
On Programming Models for Service-Level High Availability∗

C. Engelmann1,2, S. L. Scott1, C. Leangsuksun3, X. He4

1Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

2Department of Computer Science
The University of Reading, Reading, RG6 6AH, UK

3Computer Science Department
Louisiana Tech University, Ruston, LA 71272, USA

4Department of Electrical and Computer Engineering
Tennessee Technological University, Cookeville, TN 38505, USA

engelmannc@ornl.gov, scottsl@ornl.gov, box@latech.edu, hexb@tntech.edu

Abstract

This paper provides an overview of existing program-
ming models for service-level high availability and in-
vestigates their differences, similarities, advantages,
and disadvantages. Its goal is to help to improve
reuse of code and to allow adaptation to quality of
service requirements. It further aims at encourag-
ing a discussion about these programming models and
their provided quality of service, such as availability,
performance, serviceability, usability and applicability.
Within this context, the presented research focuses on
providing high availability for services running on head
and service nodes of high-performance computing sys-
tems. The proposed conceptual service model and the
discussed service-level high availability programming
models are applicable to many parallel and distributed
computing scenarios as a networked system‘s availabil-
ity can invariably be improved by increasing the avail-
ability of its most critical services.
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1. Introduction

Today‘s scientific research community relies on
high-performance computing (HPC) to understand the
complex nature of open research questions and to drive
the race for scientific discovery in various disciplines,
such as in nuclear astrophysics, climate dynamics, fu-
sion energy, nanotechnology, and human genomics.
Scientific HPC applications, like the Terascale Super-
nova Initiative [29] or the Community Climate System
Model (CCSM) [3], allow to model and simulate com-
plex experimental scenarios without the need or capa-
bility to perform real-world experiments.

HPC systems in use today can be divided into two
distinct use cases, capacity and capability computing.
In capacity computing, scientific HPC applications run
in the order of a few seconds to several hours, typi-
cally on small-to-mid scale systems. The main objec-
tive for operating capacity HPC systems is to satisfy a
large user base by guaranteeing a certain computational
job submission-to-start response time and overall com-
putational job throughput. In contrast, capability com-
puting focuses on a small user base running scientific
HPC applications in the order of a few hours to several
months on the largest scale systems available. Oper-
ating requirements for capability HPC systems include
guaranteeing full access to the entire machine, one user
at a time for a significant amount of time.

In both use cases, demand for continuous availabil-
ity of HPC systems has risen dramatically as capacity
system users experience HPC as an on-demand service
with certain quality of service guarantees, and capabil-
ity users require exclusive access to large HPC systems



over a significant amount of time with certain reliabil-
ity guarantees. HPC systems must be able to run in the
event of failures in such a manner that their capacity or
capability is not severely degraded.

However, both variants partially require different
approaches for providing quality of service guarantees
as use case scenario, system scale and financial cost de-
termine the feasibility of individual solutions. For ex-
ample, a capacity computing system may be equipped
with additional spare compute nodes to tolerate a certain
predictable percentage of compute node failures [30].
The spare compute nodes are able to quickly replace
failed compute nodes using a checkpoint/restart system,
like the Berkeley Lab Checkpoint/Restart (BLCR) [1]
solution, for the recovery of currently running scientific
HPC applications. In contrast, the notion of capabil-
ity computing implies the use of all available compute
nodes. Using spare compute nodes in a capability HPC
system just degrades the capability upfront, even in the
failure-free case.

Nevertheless, capacity and capability computing
systems have also similarities in their overall system
architectures, such that some solutions apply to both
use cases. For example, a single head node is typically
managing a HPC system, while optional service nodes
may offload certain head node services to provide bet-
ter performance and scalability. Furthermore, since the
head node is the gateway for users to submit scientific
HPC applications as computational jobs, multiple gate-
way nodes may exists as virtual head nodes to provide
dedicated user group access points and to apply certain
user group access policies.

A generic architectural abstraction for HPC sys-
tems can be defined, such that a group of closely cou-
pled compute nodes is connected to a set of service
nodes. The head node of a HPC system is as a special
service node. The system of users, service nodes and
compute nodes is interdependent, i.e., users depend on
service nodes and compute nodes, and compute nodes
depend on service nodes. Providing high availability
for service nodes invariably increases the overall system
availability, especially when removing single points of
failure and control from the system.

Within this context, our research focuses on provid-
ing high availability for service nodes using the service
model and service-level replication as a base concept.
The overarching goal of our long-term research effort
is to provide high-level reliability, availability and ser-
viceability (RAS) for HPC by combining advanced high
availability (HA) with HPC technology, thus allowing
scientific HPC applications to better take advantage of
the provided capacity or capability.

The goal of this paper is to provide an overview

of programming models for service-level high availabil-
ity in order to investigate their differences, similarities,
advantages, and disadvantages. Furthermore, this pa-
per aims at encouraging a discussion about these pro-
gramming models and their provided quality of service,
such as availability, performance, serviceability, usabil-
ity and applicability.

While our focus is on capability HPC systems, like
the 100 Tflop/s Cray XT4 system [35] at Oak Ridge Na-
tional Laboratory [23], in particular, the presented ser-
vice model and service-level high availability program-
ming models are applicable to many parallel and dis-
tributed computing scenarios as a networked system‘s
availability can invariably be improved by increasing
the availability of its most critical services.

This paper is structured as follows. First we dis-
cuss previous work on providing high availability for
services in HPC systems, followed by a brief overview
of previously identified research and development chal-
lenges in service-level high availability for HPC sys-
tems. We continue with a definition of the conceptual
service model and a description of various service-level
high availability programming models and their proper-
ties. This paper concludes with a discussion about the
presented work and future research and development di-
rections in this field.

2. Previous Work

While there is a substantial amount of previous
work on fault tolerance and high availability for single
services as well as for services in networked systems,
only a few solutions for providing high availability for
services in HPC systems existed when we started our
research a few years ago. Even today, high availability
solutions for HPC system services are rare.

The PBS Pro job and resource management for
the Cray XT3 [24] supports high availability using hot
standby redundancy involving Crays proprietary inter-
connect for replication and transparent fail-over. Ser-
vice state is replicated to the standby node, which takes
over based on the current state without loosing control
of the system. This solution has a mean time to recover
(MTTR) of practically 0. However, it is only available
for the Cray XT3 and its availability is limited by the
deployment of two redundant nodes.

The Simple Linux Utility for Resource Manage-
ment (SLURM) [26, 36] job and resource manager as
well as the metadata servers of the Parallel Virtual File
System (PVFS) 2 [25] and of the Lustre [19] cluster
file system employ an active/standby solution using a
shared storage device, which is a common technique for
providing service-level high availability using a heart-



beat mechanism [14]. An extension of this technique
uses a crosswise hot standby redundancy strategy in an
asymmetric active/active fashion. In this case, both are
active services and additional standby services for each
other. In both cases, the MTTR depends on the heart-
beat interval. As with most shared storage solutions,
correctness and quality of service are not guaranteed
due to the lack of strong commit protocols.

High Availability Open Source Cluster Applica-
tion Resources (HA-OSCAR) [12, 13, 18] is a high
availability framework for the OpenPBS [22] and
TORQUE [31] job and resource management systems
developed by our team at Louisiana Tech University.
It employs a warm standby redundancy strategy. State
is replicated to a standby head node upon modifi-
cation. The standby monitors the health of the ac-
tive node using a heartbeat mechanism and initiates
the fail-over based on the current state. However,
OpenPBS/TORQUE does temporarily loose control of
the system. All previously running jobs are automati-
cally restarted. HA-OSCAR integrates with the com-
pute node checkpoint/restart layer for LAM/MPI [15],
BLCR [1], improving its MTTR to 3-5 seconds for de-
tection and fail-over plus the time to catch up based on
the last checkpoint.

As part of the HA-OSCAR research, an asymmet-
ric active/active prototype [17] has been developed that
offers high availability in a high-throughput comput-
ing scenario. Two different job and resource man-
agement services, OpenPBS and the Sun Grid Engine
(SGE) [28], run independently on different head nodes
at the same time, while an additional head node is con-
figured as a standby. Fail-over is performed using a
heartbeat mechanism and is guaranteed for only one
service at a time using a priority-based fail-over pol-
icy. OpenPBS and SGE do loose control of the system
during fail-over, requiring a restart of currently running
jobs controlled by the failed node. Only one failure is
completely masked at a time due to the 2 + 1 configu-
ration. However, the system is still operable during a
fail-over due to the second active head node. A second
failure results in a degraded mode with one head node
serving the entire system.

JOSHUA [33, 34] developed by our team at
Oak Ridge National Laboratory offers symmetric ac-
tive/active high availability for HPC job and resource
management services with a PBS compliant service in-
terface. It represents a virtually synchronous environ-
ment using external replication [9] based on the PBS
service interface providing high availability without any
interruption of service and without any loss of state.
JOSHUA relies on the Transis [5, 32] group communi-
cation system for reliable, totally ordered message de-

livery. The introduced communication overhead in a
3-way active/active head node system with 99.9997%
service uptime, a job submission latency of 300 mil-
liseconds, and a throughput of 3 job submissions per
second is in an acceptable range.

Similar to the JOSHUA solution, our team at Ten-
nessee Technological University recently developed an
active/active solution for the PVFS metadata server
(MDS) using the Transis group communication system
with an improved total message ordering protocol for
lower latency and throughput overheads, and utilizing
load balancing for MDS read requests.

Further information about the overall background
of high availability for HPC systems, including a more
detailed problem description, conceptual models, a re-
view of existing solutions and other related work, and
a description of respective replication methods can be
found in our earlier publications [10, 8, 6, 7].

Based on an earlier evaluation of our accomplish-
ments [11], we identified several existing limitations,
which need to be dealt with for a production-type de-
ployment of our developed technologies. The most
pressing issues are stability, performance, and interac-
tion with compute node fault tolerance mechanisms.
The most pressing issue for extending the developed
technologies to other critical system services is porta-
bility and ease-of-use.

Other related work includes the Object Group Pat-
tern [20], which offers programming model support for
replicated objects using virtual synchrony provided by
a group communication system. In this design pattern,
objects are constructed as state machines and replicated
using totally ordered and reliably multicast state transi-
tions. The Object Group Pattern also provides the nec-
essary hooks for copying object state, which is needed
for joining group members.

Orbix+Isis and Electra are follow-on research
projects [16] that focus on extending high availability
support to CORBA using object request brokers (ORBs)
on top of virtual synchrony toolkits.

Lastly, there is a plethora of past research on group
communication algorithms [2, 4] focusing on providing
quality of service guarantees for networked communi-
cation in distributed systems with failures.

3. Service Model

An earlier evaluation of our accomplishments and
their limitations [11] revealed one major problem,
which is hindering necessary improvements of devel-
oped prototypes and hampering extending the devel-
oped technologies to other services. All service-level
high availability solutions need a customized active/hot-



standby, asymmetric active/active, or symmetric ac-
tive/active environment, resulting in insufficient reuse
of code. This results not only in rather extensive de-
velopment efforts for each new high availability solu-
tion, but also makes their correctness validation an un-
necessary repetitive task. Furthermore, replication tech-
niques, such as active/active and active/standby, cannot
be seamlessly interchanged for a specific service in or-
der to find the most appropriate solution based on qual-
ity of service requirements.

In order to alleviate and eventually eliminate this
problem, we propose a more generic approach toward
service-level high availability. In a first step we de-
fine a conceptual service model. Various service-level
high availability programming models and their proper-
ties are described based on this model, allowing us to
define programming interfaces and operating require-
ments for specific replication techniques. In a second
step, a replication framework, as proposed earlier in [7],
may be able to provide interchangeable service-level
high availability programming interfaces requiring only
minor development efforts for adding high availability
support for services, and allowing seamless adaptation
to quality of service requirements.

The proposed more generic approach toward
service-level high availability defines any targeted ser-
vice as a communicating process, which interacts with
other local or remote services and/or with users via an
input/output interface, such as network connection(s),
command line interface(es), and/or other forms of in-
terprocess and user communication. Interaction is per-
formed using input messages, such as network mes-
sages, command line executions, etc., which may trig-
ger output messages to the interacting service or user in
a request/response fashion, or to other services or users
in a trigger/forward fashion.

While a stateless service does not maintain inter-
nal state and reacts to input with a predefined output
independently of any previous input, stateful services
do maintain internal state and change it accordingly to
input messages. Stateful services perform state transi-
tions and produce output based on a deterministic state
machine. However, non-deterministic behavior may be
introduced by non-deterministic input, such as by a sys-
tem timer sending input messages signaling a specific
timeout or time. If the service internally relies on such
a non-deterministic component invisible to the outside
world, it is considered non-deterministic.

Non-deterministic service behavior has serious
consequences for service-level replication techniques as
replay capability cannot be guaranteed. Stateless ser-
vices on the other hand do not require service-level
state replication. However, they do require appropri-

ate mechanisms for fault tolerant input/output message
routing to/from replacement services.

As most services in HPC systems are stateful and
deterministic, like for example the parallel file system
metadata server, we will explore their conceptual ser-
vice model and service-level high availability program-
ming models. Non-determinism, such as displayed by a
batch job scheduling system, may be avoided by config-
uring the service to behave deterministic, for example
by using a deterministic batch job scheduling policy.

We define the state of service p at step t as St
p, and

the initial state of service p as S0
p. A service state transi-

tion from St−1
p to St

p is triggered by request message rt
p

sent to and processed by service p at step t−1, such that
request message r1

p triggers the state transition from S0
p

to S1
p. Request messages are processed in order at the re-

spective service state, such as that service p receives and
processes the request messages r1

p, r2
p, r3

p, . . . . There is
a linear history of state transitions S0

p, S1
p, S2

p, . . . in di-
rect context to a linear history of request messages r1

p,
r2

p, r3
p, . . . .
Service state remains unmodified when receiving

and processing the x-th query message qt,x
p by service

p at step t. Multiple different query messages may be
processed at the same service state out of order, such
as that service p processes the query messages rt,3

p , rt,1
p ,

rt,2
p , . . . previously received as rt,1

p , rt,2
p , rt,3

p , . . . .
Each processed request message rt

p may trigger any
number of y output messages . . . , ot,y−1

p , ot,y
p related to

the specific state transition St−1
p to St

p, while each pro-
cessed query message qt,x

p may trigger any number of y
output messages . . . , ot,x,y−1

p , ot,x,y
p related to the specific

query message.
A deterministic service always has replay capabil-

ity, i.e., different instances of a service have the same
state if they have the same linear history of request mes-
sages. Furthermore, not only the current state, but also
past service states may be reproduced using the respec-
tive linear history of request messages.

A service may provide an interface to atomically
obtain a snapshot of the current state using a query mes-
sage qt,x

p and its output message ot,x,1
p , or to atomically

overwrite its current state using a request message rt
p

with an optional output message ot,1
p as confirmation.

Both interface functions are to be used for service state
replication only. Overwriting the current state of a ser-
vice constitutes a break in the linear history of state tran-
sitions of the original service instance by assuming a
different service instance, and therefore is not consid-
ered a state transition by itself.

The failure mode of a service is fail-stop, i.e., the



service, its node, or its communication links, fail by
simply stopping. Failure detection mechanisms may be
deployed to assure fail-stop behavior in certain cases,
such as for incomplete or garbled messages.

4. Active/Standby Replication

In the active/standby replication model for service-
level high availability, at least one additional standby
service B is monitoring the primary service A for a fail-
stop event and assumes the role of the failed active
service when detected. The standby service B should
preferably reside on a different node, while fencing the
node of service A after a detected failure to enforce the
fail-stop model (STONITH concept) [27].

Service-level active/standby replication is based on
assuming the same initial states for the primary service
A and the standby service B, i.e., S0

A = S0
B, and on repli-

cating the service state from the primary service A to
the standby service B by guaranteeing a linear history
of state transitions. This can be performed in two dis-
tinctive ways, as active/warm-standby and active/hot-
standby replication.

In the warm-standby model, service state is repli-
cated regularly from the primary service A to the
standby service B in a consistent fashion, i.e., the
standby service B assumes the state of the primary ser-
vice A once it has been transferred and validated in its
entirety. Service state replication may be performed by
the primary service A using an internal trigger mecha-
nism, such as a timer, to atomically overwrite state of
the standby service B. It may also be performed in the
reverse form by the standby service B using a similar
internal trigger mechanism to atomically obtain a snap-
shot of the state of the primary service A. The latter case
already provides a failure detection mechanism using a
timeout for the response from the primary service A.

A failure of the primary service A triggers the fail-
over procedure to the standby service B, which becomes
the new primary service A′ based on the last replicated
state. Since the warm-standby model does assure a lin-
ear history of state transitions only up to the last repli-
cated service state, all dependent services and users
need to be notified that a service state rollback may have
been performed. However, the new primary service A′

is unable to verify by itself if a rollback has occurred.
In the hot-standby model, service state is replicated

on change from the primary service A to the standby ser-
vice B in a consistent fashion, i.e., using a commit pro-
tocol, in order to provide a fail-over capability without
state loss. Service state replication is performed by the
primary service A when processing request messages. A
previously received request message rt

A is forwarded by

the primary service A to the standby service B as request
message rt

B. The standby service B replies with an out-
put message ot,1

B as an acknowledgment and performs
the state transition St−1

B to St
B without generating any

output. The primary service A performs the state tran-
sition St−1

A to St
A and produces output accordingly af-

ter receiving the acknowledgment ot,1
B from the standby

service B or after receiving a notification of a failure of
the standby service B.

A failure of the primary service A triggers the fail-
over procedure to the standby service B, which becomes
the new primary service A′ based on the current state.
In contrast to the warm-standby model, the hot-standby
model does guarantee a linear history of state chance
transitions up to the current state. However, the pri-
mary service A may have failed before sending all out-
put messages . . . , ot,y−1

A , ot,y
A for an already processed

request message rt
A. Furthermore, the primary service

A may have failed before sending all output messages
. . . , ot,x−1,y−1

A , ot,x−1,y
A , ot,x,y−1

A , ot,x,y
A for previously re-

ceived query messages . . . , qt,x−1
A , qt,x

A . All dependent
services and users need to be notified that a fail-over
has occurred. The new primary service A′ resends all
output messages . . . , ot,y−1

A′ , ot,y
A′ related to the previ-

ously processed request message rt
A′ , while all depen-

dent services and users ignore duplicated output mes-
sages. Unanswered query messages . . . , qt,x−1

A , qt,x
A are

reissued to the new primary service A′ as query mes-
sages . . . , qt,x−1

A′ , qt,x
A′ by dependent services and users.

The active/standby model always requires to notify
dependent services and users about the fail-over. How-
ever, in a transparent active/hot-standby model, as ex-
emplified by the earlier mentioned PBS Pro job and re-
source management for the Cray XT3 [24], the network
interconnect hardware itself performs in-order replica-
tion of all input messages and at most once delivery of
output messages from the primary node, similar to the
symmetric active/active model.

Active/standby replication also always implies a
certain interruption of service until a failure has been
detected and a fail-over has been performed. The
MTTR of the active/warm-standby model depends on
the time to detect a failure, the time needed for fail-
over, and the time needed to catch up based on the last
replicated service state. The MTTR of the active/hot-
standby model only depends on the time to detect a fail-
ure and the time needed for fail-over.

The only performance impact of the active/warm-
standby model is the need for an atomic service state
snapshot, which briefly interrupts the primary service.
The active/hot-standby model adds communication la-
tency to every request message, as forwarding to the



secondary node and waiting for the respective acknowl-
edgment is needed. This communication latency over-
head can be expressed as CL = 2lA,B, where lA,B is the
communication latency between the primary service A
and the standby service B. An additional communi-
cation latency and throughput overhead may be intro-
duced if the primary service A and the standby service
B are not connected by a dedicated communication link
equivalent to the communication link(s) of the primary
service A to all dependent services and users.

Using multiple standby services B, C, . . . may pro-
vide higher availability as more redundancy is pro-
vided. However, consistent service state replication to
the standby services B, C, . . . requires fault tolerant mul-
ticast capability, i.e., service group membership man-
agement. Furthermore, a priority-based fail-over policy,
e.g., A to B to C to . . . , is needed as well.

5. Asymmetric Active/Active Replication

In the asymmetric active/active replication model
for service-level high availability, two or more active
services A, B, . . . provide essentially the same capability
at tandem without coordination, while optional standby
services α , β , . . . in an n+1 or n+m configuration may
replace failing active services. There is no synchroniza-
tion or service state replication between the active ser-
vices A, B, . . . .

Service state replication is only performed from the
active services A, B, . . . to the optional standby services
α , β , . . . in an active/standby fashion as previously ex-
plained. The only additional requirement is a priority-
based fail-over policy, e.g., A >> B >> .. ., if there are
more active services n than standby services m, and a
load balancing policy for using the active services A, B,
. . . at tandem.

Load balancing of request and query messages
needs to be performed at the granularity of user/service
groups, as there is no coordination between the active
services A, B, . . . . Individual active services may be
assigned to specific user/service groups in a static load
balancing scenario. A more dynamic solution is based
on sessions, where each session is a time segment of in-
teraction between user/service groups and specific ac-
tive services. Sessions may be assigned to active ser-
vices at random, using specific networking hardware, or
using a separate service. However, introducing a sepa-
rate service for session scheduling adds an additional
dependency to the system, which requires an additional
redundancy strategy.

Similar to the active/standby model, the asymmet-
ric active/active replication model requires notification
of dependent services and users about a fail-over and

about an unsuccessful priority-based fail-over.
It also always implies a certain interruption of a

specific active service until a failure has been detected
and a fail-over has been performed. The MTTR for a
a specific active service depends on the active/standby
replication strategy. However, other active services are
available during a fail-over, which interact with their
specific user/service groups and sessions and respond
to new user/service groups and sessions.

The performance of single active services in the
asymmetric active/active replication model is equiva-
lent to the active/standby case. However, the over-
all service provided by the active service group A, B,
. . . allows for a higher throughput performance and re-
spectively for a lower respond latency due to the avail-
ability of more resources and load balancing.

6. Symmetric Active/Active Replication

In the symmetric active/active replication model
for service-level high availability, two or more active
services A, B, . . . offer the same capabilities and main-
tain a common global service state.

Service-level symmetric active/active replication is
based on assuming the same initial states for all active
services A, B, . . . , i.e., S0

A = S0
B = . . ., and on repli-

cating the service state by guaranteeing a linear his-
tory of state transitions using virtual synchrony [21].
Service state replication among the active services A,
B, . . . is performed by totally ordering all request mes-
sages rt

A, rt
B, . . . and reliably delivering them to all ac-

tive services A, B, . . . . A process group communication
system is used to perform total message order, reliable
message delivery, and service group membership man-
agement. Furthermore, consistent output messages ot,1

A ,
ot,1

B , . . . related to the specific state transitions St−1
A to

St
A, St−1

B to St
B, . . . produced by all active services A, B,

. . . is unified either by simply ignoring duplicated mes-
sages or by using the group communication system for
a distributed mutual exclusion. The latter is required if
duplicated messages cannot be simply ignored by de-
pendent services and/or users.

If needed, the distributed mutual exclusion is per-
formed by adding a local mutual exclusion variable and
its lock and unlock functions to the active services A,
B, . . . . However, the lock has to be acquired and re-
leased by routing respective multicast request messages
rt

A,B,... through the group communication system for to-
tal ordering. Access to the critical section protected by
this distributed mutual exclusion is given to the active
service sending the first locking request, which in turn
produces the output accordingly. Dependent services
and users are required to acknowledge the receiving of



output messages to all active services A, B, . . . for inter-
nal bookkeeping using a reliable multicast. In case of
a failure, the membership management notifies every-
one about the orphaned lock and releases it. The lock
is reacquired until all output is produced accordingly
to the state transition. This implies a high overhead
lock-step mechanism for at most once output delivery.
It should be avoided whenever possible.

The number of active services is variable at run-
time and can be changed by either forcing an active ser-
vice to leave the service group or by joining a new ser-
vice with the service group. Forcibly removed services
or failed services are simply deleted from the service
group membership without any additional reconfigura-
tion. Multiple simultaneous removals or failures are
handled as sequential ones. New services join the ser-
vice group by atomically overwriting their service state
with the service state snapshot from one active service
group member, e. g., St

A, before receiving following re-
quest messages, e. g., rt+1

A , rt+2
A , . . . .

Query messages qt,x
A , qt,x

B , . . . may be send directly
to respective active services through the group commu-
nication system to assure total order with conflicting re-
quest messages. Related output messages . . . , ot,x,y−1

A ,
ot,x,y

A , ot,x,y−1
B , ot,x,y

B are sent directly to the dependent
service or user. In case of a failure, unanswered query
messages, e. g., . . . , qt,x−1

A , qt,x
A , are reissued by depen-

dent services and users to a different active service, e.
g., B, in the service group as query messages, e. g., . . . ,
qt,x−1

B , qt,x
B .

The symmetric active/active model also always re-
quires to notify dependent services and users about fail-
ures in order to reconfigure their access to the service
group through the group communication system and to
reissue outstanding queries.

There is no interruption of service and no loss of
state as long as one active service is alive, since active
services run in virtual synchrony without the need of
extensive reconfiguration. Furthermore, the MTTR is
practically 0. However, the group communication sys-
tem introduces a communication latency and through-
put overhead, which increases with the number of ac-
tive head nodes. This overhead directly depends on the
used group communication protocol.

7. Discussion

All presented service-level high availability pro-
gramming models show certain interface and behavior
similarities. They all require to notify dependent ser-
vices and users about failures. Transparent masking
of this requirement may be provided by an underly-
ing adaptable framework, which keeps track of active

services, their current high availability programming
model, fail-over and rollback scenarios, message dupli-
cation, and unanswered query messages.

The requirements for service interfaces in these
service-level high availability programming models are
also similar. A service must have an interface to atomi-
cally obtain a snapshot of its current state and to atom-
ically overwrite its current state. Furthermore, for the
active/standby service-level high availability program-
ming model a service must either provide the described
special standby mode for acknowledging request mes-
sages and muting output, or an underlying adaptable
framework needs to emulate this capability.

The internal algorithms of the active/hot-standby
and the active/active service-level high availability pro-
gramming models are equivalent for reliably delivering
request messages in total order to all active services. In
fact, the active/hot-standby service-level high availabil-
ity programming model uses a centralized group com-
munication commit protocol for a maximum of two
members with fail-over capability.

Based on the presented conceptual service model
and service-level high availability programming mod-
els, active/warm-standby provides the lowest runtime
overhead in a failure free environment and the highest
recovery impact in case of a failure. Conversely, ac-
tive/active provides the lowest recovery impact and the
highest runtime overhead.

Future research and development efforts need to fo-
cus on a unified service interface and service-level high
availability programming interface that allows reuse of
code and seamless adaptation to quality of service re-
quirements while supporting different high availability
programming models.
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