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ABSTRACT
In a typical distributed storage system, metadata is stored
and managed by dedicated metadata servers. One way to
improve the availability of distributed storage systems is to
deploy multiple metadata servers. Past research focused on
the active/standby model, where each active server has at
least one redundant idle backup. However, interruption of
service and loss of service state may occur during a fail-
over depending on the used replication technique. The
research in this paper targets the symmetric active/active
replication model using multiple redundant service nodes
running in virtual synchrony. In this model, service node
failures do not cause a fail-over to a backup and there is
no disruption of service or loss of service state. We use
a fast delivery protocol to reduce the latency of total or-
der broadcast. Our prototype implementation shows that
high availability of metadata servers can be achieved with
an acceptable performance trade-off using the active/active
metadata server solution.
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1 Introduction

A file system typically consists of two types of data: user
data and metadata. Metadata is very important, because
it defines how a file system utilizes the storage space to
manage the user data. Since metadata is ”the data of the
data”, the disruption of metadata could result in the failure
of the entire I/O system, while the loss of the user data
normally only affects some user files. Any I/O request can
be classified into either user data or metadata request. A
study by Roselli et al. [20] shows that requests targeting at
the metadata can account for up to 83% of the total amount
of I/O requests in some applications.

In a typical parallel storage system [1, 8], metadata is

stored and managed by dedicated metadata servers. There
are three major components in such a typical storage sys-
tem. Metadata servers maintains information about the files
and directories in a file system. Data servers store file
data. Clients send requests to the metadata server and data
servers to store and retrieve the file data. This system ar-
chitecture has been proved to be very efficient. However,
it also implies several reliability deficiencies resulting in
system-wide availability and serviceability issues [12]. An
entire distributed storage system depends on the metadata
server to function properly. This is a single point of failure.

One way to improve the availability of parallel storage
systems is to deploy multiple metadata servers. Multiple
servers backup each other. As long as at least one meta-
data server is alive, the entire system does not fail. Several
models exist to perform reliable and consistent replication
of service state to multiple redundant servers for high avail-
ability. Past research focused on the active/standby model
[2, 3, 14, 15], where each service server has at least one re-
dundant idle backup. However, interruption of service and
loss of service state may occur during a fail-over depending
on the replication technique (hot-, warm- or cold-standby).

The research presented in this paper targets the sym-
metric active/active replication model [12, 14] for high
availability metadata servers using multiple redundant ser-
vice nodes running in virtual synchrony[18]. In this model,
server failures do not cause a fail-over to a backup and
there is no disruption of service or loss of service state. All
servers are active and ready to serve requests from clients.
This architecture improves availability and reliability.

The total order communication[5, 11] is essential for
active/active replication model, but the agreement on a to-
tal order usually bears a cost of performance. We use a
fast delivery protocol [19] to reduce the latency of totally
ordered broadcasting. The protocol performs well for both
idle and active servers. Our results show that for write re-
quests, the performance degradation is acceptable for typi-
cal distributed storage systems, and the throughput of read



Figure 1. Universal symmetric Active/Active high avail-
ability architecture for services ( c©2006 IEEE).

Figure 2. Active/Active metadata servers in a distributed
storage system.

requests increases linearly with the number of servers. We
are able to show that high availability of metadata servers
can be achieved without interruption and with an accept-
able performance trade-off using the active/active metadata
server solution.

2 Symmetric Active/Active Replication

The symmetric active/active high availability architecture
for services (Fig. 1[14]) allows more than one redun-
dant service to be active, i.e., to accept state changes,
while it does not waste system resources as seen in an ac-
tive/standby model. Furthermore, there is no interruption
of service and no loss of state, since active services run in
virtual synchrony without the need to fail over.

The symmetric active/active replication uses virtual
synchrony [18] and group communication [6, 11, 17] to
guarantee the safety of global state updating. Service state
replication is performed using a process group communi-
cation system for totally ordering and reliably delivering
all state change messages to all redundant active services.

Consistent output produced by these services is routed
through the group communication system, using it for a dis-
tributed mutual exclusion to ensure that output is delivered
only once. The system architecture of active/active meta-
data servers utilizing symmetric active/active replications
is shown in Fig. 2.

The size of the active service group is variable at run-
time, i.e., services may join, leave or fail. Its membership is
maintained by the group communication system in a fault
tolerant, adaptive fashion ensuring group messaging prop-
erties. As long as one active service is alive, state is never
lost, state changes can be performed and output is produced
according to state changes.

3 Fast Delivery Protocol for Total Order
Broadcasting

Total order communication is essential for the symmetric
active/active replication, but the agreement on a total order
usually bears a cost of performance: a message is not deliv-
ered immediately after being received, until all the commu-
nication machines reach agreement on a single total order
of delivery. Generally, the cost is measured as latency of to-
tally ordered messages, from the point the message is ready
to be sent, to the time it is delivered at the sender machine.

Among several algorithms implementing the total or-
dering, a communication history algorithm [10] is perfered
to order requests among multiple active/active servers,
since such algorithm performs well under heavy communi-
cation environments with concurrent requests, but the post-
transmission delay of the algorithm is most apparent when
the system is relatively idle, and in the worst case, the delay
may be equal to the interval of heart beat messages from a
idle machine.

We use a fast delivery protocol [19] to reduce the post-
transmission delay. The fast delivery protocol forms the
total order by waiting for messages only from a subset of
the machines in the group, thus it fast deliverers total order
messages. Furthermore, the fast acknowledgment aggres-
sively acknowledges total order messages to reduce the la-
tency when some machines are idle, and it is smart enough
to hold the acknowledgments when the network communi-
cation is heavy. The protocol performances well for both
idle and active servers.

4 Active/Active Metadata Server Design

Conceptually, the active/active metadata server software ar-
chitecture (Fig. 3) consists of several major parts, to handle
client requests, update global state, and manage member-
ship of the server group. The current proof-of-concept pro-
totype implementation uses Transis [11] with fast delivery
protocol to provide total order and virtual synchrony ser-
vices, and PVFS [8] to provide basic metadata services for
each server.



Figure 3. Module design of Active/Active metadata
servers.

We provide basic metadata manipulation APIs for
clients. To balance workloads among multiple servers, a
client randomly chooses a server to send a request. All
client requests are sent to the request interface module. It
interprets the requests, creates new jobs for them, then ei-
ther dispatches the jobs directly to basic metadata services
or requests the Transis to broadcast them. The jobs are
first put into an active queue. The scheduler choses one
active job to execute, until it is blocked by I/O operations
and thus put to the idle queue. After I/O operations fin-
ish, the job is put back to the active queue and waiting to
be scheduled. The scheduling mechanism guarantees that
a metadata server is not blocked by any I/O operation and
multiple concurrent requests could be interleaved, and thus
improve the throughput of the server.

The basic metadata services module is responsible for
updating local metadata and provides basic metadata man-
agement functions, such as create new object (file or direc-
tory), add a new entry into a directory, get attribute, and so
on. Some client requests could be mapped to basic meta-
data services directly, such as get attribute, set attribute,
but some updating requests involves several basic metadata
services, and are considered as atomic operations. For ex-
ample, a create new file request involves three basic ser-
vices: reading directory to make sure no object has same
name, create object, and add the handle of new object into
the parent directory. It is an atomic operation, because fail-
ure of any step requires roll back of all submitted opera-
tions updating the local metadata. The transaction control
module is responsible for processing such kind of requests,
handling roll back if failure happens. The module ensures
that transactions are processed consistently across all ac-
tive/active servers by using group communication services.
All servers make the same decision for a transaction, either
submit, or rollback. The module coordinates transaction

Table 1. Incompatibility of lock modes. (Conflicts indi-
cated as X)

read update write
read X

update X X
write X X X

processing, and dispatches any real metadata operation to
the basic services module.

Jobs are interleaved by the scheduler, but concurrent
operations on the same objects are serialized by a locking
service. The locking service provides three lock modes:
read, write, and update. Incompatibility of three modes
is shown in Table 1. Update lock is designed to improve
performance of transactions. A transaction first applies an
update lock, without blocking other read requests, then up-
grades to write mode only when operations modifying lo-
cal objects are ready to be submitted. Our design allows
disabling the locking service if the parallel file system it-
self provides other means of locking at the client side or if
POSIX file operation semantics are relaxed. Both may lead
to further performance improvement.

The file handle space is managed by a dedicated mod-
ule. Each metadata server allocates and releases file han-
dles independently, but the file handle management must
be consistent among all servers of the group. The handle
management module is responsible for allocating and re-
leasing handles consistently for all servers and maintaining
global state of the handle space.

The membership management module is responsible
for maintaining integrity of the service group. Every time
when new servers join the group or current members leave
the group, the module is notified by the view change mes-
sages from Transis demon. The metadata is a global state
which must be consistent across all servers at any time,
so the service group does not allow multiple partitions.
Even if a network partition exists, the active/active meta-
data server group should only enable one primary group.
Any server either belongs to a default primary group, or
disable itself, until it rejoins the primary group. If a server
crash, it is already disabled automatically. If a server leaves
because of a network error, it must also stop responding to
any client requests. If a client happens to connect a server
not belonging to the primary group because of network par-
tition, the client gets a negative response from the server,
thus the client either tries to find other active servers be-
longing to the primary group, or is notified with an op-
eration failure event. In either case, the metadata keeps
consistent under the network partition. After joining the
primary group, a server gets current state of metadata from
other members of the group, and thus updates its local copy.
Since the view change messages are totally ordered to mes-
sages from clients, the current state of metadata obtained
from other members is exactly consistent to global state,
which is just previous to the state updated by the first client
request after the point when the new server joins.



Figure 4. Read requests of Active/Active metadata servers.
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Figure 5. Write requests of Active/Active metadata servers.

Since read requests do not modify metadata, any ac-
tive server may handle the requests independently and lo-
cally (Fig. 4). However, write requests arriving at any
metadata server have to be totally ordered by group com-
munication services before submitted to the basic metadata
service (Fig. 5). A typical write request is processed by
following steps:

(1) Client sends request to the request interface.
(2) The MDS performs necessary checking before ac-
tual modification, for example, does same file already
exist upon the create file request?
(3) Allocates a new handle if the request is to create a
new file or directory.
(4) Requests Transis to broadcast the request.
(5) Transis orders the requests and broadcasts them to
all metadata servers, including itself.
(6) Transis notifies Transition Control of the new re-
quests.
(7) Transition Control updates local metadata through
the basic metadata services.

5 Experimental Results

To verify above model, a proof-of-concept prototype for
active/active metadata servers has been implemented using
the Parallel Virtual File System (PVFS) 2 [8] and deployed
on the XTORC cluster at Oak Ridge National Laboratory,
using up to 4 metadata servers and 32 client nodes in var-
ious combinations for functional and performance testing.
The computing nodes of the XTORC cluster are IBM In-

telliStation M Pro servers. Individual nodes contain a In-
tel Pentium 2GHz processor with 768MB memory, and a
40GB hard disk. All nodes are connected via Fast Ethernet
(100MBit/s full duplex) switches. Although the Fast Ether-
net is pretty slow, the network performance will not be the
bottleneck of the system, since we only measure read/write
performances of metadata, which is very small compared
to whole file (less than 1KB in most requests). Federa Core
5 has been installed as the operating system. Transis v1.03
with fast delivery protocol is used to provide group com-
munication services. Failures are simulated by unplugging
network cables and by forcibly shutting down processes.

Excessive functional testing revealed correct behavior
during normal system operation and in case of single and
multiple simultaneous failures. New servers are allowed to
join the service group, leave the group voluntarily, and fail,
while metadata is maintained consistently at all servers and
high availability service is provided to clients.

The proof-of-concept prototype showed a comparable
latency and throughput performance. In the experiment,
we disabled both the client and server caches to avoid in-
terference. A MPI-based benchmark is used to send con-
current read/write requests from multiple clients. We com-
pared the latency and throughput of original PVFS meta-
data server and our active/active metadata servers. The re-
sults under various configurations are provided for compar-
ison among 2 and 4 Active/Active metadata servers. The
latency is measured with blocked requests, and an average
value is calculated from 100 requests of each clients. We
did not measure the read latency, because read requests are
independently handled by each server, and thus theoreti-
cally there is no difference of read latency between orig-
inal PVFS metadata server and our active/active metadata
servers. The throughput is measured with unblocked re-
quests. The total requests sent to the servers are 5000 ∗ N ,
where N is the number of metadata servers. Each client
sends 5000∗N

n
unblocked requests to servers (n is number

of clients), and then waits for the completion of all re-
quests. An average throughput is calculated in terms of
requests/second.

The write request latency overhead (Table 2) is within
an acceptable range. We use the performance of a single
original PVFS metadata server as a baseline, and data is
normalized to the latency of one PVFS server with one
client. In the configuration of only two metadata servers
with the active/active design, the latency overhead (com-
pared to baseline) mainly comes from processing cost of
the Transis group communication service. When the num-
ber of metadata servers increases, additional overhead is
introduced by the network communication and total or-
der communication algorithm to reach agreement among
servers. Although latency increases with the number of
metadata servers, the fast deliver protocol works well to
keep the overall overhead acceptable for any HPC system.
The overhead is consistent for both, small and large number
of clients. The fast acknowledgment aggressively acknowl-
edges total order messages to reduce the latency of idle



Table 2. Write request latency comparison of single vs. multiple metadata servers. The data is normalized to the latency of one
PVFS server with one client.

number of clients
System 1 2 4 8 16 32

PVFS 1 server 1.0 2.1 4.7 9.5 20.8 42.7
Active/Active 2 servers 1.3 2.6 5.1 10.0 21.5 43.6
Active/Active 4 servers 1.5 3.0 6.1 11.9 23.3 44.5
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Figure 6. Throughput comparison of single vs. multiple metadata servers. A/A means Active/Active servers. The data is
normalized to the throughput of one PVFS server with one client.

servers when number of clients is small. The protocol is
smart enough to hold acknowledgments when the network
communication is heavy because more clients are involved.

The write throughput overhead (Fig. 6(a)) reflects
similar characteristics. On the contrary, the read throughput
(Fig. 6(b)) increases linearly with the number of servers. It
is not surprising, because multiple servers can process con-
current read requests simultaneously.

6 Related Work

Past research in high availability for HPC systems pri-
marily focused on the active/standby model. HA-OSCAR
[15, 13] and SLURM [3] provide active/standby solutions
for the HPC job and resource management system in a
warm-standby fashion. PBSPro for the Cray XT3 [2] of-
fers a hot-standby solution with transparent fail-over. Re-
cent research of symmetric active/active replication model
[12, 14, 23] uses multiple redundant service nodes running
in virtual synchrony [18]. Particularly, the JOSHUA solu-
tion [23] for active/active replication HPC job was a pre-
cursor for the research presented in this paper.

Previous file systems distribute and replicate metadata
and user data to improve availability. XFS file system [4]
distributes metadata into multiple managers across the sys-
tem on a per-file granularity by utilizing a new serverless
management scheme. Furthermore, location independence
provides high availability by allowing any machine to take

over the responsibilities of a failed component after recov-
ering its state from the redundant log-structured storage
system. Active/standby model is used in XFS to organize
redundant storage system. Frangipani file system [22] uses
the large, sparse disk address space of the substrate Petal
storage system [16] to simplify its data structures. The data
and metadata of Frangipani are stored and managed on top
of the virtual address space provided by Petal, similar to
traditional file systems on top of the address space of hard
disks, but the real data is physically distributed to multiple
Petal storage servers. High availability of both user data
and metadata is provided by a replication based redundancy
scheme called chained declustering of the Petal system.

Various research efforts in file systems have shown
that total-ordering can be used to provide high availabil-
ity. Deceit file system [21] behaves like a plain NFS server.
The deceit servers are interchangeable and collectively pro-
vide the illusion of a single server to any clients. It uses the
ISIS [7] distributed programming environment for all to-
tally ordered communication and process group manage-
ment. Non-volatile replicas of each file are stored on a
subset of the file servers. A practical replication algorithm
[9] is designed to tolerate Byzantine faults. The algorithm
works in asynchronous environments to improve the re-
sponse time and reduce the latency. A Byzantine-fault-
tolerant NFS service using the algorithm is implemented
and compared with a standard non-replicated NFS.



7 Conclusions

We presented our recent research in active/active metadata
servers as a generic approach for highly available cluster
storage systems. Our concept provides a virtually syn-
chronous environment for high availability without any in-
terruption of service and without any loss of state. It guar-
antees the safety of global state updating by utilizing group
communication services and total order broadcasting.

We used a fast delivery protocol to reduce the latency
of ordering messages. The protocol optimizes the total or-
dering process by waiting for messages only from a subset
of the machines in the group. The protocol performances
well for both idle and active servers.

We presented functional and performance test re-
sults with comprehensive experiments under various sys-
tem configurations. Our results show that for write re-
quests, the overhead of latency and throughput increases
with the number of servers, but is still acceptable for typi-
cal distributed storage systems. The throughput of read re-
quests increases linearly with the number of servers. We
also provide a theoretical availability analysis. The ex-
perimental results show that high availability of metadata
servers can be achieved without interruption and with an
acceptable performance trade-off using the active/active
metadata server solution.
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