
Achieving Computational I/O Efficiency in a High Performance Cluster Using
Multicore Processors

�

Li Ou, Xin Chen, Xubin (Ben) He
Department of Electrical and Computer Engineering

Tennessee Technological University, Cookeville, TN 38505, USA�
lou21, xchen21, hexb � @tntech.edu

Christian Engelmann, Stephen L. Scott
Computer Science and Mathematics Division

Oak Ridge National Laboratory,Oak Ridge, TN 37831, USA�
engelmannc,scottsl � @ornl.gov

Abstract

Cluster computing has become one of the most pop-
ular platforms for high-performance computing today.
The recent popularity of multicore processors provides
a flexible way to increase the computational capabil-
ity of clusters. Although the system performance may
improve with multicore processors in a cluster, I/O
requests initiated by multiple cores may saturate the
I/O bus, and furthermore increase the latency by issu-
ing multiple non-contiguous disk accesses. In this pa-
per, we propose an asymmetric collective I/O for mul-
ticore processors to improve multiple non-contiguous
accesses. In our configuration, one core in each mul-
ticore processor is designated as the coordinator, and
others serve as computing cores. The coordinator is
responsible for aggregating I/O operations from com-
puting cores and submitting a contiguous request. The
coordinator allocates contiguous memory buffers on
behalf of other cores to avoid redundant data copies.

�
This research was partially sponsored by the Mathematical,

Information,and Computational Sciences Division; Office of Ad-
vanced Scientific Computing Research; U.S. Department of En-
ergy. It was also partially sponsored by the Laboratory Directed
Research and Development Program of Oak Ridge National Labo-
ratory,which is managed by UT-Battelle, LLC under Contract No.
DEAC05-00OR22725. The work performed at Tennessee Tech
University was partially supported by the U.S. National Science
Foundation under Grants No. OCI-0453438 and CNS-0617528.

1 Introduction

Cluster computing [6] has become one of the most
popular platforms for high-performance computing to-
day, because of its high performance-cost ratio. In
high-performance computing (HPC) clusters, standard
message-passing systems, such as Message Passing
Interface (MPI) or Parallel Virtual Machine (PVM),
are widely used to achieve parallelism in applications.
A complex scientific computation can be decomposed
into multiple smaller parallel tasks, and each task is
computed by a MPI process. Generally, the idea case is
that the number of parallel processes spawned for the
computation is equal to the number of physical proces-
sors in the cluster, therefore parallel tasks are executed
faster in a cluster with more processors.

Traditionally, we scale a cluster by increasing the
number of computing nodes, or adapting SMP archi-
tecture in each node. The recent popularity of multi-
core processors provides a flexible solution to increase
the computational capability of clusters. Parallel ap-
plications can benefit from multicore processors [4, 7],
because each core is a physical processor, and multi-
plying the number of processors simply multiples the
number of processes spawned for the parallel tasks,
and allowing such tasks to be executed faster. Mean-
while, the utilization of the processors increases with
multicore processors.

Although the system performance may improve by

1



Figure 1. Simple parallel I/O in multicore pro-
cessors.

applying multicore processors in a cluster, issuing si-
multaneous processes may introduce overhead. Previ-
ous research [2] shows that for parallel applications
which are sensitive to cache size or require inten-
sive communications [5], the system may suffer from
performance degradation after enabling multiple logi-
cal processors. Multicore processors experience same
problems because multiple cores within one die share
the same L2 cache, memory, and I/O channels, and
thus exacerbate the resource contentions. First, multi-
cores of the same physical CPU compete for the same
L2 cache, which potentially generates more cache-
miss, and thus stalls processors more frequently. Sec-
ond, memory access speed is limited by the shared
memory bus and multiple processes running on the
same die may increase memory contention. Finally,
more I/O requests may saturate I/O the bus, and fur-
thermore increase the latency by issuing multiple non-
contiguous disk accesses.

The current design, multicores are configured sym-
metrically from the perspective of computational ca-
pacity. In a typical parallel application, each process
is responsible to process one part of the whole dataset:
first it reads the correspondent data from the paral-
lel file system, processes data locally, then writes the
data back to the file. Multiple symmetrical cores sub-
mit separate I/O operations independently with their
own pre-allocated buffers (Fig. 1). This results in a

Figure 2. Architecture of asymmetric compu-
tation for multicore processors.

Figure 3. Asymmetric collective parallel I/O
for multicore processors.

large number of I/O operations, each of which is of-
ten for a very small amount of data. This approach
typically performs poorly for parallel applications be-
cause of the overhead of multiple operations and non-
contiguous disk accesses. Multiple non-contiguous
disk accesses may be aggregated into contiguous ac-
cesses with collective I/O, such as the interfaces pro-
vided by MPI-IO, but there is the cost of inter-nodes
communication and in-memory permutation. It is in-
efficient, because most time, assignment of the dataset
to a process does not consider the location of the pro-
cessors: do the multiple processors physically reside
in the same node?

2



Computing Core Coordinator

char *read (file, size) �
inform coordinator with (file,size);
Barrier; /* wait for all cores*/
wait message from coordinator;
return buffer address;�

char *read (file, size) �
Barrier; /* wait for all core*/
Aggregate I/O operation;
Allocate a contiguous buffer;
send I/O read;
assign buffer to each core;
wake up each core with buffer address;
return buffer address;�

Table 1. Asymmetric collective I/O operations of computing core and coordinator.

2 Asymmetric Collective I/O for Multicore
Processors

We propose a new multicore paradigm called asym-
metric computation (Fig. 2). In our configuration, one
core in each multicore processor is designated as the
coordinator, and others serve as computing cores. The
efforts of I/O operations from computing nodes are co-
ordinated by the coordinator with asymmetric collec-
tive I/O. In asymmetric collective I/O, the coordina-
tor aggregates multiple I/O requests from computing
cores to one contiguous request with a large buffer and
sends it to the storage in one time (Fig. 3). The com-
puting core does not really commit I/O requests to the
storage. They inform the coordinator with their I/O
operation parameters. After gathering I/O informa-
tion from each computing core, the coordinator tries to
combine multiple I/O operations into one contiguous
access with data sieving [3]. The coordinator sends the
new requests behalf of all cores. One of the important
issues of asymmetric collective I/O is that the comput-
ing cores do not need to allocate buffers for their I/O
system calls. After aggregating the I/O operations, the
coordinator allocates one buffer for each contiguous
request. Once I/O operations complete, the coordina-
tor informs the computing cores with address of buffer
containing data they request. This design avoids ad-
ditional memory copies of the buffers allocated by the
computing cores and buffers the coordinator uses to
submit I/O operations. Table 1 gives an example of
how file read operation is processed by the computing
cores and the coordinator.

The asymmetric collective I/O may be utilized as

Figure 4. Hierarchy collective I/O for multiple
nodes with multicore processors.

intra-node optimizations for a hierarchical inter-node
collective I/O (Fig. 4). If a node is configured with
multiple multicore processors, the coordinators from
each processor negotiate with each other, aggregate
I/O requests across processors, and chose one coor-
dinator to send requests, on behalf of all cores of the
node. The I/O operations may be further optimized by
using collective I/O of MPI-IO, if multiple nodes with
multicore processors are involved. One coordinator
from each node first aggregates I/O requests of mul-
tiple cores within the node, then the coordinators rep-
resenting each node use MPI-IO to further aggregate
I/O operations, and permute data among nodes. After
the completion of inter-node collective I/O, the coor-
dinator distributes data to multiple cores by assigning
them with a correspondent buffer address.

In most parallel applications, each process is as-
signed to process one part of whole dataset during the
initialization phase. Instead of waiting the moment

3



Figure 5. Software architecture of asymmetric
collective I/O.

of issuing the I/O requests to convert non-contiguous
disk accesses to contiguous accesses with collective
I/O, I/O performance may be further improved by as-
signing contiguous dataset to the processors belonging
to the same node. Multicore processors in the same
node process adjoint data, therefore with simple syn-
chronous mechanism, when multiple cores issue I/O
requests at the same time, the adjoint datasets belong-
ing to different cores are combined into a larger con-
tiguous I/O access, and then sent to a disk server in one
time. At the initialization phase, a contiguous dataset
is assigned to a node, and inside the node, the coor-
dinator eventually decomposes the dataset and assigns
the subset to each core.

3 Implementation and Evaluation

We are implementing the asymmetric collective I/O
and integrating it into MPI-IO packages (Fig. 5). The
interface to applications is same as collective IO sys-
tem call provided by MPI-IO. Our add-in component
distinguishes between intra-node and inter-node col-
lective I/O and optimizes I/O performance for multi-
core processors. Once the proof-of-concept prototype
is complete, we plan to use parallel I/O benchmark,
such as NASA BTIO benchmarks [1], to evaluate our
design under various configurations of multiple nodes
with multicore processors.

4 Conclusions and Future Work

In this paper, we propose an asymmetric collective
I/O for multicore processors to improve multiple non-
contiguous accesses. In our configuration, one core

in each multicore processor is designated as coordi-
nator, and others are computing cores. The comput-
ing core does not really commit I/O requests to stor-
age. The coordinator aggregates multiple I/O opera-
tions into one contiguous access with data sieving on
behalf of computing cores. The coordinator allocates
contiguous memory buffers for other cores to avoid re-
dundant data copies.

The asymmetric collective I/O may be further uti-
lized as intra-node optimizations for a hierarchical
inter-node collective I/O.

References

[1] Nasa ames research center, nas application i/o (BTIO)
benchmark. 1996.

[2] O. Celebioglu, A. Saify, T. Leng, J. Hsieh,
V. Mashayekhi, and R. Rooholamini. The performance
impact of computational efficiency on HPC clusters
with hyper-threading technology. Proc. of IPDPS,
2004.

[3] A. Choudhary, R. Bordawekar, M. Harry, R. Krish-
naiyer, R. Ponnusamy, T. Singh, and R. Thakur. PAS-
SION: Parallel and scalable software for input-output.
report num. SCCS-636, ECE Dept., NPAC and CASE
Center, Syracuse University, pages 38–54, September
1994.

[4] D. Geer. Industry trends: Chip makers turn to multicore
processors. IEEE Computer, 38(5), May 2005.

[5] X. He, L. Ou, M. Kosa, S. Scott, and C. Engelmann.
A unified multiple-level cache for high performance
storage systems. International Journal of High Per-
formance Computing and Networking, 5(1), 2007.

[6] M. Seager. Linux clusters for extremely large scien-
tific simulation. In IEEE International Conference on
Cluster Computing, 2003.

[7] W. Shi, H.-H. S. Lee, L. Falk, and M. Ghosh. An inte-
grated framework for dependable and revivable archi-
tecture using multicore processors. Proceedings of the
33rd Annual International Symposium on Computer
Architecture, June 2006.

4


