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Abstract

During the last several years, our teams at Oak Ridge
National Laboratory, Louisiana Tech University, and
Tennessee Technological University, focused on effi-
cient redundancy strategies for head and service nodes
of high-performance computing (HPC) systems in or-
der to pave the way for high availability (HA) in HPC.
These nodes typically run critical HPC system services,
like job and resource management, and represent sin-
gle points of failure and control for an entire HPC sys-
tem. The overarching goal of our research is to pro-
vide high-level reliability, availability, and serviceabil-
ity (RAS) for HPC systems by combining HA and HPC
technology. This paper summarizes our accomplish-
ments, such as developed concepts and implemented
proof-of-concept prototypes, and describes existing lim-
itations, such as performance issues, which need to be
dealt with for production-type deployment.
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1. Introduction

High-performance computing (HPC) plays a sig-
nificant role for the scientific research community as an
enabling technology. Scientific HPC applications, like
the Terascale Supernova Initiative [29] or the Commu-
nity Climate System Model (CCSM) [4], help to under-
stand the complex nature of open research questions and
drive the race for scientific discovery through advanced
computing in various scientific disciplines, such as in
nuclear astrophysics, climate dynamics, fusion energy,
nanotechnology, and human genomics.

The demand for continuous availability of HPC
systems has risen dramatically with the recent trend
towards capability computing, where scientific appli-
cations desire significant amounts of time (weeks and
months) without interruption on the fastest HPC ma-
chines available. These high-end computing (HEC) sys-
tems must be able to run in the event of failures in such
a manner that the capability is not severely degraded.

High availability (HA) computing has for a long
time played an important role in mission critical appli-
cations, such as in the military, banking, and telecom-
munication sectors. Reliability, availability, and ser-
viceability (RAS) solutions have dealt with HA issues,
such as transparent masking of failures using redun-
dancy strategies, for some time now.

The overarching goal of our research is to provide
high-level RAS for HPC systems by combining HA and
HPC technology, thus allowing scientific applications
to better take advantage of the provided capability of
HPC systems. This will invariably improve scientific



application efficiency and productivity.
In order to pave the way for HA in HPC, our re-

search initially focuses on efficient redundancy strate-
gies for head and service nodes of HPC systems. These
nodes typically run critical HPC system services, like
job and resource management. Head and service nodes
represent single points of failure and control for an en-
tire HPC system as they render it inaccessible and un-
manageable in case of a failure until repair.

With this paper, we summarize our accomplish-
ments in the area of high availability for HPC system
services, such as developed concepts and implemented
proof-of-concept prototypes. Furthermore, we describe
existing limitations, such as performance issues, which
need to be dealt with for production-type deployment.
We also briefly discuss future research plans that try to
address the most pressing issues.

2. Accomplishments

The work we performed within the scope of high
availability for head and service nodes of HPC systems
consists of three parts:

• We investigated the overall background of HA
technologies in the context of HPC, including
a more detailed problem description, conceptual
models, and a review of existing solutions.

• We developed different replication strategies
for providing active/standby, asymmetric ac-
tive/active, and symmetric active/active high avail-
ability for HPC system services.

• We implemented proof-of-concept prototypes
based on the developed replication strategies,
which offer high availability for critical HPC sys-
tem services, like job and resource management.

In the following, we give a more detailed descrip-
tion of our major accomplishments.

2.1. High Availability in the HPC Context

Traditional HA computing deals with providing re-
dundancy strategies for single services, such as a Web
server. While our research initially focuses on efficient
redundancy strategies for single services that run on
head and service nodes, the entire HPC system architec-
ture needs to be considered as components (nodes) are
distributed and interdependent. Our work investigated
the overall need and applicability of HA technologies
in the context of HPC [6].

A HPC system typically employs a significant
number of compute nodes that perform the actual par-
allel scientific computation, while a single head node
and optional service nodes handle system management
tasks, such as user login, resource management, job
scheduling, data storage, and I/O. Large-scale HPC sys-
tems may be partitioned to improve scalability and to
enable isolation in case of failures. In this case, several
sets of partition compute nodes are supported by their
respective partition service nodes, while a single head
node is still controlling the entire system.

This Beowulf cluster system architecture [26, 27]
has been proven to be very efficient as it permits cus-
tomization of nodes and interconnects to their purpose.
Many vendors adopted the Beowulf architecture either
completely in the form of HPC clusters or in part by
developing hybrid HPC solutions.

HPC systems run critical and non-critical system
services on head, service, and compute nodes. A service
is critical to its system if it can‘t operate without it. Any
such service is a single point of failure and control for
the entire system. A service is non-critical if the system
can continue to operate in a degraded mode. Typical
critical HPC system services are: user login, network
file system, job and resource management, communica-
tion services, and in some cases the OS, e.g., for single
system image (SSI) systems. User management, soft-
ware management, and programming environment are
usually non-critical system services.

If a system has a head node running critical sys-
tem services, this head node is a single point of failure
and control for the entire system. A typical head node
of a HPC system may run the following critical sys-
tem services: user login, job and resource management,
and network file system. It may also run the following
non-critical services: user management, software man-
agement, and programming environment. Most HPC
systems employ a head node, such as clusters, vec-
tor machines, massively parallel processing (MPP) sys-
tems, and SSI solutions. Examples are: Cray X1 [35],
Cray XT3 [36], IBM Blue Gene/L [3], IBM MareNos-
trum [18], and SGI Altix [1].

If a system employs service nodes running critical
system services, any such service node is a single point
of failure and control for the entire system. If a sys-
tem has service nodes running non-critical system ser-
vices, any such service node is a single point of failure
for the entire system. Service nodes typically offload
head node system services, i.e., they may run the same
critical and non-critical system services. Most of the
advanced HPC systems currently in use employ service
nodes, e.g., Cray X1, Cray XT3, IBM Blue Gene/L, and
IBM MareNostrum.



2.2. Replication Strategies for Services

We also focused on describing the principles, as-
sumptions and techniques employed in providing high
availability for services. Based on earlier work in re-
fining a modern high availability taxonomy for generic
computing systems [24, 34], we developed a high avail-
ability taxonomy for computing services and adopted it
to the complexity of HPC system architectures [6].

High availability for computing services is invari-
ably achieved through a replication mechanism appro-
priate to the service, a redundancy strategy. When a
service fails, the redundant one replaces it. The de-
gree of transparency in which this replacement occurs
can lead to a wide variation of configurations. Warm
and hot standby are active/standby configurations com-
monly used in high availability computing. Asymmet-
ric and symmetric active/active configurations are com-
monly used in mission critical applications.

• Warm Standby requires some service state repli-
cation and an automatic fail-over. The service is
interrupted and some state is lost. Service state is
regularly replicated to the redundant service. In
case of a failure, it replaces the failed one and con-
tinues to operate based on the previous replication.
Only those state changes are lost that occurred be-
tween the last replication and the failure.

• Hot Standby requires full service state replication
and an automatic fail-over. The service is inter-
rupted, but no state is lost. Service state is repli-
cated to the redundant service on any change, i.e.,
it is always up-to-date. In case of a failure, it
replaces the failed one and continues to operate
based on the current state.

• Asymmetric active/active requires two or more ac-
tive services that offer the same capabilities at tan-
dem without coordination, while optional standby
services may replace failing active services (n + 1
and n+m). Asymmetric active/active provides im-
proved throughput performance, but it has limited
use cases due to the missing coordination between
active services.

• Symmetric active/active requires two or more ac-
tive services that offer the same capabilities and
maintain a common global service state using vir-
tual synchrony. There is no interruption of service
and no loss of state, since active services run in
virtual synchrony without the need to fail-over.

These redundancy strategies are entirely based on
the fail-stop model, which assumes that system compo-

nents, such as individual services, nodes, and communi-
cation links, fail by simply stopping. They do not guar-
antee correctness if a failing system component violates
this assumption by producing false output.

2.3. Existing Solutions

Only a few solutions existed when we started our
research. Even today, high availability solutions for
HPC system services are rare.

PBS Pro for the Cray XT3 system [21] supports
high availability using a hot standby redundancy strat-
egy involving Crays proprietary interconnect for repli-
cation and transparent fail-over. Service state is repli-
cated to the the standby node, which takes over based
on the current state without loosing control of the sys-
tem. This solution has a mean time to recover (MTTR)
of practically 0. However, it is only available for the
Cray XT3 and its availability is limited by the deploy-
ment of two redundant nodes.

The Simple Linux Utility for Resource Manage-
ment (SLURM) [25, 37] as well as the metadata servers
of the Parallel Virtual File System (PVFS) 2 [22, 23]
and of the Lustre [16, 17] cluster file system em-
ploy an active/standby solution using a shared storage
device, which is a common technique for providing
service-level high availability using a heartbeat mech-
anism [12]. However, this technique has its pitfalls
as service state is saved on a shared storage device
upon modification and may be corrupted during fail-
over. An extension of this technique uses a crosswise
hot standby redundancy strategy in an asymmetric ac-
tive/active fashion. In this case, both are active ser-
vices and additional standby services for each other. In
both cases, the MTTR depends on the heartbeat inter-
val. As with most shared storage solutions, correctness
and quality of service are not guaranteed due to the lack
of commit protocols.

2.4. Implemented Proof-of-Concept Prototypes

We implemented several proof-of-concept proto-
types based on the developed replication strategies.
Taking into account the need and applicability of these
HA technologies in the context of HPC, we initially fo-
cused on the batch job management system. Ongoing
implementation efforts not described in this paper deal
with parallel file system metadata.

2.4.1. Active/Standby HA-OSCAR. High Availabil-
ity Open Source Cluster Application Resources (HA-
OSCAR) [10, 11, 15] is a high availability frame-
work for OpenPBS [20] and the PBS compliant



TORQUE [30]. OpenPBS is the original version of the
Portable Batch System (PBS), a flexible batch queuing
system developed for NASA in the early to mid-1990s.
Its service interface has become a standard in HPC job
and resource management.

HA-OSCAR supports high availability for Open
PBS/TORQUE using a warm standby redundancy strat-
egy involving a standby head node. Service state is
replicated to the the standby upon modification, while
the standby service takes over based on the current state.
The standby node monitors the health of the active node
using a heartbeat mechanism and initiates the fail-over.
However, OpenPBS/TORQUE does temporarily loose
control of the system in this case. All previously run-
ning jobs are automatically restarted.

The MTTR of HA-OSCAR depends on the heart-
beat interval, the fail-over time, and the time currently
running jobs need to recover to their previous state.
HA-OSCAR integrates with the compute node check-
point/restart layer for LAM/MPI [13], BLCR [2], im-
proving its MTTR to 3-5 seconds for detection and fail-
over plus the time to catch up based on the last applica-
tion checkpoint.

2.4.2. Asymmetric Active/Active HA-OSCAR. As
part of the HA-OSCAR research, an asymmetric ac-
tive/active prototype implementation [14] has been de-
veloped that offers HPC job and resource management
in a high-throughput computing scenario.

Two different job and resource management ser-
vices, OpenPBS and the Sun Grid Engine (SGE) [28],
run independently on different head nodes at the same
time, while an additional head node is configured as a
standby. Fail-over is performed using a heartbeat mech-
anism and is guaranteed for only one service at a time
using a priority-based fail-over policy. Similar to the
active/standby HA-OSCAR variant, OpenPBS and SGE
do loose control of the system during fail-over, requir-
ing a restart of currently running jobs controlled by
the failed head node. Only one failure is completely
masked at a time due to the 2+1 configuration. A sec-
ond failure results in a degraded operating mode with
one head node serving the entire system.

Similar to the active/standby HA-OSCAR solution,
the MTTR depends on the heartbeat interval, the fail-
over time, and the time currently running jobs need to
recover to their previous state. However, the system is
still operable during a fail-over due to the second ac-
tive head node. Furthermore, only those jobs need to be
restarted that were controlled by the failed head node.

2.4.3. Symmetric Active/Active JOSHUA. JOSHUA
[32, 33] offers symmetric active/active high availabil-

ity for HPC job and resource management services with
a PBS compliant service interface. It represents a vir-
tually synchronous environment using external replica-
tion [9] based on the PBS service interface providing
high availability without any interruption of service and
without any loss of state.

Conceptually, the JOSHUA software architecture
consists of three major parts: a server process (joshua)
running on each head node, a set of control commands
(jsub, jdel, and jstat) reflecting PBS compliant behavior
to the user, and a set of scripts (jmutex and jdone) to per-
form a distributed mutual exclusion during job launch.
Furthermore, JOSHUA relies on the Transis [5, 31]
group communication system for reliable, totally or-
dered message delivery. The JOSHUA prototype is
based on the PBS compliant TORQUE HPC job and re-
source management system that employs the TORQUE
PBS server together with the Maui [19] scheduler on
each active head node and a set of PBS mom servers on
compute nodes.

The communication between the JOSHUA com-
mands, the Transis group communication system, and
the JOSHUA server introduce an additional latency and
throughput overhead, which increases with the number
of active head nodes. However, both are in an accept-
able range as a 4-way active/active head node system
still provides a job submission latency of 349 millisec-
onds and a throughput of 3 job submissions per second.

3. Limitations

Based on theoretical analysis and practical experi-
ments, we identified several existing limitations, which
need to be dealt with for a production-type deployment
of our developed technologies:

• The developed active/hot-standby technology in-
terrupts the service during a fail-over, resulting in
a non-transparent masking of failures.

• The developed asymmetric active/active technol-
ogy has shown a similar behavior in the 2+1 con-
figuration. Generic n + 1 or n + m configurations
have not been developed yet, and the 2+1 configu-
ration uses two different service implementations.

• The developed symmetric active/active technology
has certain unnecessary stability issues due to the
reliance on the Transis group communication sys-
tem. Also, the used communication protocol has
an inherent latency problem.

• All developed prototypes need a customized
active/hot-standby, asymmetric active/active, or



symmetric active/active environment, resulting in
insufficient reuse of code.

• The interaction with compute node fault tolerance
mechanisms is limited to checkpoint/restart in case
of a non-transparent head node fail-over. There is
no solution that deals with the failure of a compute
node that communicates directly with the head
node, e.g., a PBS mom failure.

The most pressing issues for production-type de-
ployment of our developed technologies are stability,
performance, and interaction with compute node fault
tolerance mechanisms. The most pressing issue for ex-
tending the developed technologies to other critical sys-
tem services is portability.

4. Conclusions

Considering our accomplishments and their limi-
tations in providing efficient redundancy strategies for
head and service nodes of HPC systems and our path
towards high-level RAS for HPC systems, we conclude
that the developed technologies have shown promising
results. However, further improvements are needed for
production-type deployment of our prototypes.

The need for performance improvement for the ac-
tive/active solution has become apparent during the on-
going prototype implementation efforts not described
in this paper that deal with parallel file system meta-
data, where low latency and high bandwidth is essential.
The protocol used in the Transis group communication
system has an inherent latency problem. Recent work
by our group in eliminating this issue shows promis-
ing results. Future work needs to target the optimiza-
tion of group communication protocols for the actual
active/active replication use case, which involves only a
small (2-4) number of nodes and requires only a specific
set of group communication properties.

To increase the reuse of code and to simplify the
adaptation of the developed high availability technolo-
gies to other existing services, a component-based high
availability framework is needed that provides the nec-
essary high availability mechanisms and easy-to-use in-
terfaces based on the developed replication strategies.
We already performed initial work in this area [7, 8]
by developing a flexible, pluggable component frame-
work that allows adaptation to system properties, like
network technology and system scale; and application
needs, such as programming model and consistency re-
quirements. Future research needs to focus on further
development of high availability programming models
and on the implementation of respective interfaces.

Stability and performance improvement can cer-
tainly be achieved by rigorous debugging and testing of
our solutions in testbed environments as well as in real
production HPC systems. Our strategy needs to initially
target small-scale HPC systems with less critical im-
pact, i.e., we do not need to guarantee a specific quality
of service. Once our solutions are mature enough and
can guarantee a specific quality of service, large-scale
production deployment may be performed.

The most intriguing and challenging issue we have
to deal with is the combination of redundancy strategies
for head, service, and compute nodes in form of a com-
prehensive RAS solution for HPC systems. All system
components within a HPC system interact with and de-
pend on each other. Interfaces are not always clear cut.
For example, the batch job system runs on the head node
and uses a separate process on compute nodes to actu-
ally start a parallel job. If this process fails, the batch
job system looses control over the parallel job, which
itself looses the communication path to report back to.
Keeping an HPC system alive in the event of failures
in such a manner that the capability is not severely de-
graded requires a resilient redundancy strategy for such
a job start process on compute nodes.

To summarize this paper, we presented our accom-
plishments in the area of high availability for HPC sys-
tem services. We briefly described the overall need
and applicability of HA technologies in the context of
HPC, a high availability taxonomy for computing ser-
vices adopted to the complexity of HPC system archi-
tectures, a survey of existing solutions, and our proof-
of-concept prototype implementations for the the batch
job management system. We also described existing
limitations, which need to be dealt with for production-
type deployment. The most pressing issues we identi-
fied were stability, performance, portability, and inter-
action with compute node fault tolerance mechanisms.

Our future work will focus on enhancing the devel-
oped prototypes, deploying production-type solutions,
and combining our HA solutions with compute node
fault tolerance mechanisms.
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