy and not able to

respond to normal I/O requests. This fact clearly indicates

the limitation of IoMeter in accurately measuring disk I/O

performance. Our SPEK module, on the other hand, pro-

duces accurate and stable throughput values over time since

SPEK runs at lower layer and is not affected by buffer cache

as shown in Figure 3.

The accuracy of SPEK is further evidenced by Figure 4
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Model Interface Capacity Data Buffer RPM Latency Sustained date rate Seek time
(GB) (MB) (ms) (MB/s) (ms)

IBM DNES-309170 Ultra2 SCSI 9.1 2 7200 4.17 12.7 to 20.2 7.0
Seagate ST318452LW Ultra160 SCSI 18.4 8 15000 2.0 N/A 3.6/4.2

Table 2. SCSI disk parameters
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Figure 3. Measured throughputs for random write with block size being 16KB. The average IOPS of
IoMeter is 175 while that of SPEK is 240. And the dynamic result of IoMeter fluctuates between 0 and
300 because of buffer cache effects while that of SPEK keeps consistent.
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Figure 4. Measured throughput on the Seagate SCSI disk using SPEK. SPEK correctly captures the
ZCAV scheme of the Seagate SCSI disk.
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that shows throughputs of the Seagate disk under sequential

read and sequential write workloads. In this figure, through-

put changes periodically between 55MB/s and 39MB/s. We

noticed that the total data accessed in each period is 18GB

which is approximately the formatted disk size. With Zoned

Constant Angular Velocity (ZCAV) scheme, a modern SCSI

disk has more sectors on outer tracks than inner tracks. As

a result, accessing sectors on outer tracks is faster than in-

ner tracks giving rise to the periodic throughput change as

shown in the figure.

To provide a comprehensive comparison between IoMe-

ter and SPEK, we carried out measurement experiments

across other different types of workloads as shown in Fig-

ure 5. For sequential read workloads (Figure 5a), IoMeter

achieves lower throughput than SPEK. In terms of MBPS,

throughput of IoMeter saturates at about 33MB/s while

SPEK saturates at about 53MB/s. The difference results

mainly from the system overheads for managing the file

system cache and buffer cache that do not provide any per-

formance benefit because of sweeping data access without

reuse. Note that for read operations, Linux system will copy

data read from lower level to the file system cache for possi-

ble future reuse. For sequential write as shown in Figure 5b,

IoMeter produces better throughputs than SPEK for small

request sizes. This is because written data bypass file sys-

tem cache, and the buffer cache collects small writes to form

large sequential writes resulting in better write throughputs.

As the request size increases, such difference diminishes.

All these measured data clearly indicate that throughputs

produced by IoMeter are strongly influenced by the file sys-

tem cache and the buffer cache. They do not accurately rep-

resent the actual performance of the underlying disk stor-

age. SPEK, on the other hand, accurately measures the raw

performance of the block level storage devices.

In the case of random read workloads shown in Figure

5c, measured throughput by both IoMeter and SPEK are

fairly close. The reason is that overheads of file system in

this situation are negligible compared to tens of millisecond

disk operations involving random seek, rotation latency, and

transfer. Furthermore, the effect of file system cache is also

negligible because we generated 200,000 random read re-

quests uniformly distributed over 18GB space giving rise to

approximately zero cache hit ratio. For random write work-

load as shown in Figure 5d, the results are consistent with

those in Figure 3 for the same reasons explained previously.

Note that Figure 5d shows the average throughput whereas

Figure 3 shows the instant throughput measured at a particu-

lar time point. Similar results are observed when measuring

IBM disk as shown in Figure 6. The throughput difference

produced by the two benchmarks is as high as 600%.

The target disks measured in above experiments are not

very high performance disk storages. For example, an entry

level RAID system such as Dell/EMC CX200 [13] has up to

25,000 cache IOPS and high-end IBM Shark F20 can have

11,000 IOPS even with 0% cache hit. An even faster SSD

device like RamSan-210 can provide 100,000 random IOPS

with one port. To measure such high performance storage

systems, the advantages of our SPEK become more evident

because file system overheads are no longer negligible as

compared to high speed disk access times. To observe how

SPEK and IoMeter perform in measuring such high perfor-

mance storage systems, we carried out experiments on high

speed storages. With the absence of real hardware of these

expensive storages, we use a software simulator to simu-
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(a) Sequential read workload
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(b) Sequential write workload
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(c) Random read workload
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Figure 5. Measurement results on Seagate disk with different workloads
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Figure 6. Measurement results on IBM SCSI disk with different workloads
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(a) A storage system with 100 � s average response time (b) A storage system with 10 � s average response time

Figure 7. IoMeter and SPEK measurement results on simulated storage. When used to measure
a storage system with 10 � s average response time (support 100k IO requests per second), SPEK
generates more requests to saturate storage faster than IoMeter does because of lower overhead,
which makes the measurement easier.
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late them for our experimental purpose. Based on the Linux

scsi debug module, we have built a virtual SCSI disk de-

vice. When upper layer generates a read/write request to

the virtual disk, the simulator simulates a disk delay time

that is user configurable. Figure 7 shows the measurement

results of the simulated high performance disk storages with

disk access time being 100 microseconds and 10 microsec-

onds, respectively. As expected, file system overheads re-

sult in much less throughput measured using IoMeter than

that measured using SPEK.

In addition to affecting the accuracy of performance

measurements, file system overheads can also lower the ef-

ficiency of the measurements. Such low efficiency may end

up with longer time to perform a performance measurement

or require more resources to carry out a same experiment.

For example, if we were to measure the performance of an

entry level RAID system as a networked storage as shown

in Figure 7a, two SPEK Workers would be sufficient to satu-

rate such a storage using SPEK while five workers would be

necessary to do the same using IoMeter. Readers may won-

der how much file system overhead is there using IoMeter

as opposed to using SPEK. To give a quantitative view of

such file system overheads, we measured number of context

switches as well as number of system calls generated by the

two benchmark tools. Table 3 lists the average number of

context switches per I/O request with IoMeter and SPEK,

respectively. As shown in this table, the average numbers

of context switches per I/O generated by IoMeter and SPEK

are 4.85 and 2.01, respectively. In terms of number of sys-

tem calls per I/O request, we found that an IoMeter worker

generates about 14 system calls on average for each I/O re-

quest while SPEK does not generate any system call be-

cause it is a kernel module. We used the HBench-OS [14]

to measure context switches and system calls’ overheads on

our test clients. Each context switch cost ranges from 1.14

ms to 7.41 ms (average 4.27 ms) with different processes

number and context related data size. The costs of six typi-

cal system calls, including getpid, getrusage, gettimeofday,

sbrk, sigaction, and write, are 0.352ms, 0.579ms, 0.517ms,

0.036ms, 0.696ms, and 0.465ms respectively, with an av-

erage cost of 0.440ms. So for each IO request, IoMeter

has approximately 19ms more overheads than SPEK that is

comparable with the average response time of a high end

RAID system, for example 10ms of a RamSan-210. This

overhead hampers IoMeter when measuring a high end stor-

age which is verified by Figure 7. So we believe that, SPEK

is especially efficient when measuring high performance

block storage systems. And this context switch and system

call overhead reduction also explains why SPEK is superior

than some benchmark tools that utilize the OS-provided raw

access interface and run at user space.

Sequential Random
Read Write Read Write

IoMeter 4.09 3.91 6.18 5.24
SPEK 1.98 2.01 2.03 2.02

Table 3. Average context switch numbers per
I/O request of IoMeter and SPEK

Client 1 Client 2 Client 3 Target
Test 1 18.012 N/A N/A 18.012
Test 2 15.488 13.519 N/A 29.007
Test 3 9.035 7.645 6.534 23.214

Table 4. Throughput (MB/s) measurement of
iSCSI SAN using SPEK with sequential read
workload and block size being 32KB
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To demonstrate that SPEK is capable of measuring net-

worked storage, we have also carried out experiments on

networked storages. Since we do not have SAN hardware

facilities in our lab, we setup an iSCSI SAN [15] environ-

ment for measurement purpose. We use DISKIO mode

in the iSCSI target allowing it to read/write Seagate SCSI

disks. The iSCSI target exports several SCSI devices for

test clients. We run different numbers of test clients using

sequential read workload with block size being 32KB and

results are shown in Table 4. We found that iSCSI target

is saturated at 29.007MB/s using two test clients. Since it

is a software iSCSI implementation, the TCP/IP and iSCSI

protocol overheads [16] are the main reason why the tar-

get saturates rapidly. The CPU utilization of iSCSI target

is consistently larger than 90% when using two test clients

and approaches 100% when using three test clients. Major-

ity of the time is consumed on iSCSI sending thread since

for these read operations the target needs to send data out to

clients.

4. Related Work

There are many I/O benchmark tools available to mea-

sure I/O performance. Typical benchmark tools fall into

three categories as shown in Table 5.

Majority of I/O benchmark tools available today fall into

file system benchmark category. Most of them create one

or several files and perform read, write, append, and other

operations on these files. Bonnie++ also has tests for file

create, stat, and unlink operations. IOStone [17] only per-

forms operations on a 1MB size file, which makes it im-

possible to get realistic results on modern storage systems

because of large amount of file system cache. IOBench is

obsolete and rarely used today. IoZone and IoMeter are the

most popular among these benchmarks since they support

many platforms and different file systems including net-

work file system. IoZone is also famous for standalone

file system benchmark allowing extensive file operations in-

cluding read, write, re-read, re-write, read backwards, read

strided, fread, fwrite, random read, pread ,mmap, aio read,

and aio write. It reports throughput and response time re-

sults. IoMeter is originally from Intel and now a source-

forge project. It is being widely used and its workloads

are highly parameterizable and configurable. While it is

claimed to be a raw device test tool, IoMeter is still influ-

enced by buffer cache under Linux as evidenced in the pre-

vious section. LADDIS [18] and SPEC SFS [19] only op-

erate on NFS while NetBench [20] operates only on CIFS.

PostMark [7] is also a widely used [6, 21] file system bench-

mark tool from Network Appliance. It measures perfor-

mance in terms of transaction rates in an ephemeral small-

file environment by creating a large pool of continually

changing files. Pablo I/O Benchmark can be used to test

the MPI I/O performance as well as application I/O but still

at file system level. Its I/O Trace Library is very useful

for analyzing application I/O behaviors while not aimed at

block I/O measurement. NHT-1 I/O benchmark [22] mea-

sures application I/O, disk I/O, and network I/O, but its disk

I/O measurement is still at file system layer.

Many of above mentioned benchmark tools perform well

when used to measure file systems, which is the main pur-

pose that they focus on. To measure disk I/O and block

level networked storage system devices, all of them have

the common problems as we have mentioned before. IoMe-

ter suffers less because it operates on block device layer,
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Category Benchmark Tools
File System Benchmark Bonnie, Bonnie++, IoMeter, IoZone, LADDIS, NetBench,

PostMark, SPEC SFS, IOGen, IOStone, IOBench, LMBench,
Pablo I/O Benchmark, NHT-1 I/O Benchmarks, NTIOgen, VxBench

Standalone Disk I/O Benchmark CORETest, Disktest, HD Tach, QBench, RawIO, SCSITool
Block level Networked Storage Benchmark SPC-1, SPEK

Table 5. I/O benchmark tools

which bypasses file system cache but it still suffers from

buffer cache.

There are also a few benchmark tools for measur-

ing block level or raw performance of a storage device.

CORETest is a DOS disk benchmark tool from CORE In-

ternational and it is rarely used now. Disktest can be used to

perform disk I/O performance test but its main purpose is to

detect defects. Qbench is a DOS hard disk benchmark from

Quantum Corporation that measures data access time and

data transfer rate. SCSITOOL is a diagnostics and bench-

marking tool for SCSI storage devices. Pablo Physical I/O

Characterization Tool [23], although not a benchmark tool,

can be used to get useful trace information about disk I/O by

using instrumented disk device driver. There are also some

micro-benchmarks used in research works [24, 25]. Most

of them are built to test some simple and limited I/O work-

loads, such as sequential read/write or random I/O in fixed

sizes and aimed at standalone storage systems.

None of the existing benchmarks discussed above is able

to measure performance of networked storage at block level.

One specification, SPC-1, is aimed at measuring block level

networked storages [26]. SPC-1 is a standard specification

being considered by Storage Performance Council. It is not

yet readily available to public for performance evaluation

purposes although there are some incomplete performance

data reported on the web. There are also limitations in using

SPC-1 such as limitation on I/O streams and characteristics

of each I/O stream [26]. To the best of our knowledge, our

SPEK is the first benchmark tool for measuring block level

performance of both DAS and networked storages with high

flexibility, accuracy, and efficiency.

Besides performance benchmarking, some research

work [27, 28, 29] concentrate on SCSI disk drive modeling.

Their interests are accurately capture detail drive specifica-

tion to support better scheduling or build disk drive simu-

lator. Some performance characteristics such as path trans-

fer rate, controller latency, and rotation latency can be ex-

tracted from their modelings. Researchers [30] also propose

a method to improve file system performance by exploiting

storage characteristics.

5. Conclusions

In this paper, we have proposed a new benchmark tool

for block level performance evaluation of storage sys-

tems named SPEK, Storage Performance Evaluation Ker-

nel module. SPEK can be used to accurately measure both

DAS and networked storage with minimum influence of file

system and low-level buffer caches. Performance results

measured using our SPEK represent realistic and true per-

formance of data storages. Users can easily configure SPEK

to allow variety of workload characteristics to be tested and
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to collect performance metrics of interest among a number

of produced parameters. Because it runs as a kernel module,

system overheads such as system calls and context switch-

ing are minimized making SPEK a highly efficient bench-

marking tool. A Linux kernel module of SPEK has been

implemented to demonstrate its functionality and effective-

ness.

We plan to make the source code available to the

public as soon as possible. Once finished, the prelimi-

nary SPEK code can be downloaded from our web site

(http://www.ele.uri.edu/research/hpcl/).
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