
A Unified, Low-overhead Framework to Support Continuous
Profiling and Optimization

Ming Zhang
�

Xubin He
�

Qing Yang
�

�
Electrical and Computer Engineering

�
Electrical and Computer Engineering

University of Rhode Island Tennessee Technological University
Kingston, RI 02881 Cookeville, TN 38505�

mingz, qyang � @ele.uri.edu hexb@tntech.edu

Abstract

We propose a unified, low-overhead framework (ULF)
to support continuous system profiling and optimization
based on a specifically designed embedded board. Instead
of building a new profiling tool from scratch, ULF provides
a unified interface to integrate various existing profiling
tools and optimizers, and helps to easily build future
tools. ULF uses an embedded processor to offload tasks of
post-processing profiling data, which reduces system over-
head caused by profiling tools and makes ULF especially
suitable for continuous profiling on production systems.
By processing the profiling data in parallel and providing
feedback promptly, ULF supports on-line optimization.
Our case study on I/O profiling demonstrated that ULF-
enhanced profiling tool dramatically reduces overhead
making continuous profiling on production systems feasible.

Key words: Embedded system, continuous profiling,
on-line optimization, performance evaluation

1 Introduction

Program profiling [1, 2, 3, 4, 5, 6] is an important mech-
anism to observe system activities and profiling-based opti-
mization has become a key technique in program optimiza-
tion [7]. Extensive research has been reported in the lit-
erature in program profiling including software techniques
[3, 8, 9, 10, 11, 12, 13] and hardware techniques [4, 14, 15]
to list a few. One of the important issues in profiling is pro-
filing overheard. Some of existing studies [7, 15] attempt
to minimize profiling overheads to allow runtime profiling
and optimization that are very important because variations
of program behaviors at end users can be substantial. Pro-
filing and optimization overhead is mainly caused by:

Gathering raw data: Profiling tools do sampling to
gather raw data using instrumentation code [3, 8, 9] or in-
terrupts [13, 16].

Recording raw data: Profiling tools save the generated
raw data to local disks or system buffer. Vtune [10] transfers
profiling data to a remote system via network. Saving data
to a local storage device causes contention with systems’
original I/O activities while transferring via network causes
skew for network activity profiling.

Processing raw data: Profiling tools usually delay pro-
cessing data until enough profiling data are gathered. On-
line optimizers such as Morph [13] use system idle time to
analyze data.

Feedback: Applying optimized feedback solutions to
host systems.

To minimize profiling overhead and support continuous
profiling and optimization at runtime, we propose a unified
framework for low overhead profiling (ULF). Our approach
is to use a specifically designed embedded processor board
to offload most of profiling and optimization functions from
the host CPU. As a result, profiling and optimization oper-
ations are done in parallel to applications to be optimized
making it possible to carry out runtime profiling and opti-
mization on production systems with minimum overhead.
Our ULF is a general framework with a set of easy-to-
use APIs allowing any existing or newly proposed profiling
and optimization techniques to make use of ULF for low
overhead profiling and optimization on production systems.
Functions running on the ULF board are in forms of plug-
ins to be loaded by a user at run time. They do not gener-
ate overhead on host system and thus do not degrade host
system performance. We have carried out a case study of
applying an existing profiling tool on this ULF board with
very little change on the tool to make it work on the board.
Our experiment results show that ULF is highly effective
and reduces overhead dramatically from 40% to 0.41%.

The remainder of this paper describes ULF in more de-
tail. Section 2 presents the architecture and design of the
framework. Section 3 gives a case study of I/O profiling us-
ing our ULF, and presents the measured results. Section 4
discusses cost and integration of ULF. Section 5 examines
related work and Section 6 concludes the paper.

2 Design of ULF

ULF is a hybrid of hardware and software containing
the following three main components:

ULF Board. We designed an embedded board that car-
ries out main functionality of ULF. A ULF board contains
an embedded processor that provides computing power to
whole system and offloads the processing task of raw data
from a host processor. In this way, we turn the post-
processing to parallel processing from which on-line opti-
mization can benefit.

Software running on a host system. This software pro-
vides APIs for other profiling tools to utilize the functional-
ity of ULF. It runs on host systems as a library or a kernel
module that exports routines for profiling tools running in
kernel space.

Software running on ULF Board. The software in-
cludes an embedded operating system to drive ULF Board,
a library to provide helper routines to ease the post-
processing on raw data, and plug-ins to help profiling tools
to implement user-defined functionalities.

2.1 Hardware design

Primary PCI Bus

Embedded Processor

SRAM

Flash ROM

Flash Bus

Sec. PCI Bus

Secondary PCI Slot

Ethernet Port
Serial Port

Control Logic

Figure 1. ULF Board block diagram

The hardware design is essential to the whole ULF. It is
an embedded system board that plugs into host system’s PCI
slot as a normal PCI device. The detailed functional blocks
are shown in Figure 1. ULF provides data transfer rate up to
528 MB per second with 64 bits 66MHz PCI bus. An em-
bedded processor is used to process raw profiling data. The
processor also supports Message Unit that provides a mech-
anism for transferring data between a host system and the

embedded processor on ULF board. The Message Unit noti-
fies the respective system of the arrival of new data through
an interrupt. Both host systems and ULF can process the
interrupts via registered handlers. Like many other embed-
ded systems, the Message Unit in our design supports com-
mon functionalities such as Message Registers, Doorbell
Registers, Circular Queues and Index Registers. A suffi-
cient amount of RAM is included on the ULF board. The
RAM is divided into two parts. One part of the memory is
used privately to store code and data used by the embed-
ded processor while another piece of the RAM is shared be-
tween the local embedded processor and the host processor.
A Flash ROM on board contains the embedded operating
system code and data processing routines. A ULF Board
also contains an Ethernet port and a serial port that can pro-
vide connections with external systems. A secondary PCI
slot is used to provide flexible expandability to this board.
For example, a disk connected to ULF board through the
secondary PCI can be used to save profiling data for post-
processing. The system timer and other control functions
are implemented by the control logic as shown in Figure 1.

2.2 The Interface to Host System

When a ULF Board is plugged into a host PCI slot, it
acts as a normal PCI device and exports several registers
and a region of I/O memory. Although it can be accessed
via low-level PCI-specific APIs directly, we provide a set of
upper-level APIs to encapsulate the low-level details of PCI
devices in order to ease the use of ULF Board. Profiling
tools can use these upper-level APIs to finish all tasks with-
out knowing the low-level hardware details. These APIs fall
into following categories.

Resource Management APIs. Before using ULF board,
profiling tools need to initialize the board and request re-
sources from it. These resources include I/O memory, reg-
isters, Message Units, DMA channels, and etc. After finish-
ing using the board, profiling tools also need release these
resources. There is a request and release routine corre-
sponding to each kind of resource.

Data Transfer APIs. These APIs are used to transfer
data between a host processor and ULF Board. Different
read/write routines are provided to transfer data in differ-
ent size units such as Byte, Word, and DWORD. We also
provide “memcpy” for larger size data transfer operations.

Message APIs. The message APIs are encapsulation
of the Message Unit. Through these APIs, we provide a
mechanism to exchange information between a host proces-
sor and an embedded processor. Since each Message Unit
is also a hardware resource, to request and free the use of
Message Unit is accomplished via corresponding resource
management APIs. Profiling tools can use message APIs
to send user-defined messages to the embedded processor.

plugin_init() reg_event_handler()

plugin_cleanup unreg_event_handler()

handler System APIs

ULFPlugin

ins_plugin

rm_plugin

Data Pointer
Function Call

Functions

Legend

Figure 2. Interaction between Plug-ins and Boards

They may also register callback routines via message APIs,
and these routines are invoked when corresponding process
running on the embedded processor send messages back to
them.

Other helper APIs. Besides above APIs, there are also
other APIs providing helper functions, such as error han-
dling routines and status reporting routines.

2.3 ULF Plug-ins

After raw profiling data are transferred from a host to
ULF Board, we need a unified mechanism to support rapid
data processing and provide effective feedback. This is
achieved by plug-ins as shown in Figure 2, which is very
similar to how a Linux system manages its kernel modules.

Each profiling tool either uses ULF-predefined plug-ins
to finish common profiling or provides a plug-in to ULF in
order to finish its specific functionality. For example, a pro-
filing tool may save the raw profiling data to a disk for later
use. Or an on-line optimizer may analyze raw profiling data,
deduct instructions that guide how to provide optimization
and feedback to the host system on the fly. The optimizer
may even use the instructions to guide cross-compile com-
piler running on ULF Board to compile optimized code for
host system and apply that optimized code to host directly.
All these specific functionalities are determined by profil-
ing tools and implemented as specific plug-ins. Currently,
ULF provides a common set of plug-ins to save raw data on
attached storage devices.

ULF provides a unified interface to plug-ins by several
APIs. Each plug-in uses API “ins plugin” to link with the
system on ULF Board and register at least one event handler
using API “reg event handler”. This handler will be called
when the system receives message from a host. A plug-in
can transfer some data to a host and notify it by using the
API ”send data” with the data address and the data length.
Then the corresponding registered call back routine on the
host fetches the data and carries out its specific task. After
finishing all tasks, the plug-in uses “unreg event handler”
to unregister all previously registered handlers and unloads

itself by “rm plugin”.

2.4 Interactions between the profiling tools and
ULF

A ULF provides a flexible unified interface to be uti-
lized by profiling tools and it is important to clarify how
ULF interacts with different profiling tools that have spe-
cific requirements and functionalities. Using a continuous
on-line optimizer as an example, let us see how an optimizer
interacts with ULF.

Initial stage. This stage initializes ULF on both the
host and ULF Board. The optimizer locates ULF Board and
allocates I/O memory resource using resource management
APIs. The optimizer also registers a call back routine in the
host in order to get feedback from ULF. To process raw pro-
filing data on-line, a plug-in for the optimizer is registered
on ULF Board.

Running stage. The optimizer runs on the host and
keeps gathering raw profiling data. It may transfer these
data to the board continuously or in a larger unit using data
transfer API. After each data transfer, the optimizer uses
the message API to notify ULF Board that the data is ready,
which is a specific interrupt. The system on ULF Board
receives this message and forwards it to the corresponding
plug-in. Then the plug-in is invoked with this message and
the data pointer, and processes the raw data according to
the user-defined criteria. After the plug-in gathers enough
raw data, finishes processing these data, and gets optimiza-
tion solutions, it notifies the host system. The call back
routine in the host receives this notification and applies op-
timization solutions to system. This finishes one optimiza-
tion loop. This step keeps running until the completion of
profiling and optimization.

Cleanup stage. When profiling and optimization are
finished, the optimizer uses a message API to send an end
signal to ULF Board. The plug-in on the board will finish
its processing and send an acknowledge message to the host.
Then the optimizer releases resources and exits. The plug-
in also unloads from ULF.

2.5 Example Applications

With its unified interface, low overhead data collection,
and sufficient computing power, our ULF can be utilized in
many system level profiling and optimization environments.
In addition to the case study that we carry out in the follow-
ing section, there are many potential applications that can
be benefited from ULF.

Low Overhead Profiling. Profiling tools gather raw
profiling data on a host as usual and transfer the data to
ULF Board. Then the plug-ins process and analyze the data
in parallel. They can also store raw data or processed data
to an optional disk or send them to remote systems via a
network if network is not part of system under test. This
on-line processing is especially useful when we need a real-
time feedback to dynamically measure a system.

On-line Program Optimizer.Morph[13] is an example
to utilize ULF. Morph can provide on-line optimization to
programs, while it uses idle time of host to process profiling
data and to recompile optimized code offline. By offloading
all processing to ULF Board, we have an enhanced Morph
that allows host to keep running while processing profiling
data and recompiling optimized code on the fly. Then heavy
loaded system can also benefits from this even without sub-
stantial periods of idle time available.

On-line File System Cache Optimizer. By monitoring
dynamic file system access patterns and transferring profil-
ing data to ULF Board, an optimizer can use high accurate
although complex algorithms to predict future access pat-
terns and direct the host file system to use better cache re-
placement and prefetching policies. By offloading the com-
puting of detecting and deduction algorithms, such an op-
timizer can reduce the host’s performance loss caused by
these algorithms and can use complex algorithms to obtain
larger improvement while the extra overhead caused by al-
gorithms is moved to ULF.

3 A Case Study: I/O Profiling

Since the gap between I/O systems and processors
keeps increasing, I/O systems frequently become bottle-
necks. In order to optimize I/O systems, it is essential to
carry out I/O profiling to characterize I/O system behaviors.
For I/O profiling, there are many system events that need
to be recorded, which leads to high volume of raw profil-
ing data. How to store these data efficiently is an important
issue to I/O profiling tools. Most existing profiling tools
write raw profiling data to local storage for post-processing,
which adds extra burden to already heavy-loaded storage
systems and also causes skew on measured profiling data.
Considering this overhead, people can only carry out I/O
profiling during a short period. By offloading overheads

caused by profiling tools, ULF supports continuous I/O pro-
filing in production systems.

3.1 Methodology and Experimental Setup

We have implemented a ULF prototype based on an In-
tel IOP310 processor under Linux platform. We export a set
of APIs to host systems by a kernel module. We modified a
popular I/O profiling tool, LTT [17], to utilize our ULF. We
measured and compared the results of popular benchmarks
running under different LTT configurations. We modify the
LTT and let LTT operate in three different ways. All these
modifications only involve minor change on LTT code and
we will discuss this integration cost issue later. Along with
an unmodified Linux kernel, we have four different config-
urations as follows:

NTNR (Neither Traced Nor Recorded). This is the orig-
inal Linux 2.4.16 kernel without any overhead. This config-
uration is the baseline for comparison purpose.

TNR (Traced and Not Recorded). This configuration
uses modified Linux 2.4.16 kernel and logs system events.
All these events are discarded when the event buffer is full
so it does not generate any recording overheads.

TDR (Traced and Disk Recorded). This is a full-
featured LTT system with modified Linux 2.4.16 kernel.
It logs all system events and records events to a local disk
when the event buffer is full.

TFR (Traced and ULF Recorded). This is a ULF
enhanced full-featured LTT system with modified Linux
2.4.16 kernel. It logs all events and records events using
ULF when the event buffer is full.

The first benchmark program we used in our test is
PostMark, a popular file system benchmark developed by
Network Appliance, and used by many researchers [18, 19].
It measures performance in terms of transaction rates in an
ephemeral small-file environment by creating a large pool
of continually changing files. PostMark generates an initial
pool of random text files and carries out a specified num-
ber of transactions. Each transaction consists of a pair of
smaller transactions that are chosen randomly. On comple-
tion of each run, a report is generated showing some met-
rics such as elapsed time, transaction rate and so on. An-
other benchmark we used is IoZone, which is a widely used
[20, 21] file system benchmark tool. The benchmark gener-
ates and measures a variety of file operations carried out on
a single large file.

We carried out experiments on a Dell PowerEdge 1400
server with hardware configuration as listed in Table 1. We
ran all tests on the hardware RAID that consists of 4 Quan-
tum SCSI disks using RAID5 configuration and recorded
raw profiling data to a separate IBM SCSI disk via indepen-
dent SCSI controller.

Components Description
CPU Pentium III 866
Memory 256MB PC133
SCSI Controller Adaptec AIC7899
RAID Controller LSI MegaRAID
SCSI Disks Quantum Atlas10K2-TY184L

IBM DNES-309170W

Table 1. Hardware Configurations

3.2 Measured Results

In order to measure overheads caused by different LTT
configurations, our first experiment is to run PostMark with
20K initial files and different transactions ranging from
150K to 300K. All other parameters of PostMark are set as
default. The read and write data traffic generated by these
transactions are listed in Table 2, which are much larger
than the system RAM size (256MB).

Data Read (MB) Data Written (MB)
150K 465.84 600.33
200K 629.36 763.14
250K 793.88 926.05
300K 956.59 1087.95

Table 2. PostMark Data Traffic

PostMark results are shown in Figure 3. Figure 3(a)
shows the total elapsed time for each LTT configuration
against different transactions. We treat NTNR as our base-
line here since it is unmodified Linux kernel without any
extra overhead. We can see that TNR, which discards the
raw profiling data when the event buffer is full, shows un-
noticeable difference with the base configuration. The total
elapsed time of TDR that writes raw profiling data to a local
disk is always much longer than the baseline configuration.
Compared to TNR, the extra operation is to write raw data
to a local disk and it becomes the main cause of the over-
head. We also noticed that TFR does not show much ex-
tra overhead by utilizing ULF. Using the total elapsed time,
we compute overheads of different LTT configurations as
shown in Figure 3(b) by setting our baseline configuration
as 0. We find that compared to the baseline configuration,
both TNR and TFR show less than 1.2% overhead while
TDR shows 32.98%, 35.43%, 38.34% and 42.86% over-
heads corresponding to different transactions, respectively.
Since the only difference between TDR and TFR is to use
a local disk or ULF to persist the raw profiling data, ULF-
enhanced LTT reduces overheads brought to the host system
from more than 32% to less than 1.2%. In Figure 3(c), we

observed that NTNR, TNR, and TFR show similar through-
put in all scenarios while TDR shows much lower through-
put. We computed the performance improvement and plot-
ted it in Figure 3(d). It is obvious that the performance gain
of using ULF ranges from 31% to 42% under different num-
ber of transactions.

150K 200K 250K 300K
0

500

1000

1500
(a) Total Time

se
co

nd

NTNR
TNR
TDR
TFR

150K 200K 250K 300K
0

10

20

30

40

50
(b) Relative Overhead

%

150K 200K 250K 300K
0

100

200

300

400
(c) Throughput

Tr
an

sa
ct

io
ns

 p
er

 s
ec

on
d

150K 200K 250K 300K
0

10

20

30

40

50
(d) Performance Improvement

%

Figure 3. PostMark with different transactions
under LTT

Our next experiment is to measure the influence of
read/write ratio by changing the write biases of PostMark
while keeping the initial files as 20K and total transactions
as 200K unchanged. Higher write bias means more write
operations. We computed the overheads of different LTT
configurations under different PostMark write biases and pi-
loted results in Figure 4(a). The overhead of TDR changes
dramatically from 4.6% to 59.5% while that of TNR or TFR

1 3 5 7 9
0

10

20

30

40

50

60
(a) Relative Overhead

%

1 2 3 4 5 6 7 8 9
0.6

0.8

1

1.2

1.4
x 10

5

O
pe

ra
tio

n
C

ou
nt

(b) Real Write Operation Count

Figure 4. PostMark with different write biases

almost keep unchanged with the change of write bias from
1 to 9. In order to find the reason, we modified the Linux
kernel and add two counters to record the number of phys-
ical read and write operations to the RAID. These num-
bers are different from the count of read and write trans-
actions since all transactions are handled by the file system
layer and some read and write transactions can be satisfied
by the file system cache, which does not generate physical
disk operations. By using these two counters, we measured
numbers of physical read and write operations of PostMark
under different write biases. We find that for all differ-
ent write biases, the numbers of read operations are almost
same (around 720) while the numbers of write operations
change dramatically as listed. When the write bias changes
from 9 to 1, the write operations count change from 130,172
to 66,710. Since the main overhead caused by the TDR is
the I/O subsystem contention between host system original
I/O operations and profiling data write operations, we be-
lieve that with the decrease of the write bias, original write
operations of host system also decrease, which relieves I/O
contention. Because the overhead of TFR changes little
with the load of I/O subsystem, we believe that TFR is more
suitable for I/O profiling than TDR.

Our third experiment is to test different LTT configura-
tions using IoZone. We run IoZone with different data set
and record the total elapsed time for each LTT configura-
tion. Figure 5 shows the relative overhead of different con-
figurations on average. The results show that TFR reduces
the overhead of TDR from 5% to less than 1% on average,
which is around 4 times improvement. Using our read/write
counter, we find that IoZone generates around 179 trans-

NTNR TNR TDR TFR
0

1

2

3

4

5

6

LTT Configurations

O
ve

rh
ea

d
(%

)

Figure 5. IoZone under different LTT configu-
rations

actions per second as opposed to around 233 transactions
per second generated by PostMark for the write bias of 5.
Since IoZone generates much less requests than PostMark,
the overhead under IoZone is less than that under PostMark.

In all above experiments, there is no apparent increase
in number of system interrupts. Although our ULF Board
uses interrupts to communicate with host system, it also re-
duces the number of disk controller interrupt implying that
the communication between host system and ULF does not
introduce new overhead to host system.

4 Cost and Usability

Compared to traditional profiling tools usually in the
form of software, ULF uses additional hardware that in-
creases cost. But we believe that this cost is worthwhile
from our experience of building the prototype of ULF. The
basic prototype board costs less than $200 and contains an
Intel IOP310 processor, 128M memory, and a 100M Eth-
ernet controller. With the optional IDE disk controller and
a small size IDE disk, the total cost can be less than $300.
The software running on board is openly available embed-
ded Linux and other open source tools. Since our ULF is
especially suitable for high-load server systems, compared
to the total system cost, ULF is still a cost-effective solu-
tion.

Another important issue needs to be considered is how
easily ULF can be integrated into existing or new profiling
tools and optimizers. Since our ULF provides a unified in-
terface and encapsulates low-level hardware details in API
routines, it is very easy to be integrated. In our case study,
we used the source code of LTT and only modified less than
20 lines of code in order to utilize ULF. A simple plug-in
with less than 150 lines of code runs on ULF Board and
its function is to save raw profiling data to disk. All these
works are finished in one day after understanding the source
code of LTT. So we believe that with the source code of pro-
filing tool in hand, this will not be a big issue.

5 Related work

There are many profiling tools reported in the literature.
Digital Continuous Profiling Infrastructure (DCPI) [12] is a
profiling system that monitors system activity continuously
on production systems. Morph [13] provides a framework
for automatic collection and processing of profile informa-
tion and profile-driven optimizations. Both tools support
continuous profiling and share some of the characteristics
of ULF. DCPI provides accurate instruction level informa-
tion, attributing dynamic stalls to the instructions that ac-
tually incur those stalls. DCPI also uses hardware-specific
performance counters, which limits its usage. The Morph
system provides on-line optimization to program by mak-
ing use of idle time so that it can process profiling data and
recompile optimized code offline.

Multi-ICE and MultiTrace [14] are two debug tools
for ARM core based system on chip (SOC) device, where
Multi-ICE is an ARM’s JTAG-based in-circuit emulator.
MultiTrace is used to passively collect data from ARM
SOC. Although Multi-ICE and MultiTrace share some fea-
tures with ULF, such as real-time and embedded system
support, ULF provides continuous profiling and on-line op-
timization while Multi-ICE and MultiTrace are mainly used
for debug purpose.

There are several hardware based profiling techniques
such as the programmable co-processor proposed by Zilles
and Sohi [15] that assists profiling by performing local post-
processing on the profiling data, thereby reducing the over-
head of collecting each data sample. Conte et al [22] pro-
posed a hardware-based profiling using traditional branch
handling hardware to generate profile information in real
time. Merten et al [4] presented a framework for identifying
program hot spots for run-time optimization. A small-sized
frequently active region of code (hot-spot) is detected by
the hot spot detector and used to support runtime optimiza-
tion. All these hardware based profiling techniques aimed
at instruction-level CPU profiling whereas ULF provides a
tool for overall system profiling by using an embedded pro-
cessor board that can be plugged into a system bus such as
a PCI or PCI-X.

Using an embedded board, ULF reduces the overhead
of many existing profiling tools. In addition, ULF reduces
requirement of system resources such as host memory, net-
work bandwidth, and disk I/O that are already overloaded
by offloading the post-processing proofing data to ULF
board. Both existing and newly proposed profiling tools
can make use of ULF to off load profiling and optimization
functions from host system and perform runtime optimiza-
tion in production systems.

6 Conclusions

In this paper we have proposed a unified low-overhead
framework (ULF) that helps profiling tools to save profiling
data rapidly and perform run-time parallel processing. We
provide a set of APIs to allow an easy integration of profil-
ing tools with our ULF. By offloading the post-processing
of profiling data, ULF supports on-line optimization and
parallel processing, and dramatically reduces the overhead
caused by profiling tools. We have conducted an extensive
case study for I/O profiling. The measured results show that
our framework reduces the system overhead caused by the
existing profiling tool LTT from 40% to 0.41%.

Areas of future investigation include issues related op-
timizing the framework APIs, designing algorithms for sys-
tem optimizers, and developing a full-feature ULF.

Acknowledgments

This research is sponsored in part by National Science
Foundation under grants MIP-9714370 and CCR-0073377.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Sci-
ence Foundation. The second author’s research is partially
supported by the Manufacturing Center at Tennessee Tech
University.

References

[1] P. Crowley and J.-L. Baer, “On the use of trace sam-
pling for architectural studies of desktop applications,”
in Proceedings of the 1999 SIGMETRICS Conference,
May 1999.

[2] J. Dean, J. E. Hicks, C. A. Waldspurger, W. E. Weihl,
and G. Z. Chrysos, “ProfileMe : Hardware support
for instruction-level profiling on out-of-order proces-
sors,” in International Symposium on Microarchitec-
ture, 1997, pp. 292–302.

[3] S. Graham, P. Kessler, and M. McKusick, “Gprof: A
call graph execution profiler,” in SIGPLAN Sympo-
sium on Compiler Construction, June 1982, pp. 120–
126.

[4] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllen-
haal, and W. mei W. Hwu, “A hardware-driven profil-
ing scheme for identifying program hot spots to sup-
port runtime optimization,” in Proceedings of the 26th
International Symposium on Computer Architecture,
May 1999, pp. 136–147.

[5] S. S. Sastry, R. Bodik, and J. E. Smith, “Rapid pro-
filing via stratified sampling,” in Proceedings of the
28th International Symposium on Computer Architec-
ture (ISCA), July 2001.

[6] L. Schaelicke, A. Davis, and S. A. Mckee, “Profiling
I/O interrupts in modern architectures,” in Proceed-
ings of the 8th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommu-
nication Systems (MASCOTS), 2000.

[7] Z. Wang and M. D. Smith, “Progressive profiling: A
methodology based on profile propagation and selec-
tive profile collection,” in Proceedings of 4th Work-
shop on Feedback-Directed and Dynamic Optimiza-
tion, Dec. 2001, pp. 105–116.

[8] A. Goldberg and J. Hennessy, “Mtool: An integrated
system for performance debugging shared memory
multiprocessor applications,” IEEE Transactions on
Parallel Distributed Systems, vol. 4, no. 1, pp. 28–40,
1993.

[9] J. Reiser and J. Skudlarek, “Program profiling prob-
lems, and a solution via machine language rewriting,”
SIGPLAN Notices, vol. 29, no. 1, pp. 37–45, Jan.
1994.

[10] Intel. Vtune performance analyzers. [Online]. Avail-
able: http://developer.intel.com/software/products/
vtune/index.htm

[11] Compaq Corp. iprobe tool suite. [Online]. Available:
http://freshmeat.net/projects/iprobetoolsuite/

[12] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat,
M. R. Henzinger, S.-T. A. Leung, R. L. Sites, M. T.
Vandevoorde, C. A. Waldspurger, and W. E. Weihl,
“Continuous profiling: Where have all the cycles
gone?” ACM Transactions on Computer Systems,
vol. 15, no. 4, pp. 357–390, Nov. 1997.

[13] X. Zhang, Z. Wang, and N. Gloy, “System support for
automatic profiling and optimization,” in Proceedings
of the 16th Symposium on Operating Systems Princi-
ples, Oct. 1997, pp. 15–26.

[14] ARM Ltd. Multi-ICE and MultiTrace. [Online].
Available: http://www.arm.com/devtools/debug tools

[15] C. B. Zilles and G. S. Sohi, “A programmable co-
processor for profiling,” in Proceedings of the 7th In-
ternational Symposium on High-Performance Com-
puter Architecture (HPCA 7), Jan. 2001.

[16] T. Anderson and E. Lazowska, “Quartz: A tool for
tuning parallel program performance,” in Proceedings

of the 1990 ACM SIGMETRICS Conference, 1990, pp.
115–125.

[17] K. Yaghmour and M. Dagenais, “Measuring and char-
acterizing system behavior using kernel-level event
logging,” in Proceedings of 2000 USENIX Annual
Technical Conference, San Diego, CA, June 2000.

[18] J. L. Griffin, J. Schindler, S. W. Schlosser, J. S.
Bucy, and G. R. Ganger, “Timing-accurate storage
emulation,” in Proceedings of the Conference on File
and Storage Technologies (FAST), Monterey, CA, Jan.
2002.

[19] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer,
J. Chase, A. Gallatin, R. Kisley, R. Wickremesinghe,
and E. Gabber, “Structure and performance of the
direct access file system(DAFS),” in Proceedings of
USENIX 2002 Annual Technical Conference, Mon-
terey, CA, June 2002, pp. 1–14.

[20] A. Acharya, M. Uysal, R. Bennett, A. Mendelson,
M. Beynon, J. K. Hollingsworth, J. Saltz, and A. Suss-
man, “Tuning the performance of I/O intensive paral-
lel applications,” in Proceedings of the Fourth Work-
shop on Input/Output in Parallel and Distributed Sys-
tems. Philadelphia: ACM Press, 1996, pp. 15–27.

[21] C. Lever and P. Honeyman, “Linux NFS client write
performance,” in Proceedings of 2001 USENIX An-
nual Technical Conference, June 2001.

[22] T. Conte, B. Patel, K. Menezes, and J. Cox,
“Hardware-Based profiling: An effective technique
for profile-driven optimization,” International Journal
of Parallel Programming, vol. 24, no. 2, Feb. 1996.

