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Abstract—Today’s high-end computing systems are facing a
crisis of high failure rates due to increased numbers of compo-
nents. Recent studies have shown that traditional fault tolerant
techniques incur overheads that more than double execution
times on these highly parallel machines. Thus, future high-end
computing must be able to provide adequate fault tolerance at an
acceptable cost or the burdens of fault management will severely
affect the viability of such systems. Cluster virtualization offers
a potentially unique solution for fault management, but brings
significant overhead, especially for I/O. In this paper, we propose
a novel diskless checkpointing technique on clusters of virtual
machines. Our technique splits Virtual Machines into sets of
orthogonal RAID systems and distributes parity evenly across
the cluster, similar to a RAID-5 configuration, but using VM
images as data elements. Our theoretical analysis shows that
our technique significantly reduces the overhead associated with
checkpointing by removing the disk I/O bottleneck.

I. INTRODUCTION

As high-end computing moves into the petaflops range, we
are seeing the number of processing, network, and storage
components increase rapidly. Such an increase in components
causes extreme concerns in usability since, in the absence of
component redundancy, each component adds another point of
failure to the system.

As increased parallelism seems to be the dominant trend
in the quest for faster clusters, we will continue to see an
increasing amount of components at all levels. Currently, at
more than 10 Petaflops, the fastest computer in the world is
Japan’s K Computer, which has about 700,000 cores (Novem-
ber 2011) [10]. As more clusters approach this level and
as others surpass it, we will see a much more concentrated
effort in fault tolerance and resilience. If we extrapolate trends,
we will see that MTBF (mean time between failures) will be
on the order of hours or even minutes. At this point, even
the most established methods of fault tolerance break down.
For instance, Schroeder and Gibson showed that, if trends
are extrapolated, in the near future (by 2015) the MTBF
of machines will be smaller than the checkpoint time; that
is, a cluster cannot avoid data loss even if it does nothing
but checkpoint [25]. Theoretically, an increased amount of
processors will result in a linear increase in the amount of
calculations that can be performed if the problem is able to
be parallelized across the system. However, in practice, we
see that without proper measures of resilience, the reverse
occurs: at some point, adding more processors only serves to
increase the total execution time, due to the increased number
of failures that are more and more likely to occur.

Reports of large-scale clusters show MTBF values as low
as 1.2 hours, for Google’s servers [12], and a mean of 5-6
hours for modern HPC systems [5]. With these statistics at
hand, it should be readily apparent that research into fault
tolerant techniques is of utmost importance. Many techniques
have been proposed to deal with the looming probability of
failure on these high-end machines. Of these, we concentrate
on one particular strategy that we find has much promise:
system-level virtualization.

While virtualization is not a panacea to the problems facing
modern high-end systems, it does provide us with a special-
ized set of tools that can solve a subset of these problems.
One byproduct of virtualizing the cluster is that the concept
of “state” becomes more fluid. Indeed, by enumerating the
benefits of virtualization related to fault tolerance, we can see
that they almost always relate to state manipulation.

1) Saving state: Checkpointing for rollback recovery
2) Moving state: Live migration away from failing nodes
3) Replicating state: VM cloning for redundant execution
4) Debugging state: Fine-grained replay or time traveling

for tracing faults
5) Monitoring state: Hypervisor-based diagnostics for fault

diagnosis

An immediate drawback to these methods is the overhead
cost of the virtualization platform itself. Of these costs, the
most salient issue is the high cost of virtualizing I/O, given that
virtual I/O requests must be caught and translated into requests
on actual physical hardware. Thus, we are primarily motivated
to find fault tolerant solutions in the virtual domain that do not
exacerbate the I/O problem. One such area within virtualiza-
tion is the concept of live migration. We plan to explore how
live migration can be harnessed by diskless checkpointing to
accomplish our goal of high availability without huge hits to
performance with respect to I/O. In this paper, we develop
a novel diskless checkpointing architecture that supports high
availability without burdening the disk subsystem and derive
an analytical model to support our methods.

The rest of this paper continues as follows: We begin by
reviewing background material in Section II. We then discuss
our motivation and goals in Section III, followed by our design
of virtual diskless checkpointing in Section IV. We develop a
model for virtual diskless checkpointing in Section V. Section
VI briefly overviews related work and finally we conclude the
paper in Section VII.



II. BACKGROUND

Since our work falls in between live migration and check-
pointing (specifically diskless), we will briefly discuss the two
subjects separately as background material.

A. Live Migration

Live migration is a technique to transplant a virtualized
system from one physical machine to another. Usually, the
technique is optimized for minimal downtime under the con-
text of machines residing on the same local network. Virtu-
alization provides a solution for such functionality compared
to the more traditional process migration technologies. For
instance, since virtualization encapsulates hardware resources,
it becomes more straightforward to uproot a virtualized OS
from its physical connections to a machine than a non-
virtualized OS, which may have “residual dependencies” or
other physical dependencies [16]. Residual dependencies un-
der traditional process migration are usually handled by some
state remaining on the machine to forward requests. With
live migration of virtual machines, the old machine can be
terminated completely once the transactional state has been
fully completed. Thus, the VMM does not need to understand
the internals of the OS or the processes running in it.

Live migration can also be very fast: Clark et al showed
that downtime under live migration can be very low, with
the original implementation in Xen experiencing 60 ms of
downtime while live migrating a Quake 3 server [7]. Thus,
the impact is reasonable, since the total migration time is in
minutes and downtime is in milliseconds, and once migration
is complete, the source domain is completely free.

An optimized application of live migration opens new roads
for automated maintenance and other autonomic features.
Virtual machines can be moved away from failing hardware,
loads can be optimized for energy or performance, and mainte-
nance downtimes can be carefully controlled. The technologies
behind virtualization also lead to flash cloning [29], advanced
logging of nondeterministic events [11], and highly available
systems [9], including our own proposed architecture.

In general, live migration must preserve both local and
global names. Local names include the memory, registers, and
disk. Global names include IP addresses. Since most cluster
configurations currently run diskless [18] using a shared NAS,
our problem of copying the disk state is somewhat simplified.
However, in the case of local disks, there have been techniques
proposed to deal with the problem of shared disk state,
including mirroring [7] and stackable file systems [28]. Other
local names, including memory and registers can be passed
over the network using the relatively narrow VMM interface
and resumed on the other side. Global names can be dealt
with by cluster management software, or, in the case of IP, by
sending ARP packets or tracking MAC addresses.

B. Checkpointing

The most common and simplest form of fault tolerance in
HPC systems is to checkpoint work. Checkpointing amounts
to saving the state of computation at discrete intervals so that

if any failure occurs, execution may resume from the last
previously saved checkpoint. The idea is undeniably simple,
yet it has garnered over 30 years of rich research. Seemingly
innocuous questions sometimes have deep mathematical an-
swers: How often should one checkpoint? What parts of the
system should be checkpointed? What or who should be in
charge of the checkpointing?

The question of when one should checkpoint is a function of
the length of the computation, the failure rate, and variables
concerning the checkpoint overhead and latency. We should
wish to minimize the expected execution time in the presence
of failure. Given estimates of the failure distribution of the
system (typically Poisson), we can then calculate optimal
checkpointing intervals that minimize the expected time to
completion [14].

The questions of what to checkpoint and where to check-
point are a matter of efficiency and usability. At the
application-level, the programmer is burdened with providing
checkpointing in the code itself. Yet, this level may provide the
most lightweight and efficient checkpoints, if done correctly,
since the programmer knows exactly how to save the state of
the program. A simpler approach would be to use a library,
such as libckpt, but this requires relinking code [22]. Another
common approach is at the kernel-level, but residual hardware
dependencies and network state make creating and maintaining
checkpoints difficult (the same is true of both application and
user-level or library-based checkpoints). The last level is at
the hypervisor for virtualized systems.

1) Incremental checkpointing: Incremental checkpointing
can be thought of as a type of temporal compression. Since we
know that the principle of locality dictates that certain regions
of memory be “hot” or “cold” during most types of computa-
tion, we can infer that successive checkpoints will share many
of the same pages. In fact, in many cases, the working set
is so comparatively small that saving only the changed state
during checkpointing becomes a huge advantage [24]. In the
classic scheme, only pages modified since the last checkpoint
are written out to disk.

Compressing the increments adds some overhead: write the
compressed pages to a disk, copy and compress pages in the
buffer, and perform page handling.

Other methods have advanced the Plank’s original proposal
to include adaptive checkpointing [32]. Since optimal check-
pointing intervals are usually calculated with a constant cost
for the checkpoint, one can construct an online algorithm
to calculate the most beneficial times to checkpoint during
incremental checkpointing (where the checkpointing cost is
not constant, but depends on dirty pages).

For adaptive or runtime checkpointing, a cost-benefit cal-
culation can be derived as follows: If you skip a checkpoint,
your cost is a “long rollback,” and if you take a checkpoint,
your cost is a “short rollback” to the checkpoint. So, at any
time, we have the choice of taking a checkpoint or skipping a
checkpoint. We can calculate the expected recovery time for
both, subtract them and look at the differential. Intuitively, we
know that the longer a process goes on without checkpointing,



the more time it is in danger of losing. Also, the higher the
checkpointing costs, the more dirty pages are. At some point in
this time interval, it will make more sense to checkpoint than
to not checkpoint (our expected recovery, given the overhead
of checkpointing, will be less).

2) Diskless checkpointing: Classic examples of fault toler-
ance are in the use of RAID storage systems [20] [6], which
employ parity codes to store redundant information in such a
way that some number of hard drive failures can occur without
data loss. Since the advent of RAID, many other types of
computer systems have made use of the underlying techniques
for gains in reliability. RAID uses the principle that it is often
cheaper to combine many low cost components and “build in”
the cost of failure than it is to design a large monolithic system
to meet all performance and reliability needs.

It has been noted that the disk is the main component
that contributes to checkpointing overhead and performance
degradation [23]. Thus, it may seem intuitively beneficial to
try to remove the disk from the checkpointing system. Diskless
checkpointing is a technique that attempts to utilize the RAID
principle to rely on memory, rather than disks, to store
checkpoints. Just as with RAID, where many smaller disks
suffer from poor reliability in aggregate, so does memory.
Thus, parity is introduced to counteract the innate unreliability
of volatile memory such that some amount of memory failure
can be tolerated without loss of checkpoints.

The diskless method as presented by Plank doesn’t actually
improve overhead much, but it vastly (by factor of 34 in [23])
improves latency. Overhead is the amount of time execution
is suspended by the checkpointing process. Latency is the
amount of time it takes before the checkpoint is usable. An
example given by Koren [14] is when a checkpoint is stored in
a temporary buffer, and execution in the process is resumed,
another process will then dump the buffer onto disk or over
the network (and onto a disk). During the dump process, the
checkpoint will be unusable. Thus, latency is always at least as
much as overhead. Also, during the dump, the other network
traffic will be severely degraded, in some cases by up to 87
percent [21]. Thus, lowering latency is a crucial step for high-
performance checkpointing.

In the original work, three variants are discussed: normal,
fork, and incremental. Normal is the case when one needs three
times the memory of the process to hold the process itself, the
current and previous checkpoints. Incremental checkpointing
tries to compress this space by write-protecting all pages after
the first checkpoint is made, catching exceptions, adding the
page number to a list, and then storing the old page in the
checkpoint buffer and the new page where it is supposed to
be. When it is time to make a checkpoint, the old pages can
be discarded, and the process is set read-only again. Thus,
whenever a checkpoint is needed, we can simply look up the
old pages in the buffer, and merge them into the current page
data of the process to make the previous checkpoint. This
observation means that only the changed pages are needed.
Forked checkpointing implements copy-on-write by forking
(cloning) the process. Optimized copy-on-write means that

each process only contains the changed bytes. We still need
the current and previous checkpoint during checkpointing,
so if I is consumed, 2I is needed during checkpointing. In
general, this will require vastly less space than the “naive”
implementation.

Others have since taken diskless checkpointing and imple-
mented more advanced codes than simple RAID5-like parity.
Wang et al recently implemented RDP codes [8], which
tolerate up to two simultaneous failures, and found favorable
results [30]. Diskless checkpointing has been somewhat slow
to catch on for production use, but it is being used successfully
at Lawrence Livermore National Laboratory (LLNL) at the
time of writing [18].

III. GOALS & MOTIVATION

By merging the fault tolerant benefits of virtual checkpoint-
ing with the benefits of virtualized distributed management
frameworks, we arrive at a vision of future computing where
clusters are virtualized, and checkpointing is completely trans-
parent and parallel.

Fault tolerance is critical in today’s large distributed sys-
tems. Traditional schemes such as checkpointing offer limited
solutions that may not scale to tomorrow’s machines. Thus, it
is of great importance to develop new fault tolerant systems for
distributed systems. We are motivated by the promising aspects
of leveraging virtualization as an avenue through which we
can apply a fault tolerant infrastructure for large virtualized
systems.

We wish to apply the techniques of diskless checkpointing
to the virtual cluster domain in order to alleviate one of
the largest drawbacks of traditional checkpointing: the disk
bottleneck. Virtualization allows us to checkpoint beneath
the kernel, live migrate VMs across the cluster, and share
redundant memory. Our objective is to apply the state-of-the-
art diskless checkpointing techniques in the virtual domain
and develop new fault tolerant architectures that are both high-
performing and resilient.

IV. DESIGN OF VIRTUAL DISKLESS CHECKPOINTING

HPC systems are suffering a reliability crisis, with no defi-
nite solution in sight. Virtualization offers promising benefits
of fault tolerance and optimization, but with critical drawbacks
of inefficient I/O performance. Thus, it is the primary goal of
this work to provide fault tolerant techniques on virtualized
clusters that attempt to minimize or circumvent the inherent
inadequacies of I/O performance.

One such way to attack this problem is to borrow a result
from the ongoing work in diskless checkpointing. Diskless
checkpointing shares similar concerns: it is a method invented
to remove the I/O bottleneck from the process of checkpoint-
ing to secondary storage, an expensive operation.

A. Virtual Diskless Checkpointing

In this section, we present a novel virtual diskless check-
pointing architecture. We start with a simplified platform, and



then extend our technique to what we call Distributed Virtual
Diskless Checkpointing (DVDC).

Virtual checkpointing confers many benefits over traditional
checkpointing. Since the process of virtualizing hardware
resources abstracts connections into software, it is easier to
maintain state when saving and resuming from checkpoints.
Furthermore, the state of the system can be saved without
libraries, changes in code, or any effort on the part of the pro-
grammer. Thus, the system is completely transparent, taking
the burden of fault tolerance out of the algorithm or program
itself and into the virtualization platform.

As with normal non-virtualized checkpointing, the disk
remains the bottleneck: Large VM images sent to a shared
network store (NAS or SAN) can tie up resources for a criti-
cally long time. Our idea is to apply some of the techniques
of diskless checkpointing to alleviate the burden of the disk.
We start with the simplest implementation that simply stores
a checkpoint of each VM and assigns a checkpointing node
to hold all VM parity.

Plank’s diskless checkpointing strategy treats processors as
if they were disks, and uses RAID-like techniques to maintain
N+M state redundancy [23]. Thus, if any processor fails,
enough redundancy is kept among the remaining processors
so that its state can be fully recovered. Plank’s strategy used
libckpt, a checkpointing library that one could link their appli-
cation to in order to receive checkpointing capabilities [22].
Virtualization, however, provides an interface that, since it
rests below the kernel, can checkpoint without library inter-
vention. Applications, user-level libraries, and even the kernel
itself need not be aware that it is being checkpointed.

The question naturally arises then if it is possible to marry
the technique of diskless checkpointing with system-level vir-
tualization. A naive implementation might simply employ the
technique in the most straightforward way possible, creating an
in-memory checkpoint per VM and then assigning m dummy
VM’s to hold the parity of the checkpoint. This process is what
is done in diskless checkpointing. Immediately, we see that
virtualization both complicates and provides opportunities for
improvement on this method. First, VM’s are not necessarily
one-to-one with a physical machine. In fact, in most cases, we
would like to run as many VM’s per physical node as possible
to best utilize its resources. Thus, we cannot simply apply
the diskless checkpointing technique as given, since VM’s
residing on the same physical node would be subject to the
same hardware faults, and thus be perfectly correlated in these
types of errors. In N+1 redundancy, having more than two
virtual machines per physical node would mean that data loss
would occur any time the physical node experienced a failure.
A second observation is that virtual machines can migrate
from node to node, using live migration [7], mixing up the
distribution of VM’s per physical node. The final observation
is that we should not need any VM’s that simply store parity.
In traditional diskless checkpointing, the redundant processors
simply provide a safe place to store the parity. That is, we
are protecting against hardware faults that are assumed to
be mostly uncorrelated at the machine level. Therefore, we

Fig. 1. A first-shot implementation of diskless checkpointing on a simple
virtualized cluster.

cannot store the parity on a machine that is doing actual work.
However, in the virtual domain, it seems wasteful to allocate
a VM for sole purpose of storing parity.

A first-shot solution to these problems is the following
architecture presented in Figure 1: We restrict ourselves to
one VM per physical node, where we have N+1 physical
nodes (in the case where we protect against single failures).
We coordinate a consistent distributed checkpoint (using the
techniques of Section II) at each VM. Each VM then sends its
checkpoint data, fan-in, to another node, until the redundant
physical machine has calculated parity on all the machines.
At this point, the parity machine notifies the other machines,
and execution resumes. If any physical machine goes down,
its VM will go with it, and the checkpoint of the VM can be
constructed from the remaining checkpoints and parity on the
parity machine. We should note several things here: first, we
have restricted ourselves to one VM per node; second, we have
applied Plank’s method, only instead of linking applications to
the libckpt library, we handle checkpointing at the hypervisor
level. The former observation is an unreasonable proposal in
most cases, since one of the main benefits of running VM’s is
that entire systems can be multiplexed on hardware. The latter
observation is only a modest benefit beyond Plank’s method,
without really utilizing any of the special characteristics and
opportunities that virtualization offers, especially in a cluster
or grid environment.

B. Distributed Virtual Diskless Checkpointing

Removing the restriction of one VM per node, it turns
out, actually opens up new possibilities for optimization and
improvement over traditional diskless checkpointing. Suppose
we have three nodes: each with 1 VM. In the N+1 case,
two nodes will contain normal VMs and the last will be a
checkpointing or parity VM. If we want to remove the one
VM per node restriction, we can simply add more VMs to
the nodes, as long as we don’t include them in the parity
calculation. If we want the same fault tolerance as the first



Fig. 2. Orthogonal RAID that can survive controller failure.

Fig. 3. A virtualized cluster using diskless checkpointing and orthogonal
RAID. In the checkpointing node, the three-letter checkpoints correspond to
parity taken from each checkpoint (e.g. A XOR B XOR C for ABC).

three, we can make one of the three a parity VM as well.
Now we have two parity VMs and four normal VMs. We can
continue to add VMs in this way with the new restriction that
for every two VMs, we must create a third parity VM and
store the group of three on different nodes.

This construction should feel very familiar to the common
practice of gridding RAID groups of disks across different
controllers. The idea is that a controller failure could bring
down the entire RAID, but if only one disk per RAID group
is assigned to each controller, any controller failure will not
destroy a single RAID group. A configuration is depicted in
Figure 2. The cluster configuration is shown in Figure 3.

By stacking RAID groups, it is possible to achieve more
than one VM per node. Furthermore, we can see that we can
distribute the responsibility of parity upkeep among the nodes
in a RAID5 fashion. Thus, instead of having “checkpointing
processors” that can do no real work (or else they would
have to be checkpointed as well), we can distribute the parity
and allow all physical machines to host working VMs that
contribute to the overall execution of a job. Figure 4 shows
a sample configuration that accomplishes Distributed Virtual
Diskless Checkpointing (DVDC) with all compute nodes.

Additionally, the process of calculating parity at checkpoint
time is also simplified. Instead of m processors doing all

Fig. 4. A virtualized cluster using diskless checkpointing and orthogonal
RAID with no checkpoint node.The three-letter checkpoints correspond to
parity from each individual checkpoint (e.g. A XOR D XOR G for ADG).

the parity work, the parity calculation is evenly distributed
automatically by having each node contribute equally to parity
checkpointing. The parallelization of the parity calculation
should relieve the CPU burden by a factor linear in the amount
of machines in the cluster.

C. Utilizing Live Migration

Remus, as explained in Section VI, extends the concept
of live migration to rapidly ferry dirtied pages to a backup
node, where many checkpoints are maintained in the case of
a failure. Cully et al. [9] were able to achieve checkpoints on
the order of 40 times a second using this technique, although at
that rate there was a significant impact to the system. As shown
in many checkpointing studies [23], the disk remains the
largest bottleneck, contributing to high checkpoint latencies.
Diskless checkpointing is primarily a method not for reducing
overhead, but latency. That is, due to the parity calculation
process, we may not see huge gains in overhead, but the point
at which the checkpoint is usable should be drastically reduced
since we do not have to flush anything to disk. The effect is
subtle, but can greatly enhance the overall estimated time to
completion for a task in the presence of errors. This is not to
say that using a disk is inefficient; indeed, the simplicity and
reliability of secondary storage has kept traditional disk-based
checkpointing as the mainstream method for implementing
checkpoint/restart fault tolerance.

We can use the same process Remus uses for fast check-
pointing and apply it to the realm of diskless checkpointing.
This realization comes from the fact that Remus is simply
using live migration as a convenient method through which to
implement efficient incremental checkpointing. As with nor-
mal diskless checkpointing, we can compress the information
that must be stored and passed over the network by employing
copy-on-write or incremental checkpointing and suitably com-
pressing the differences of the last checkpoint when sending
information over the network. Thus, the amount of information



we must keep in-memory becomes a function of how fast
and how many pages get dirtied, and, for compression, what
percent of each page is changed.

V. AN ANALYTICAL MODEL ON VIRTUAL DISKLESS
CHECKPOINTING

As a starting point, we can start with a model with no
checkpointing system. In the presence of failure, the system
must restart from the beginning. If we assume that we know
the fault-free execution length of the program and the failure
distribution, then we can create a simple model to derive the
probability model for the program’s time to completion.

In a checkpoint-free system, we may imagine a “progress
bar” that randomly resets according to a given probability
distribution. Our question of execution length then becomes,
“how long will it take until the progress bar reaches 100%
without randomly starting over?” Checkpointing modifies this
thinking only slightly by keeping the progress bar from
completely starting over and instead going back only to the
end of the last checkpoint time.

Events that have a constant rate of occurrence over all fixed
time intervals are said to follow a Poisson process. Though we
can imagine cases where the Poisson assumption may not hold
even on single computers (cf. the “bathtub curve” model for
failures with its infant mortality and end-of-life scenarios), it
is often used as a basis for fundamental design decisions due
to its mathematical tractability.

A. Theory

In the case of the restarting progress bar, we find the
probability of completion as a function of:

• T - the total execution length of the program (fault-free)
• Tfail - an expontial random variable describing the time

before failure
• Tnochk - a random variable for the total execution length

given no checkpointing system
• λ - the parameter for the exponential variable (1/MTBF)
• F - a Poisson random variable denoting the number of

failures that occur over the total duration
The expected time to completion can be construed as a

product of the expected time before failure given that the
failure occurred before time T with the expected number of
failures that occur before a complete run. That is, the time
penalty is the average amount into the job before failure times
the average number of failures before completion.

E[Tnochk] = E[F ]E[Tfail|Tfail < T ] + T

Using the assumed distributions, this expression is as fol-
lows,

E[Tnochk] =
eλT − 1

1− e−λT
× 1− (λT + 1)e−λT

λ
+ T (1)

We cover the case with no checkpointing because this
particular formulation makes it easy to see how checkpointing
affects the expected value. With checkpoints, our rollback does

not go all the way back to the beginning of execution, but back
to the previous checkpoint. Thus, by looking at the product as
discussed before, we can see that checkpointing simply breaks
the job into many smaller sub-jobs, each with effectively no
checkpointing system. To show these changes, we need to
introduce a couple new terms to express the expected running
time under a checkpointing system,

• N - the length between checkpoints
• T

N - the number of checkpoints
• Tchk - a random variable for the total execution length

given a checkpointing system
Thus, with N being the time between checkpoints, our

formula, assuming no overhead momentarily, becomes:

E[Tchk] = (E[F ]E[Tfail|Tfail < N ] +N)× T
N (2)

= ( e
λT−1

1−e−λT ×
1−(λT+1)e−λT

λ +N)× T
N (3)

Finally, we can give the expressions for the case with non-
negligible checkpointing overhead costs. We introduce the
following terms,

• Tov - overhead introduced by checkpointing
• Tr - time to repair given a failure
• Tchk;ov - a random variable for the total execution length

given a checkpointing system with non-negligible check-
pointing overhead

The expected time to completion for such a system is
similar to the previous case, but failures can occur during the
checkpointing process and repair costs are paid per failure.

E[Tchk;ov] = (E[F ](E[Tfail|Tfail < N+Tov]+Tr)+N+Tov)×
T

N

Where,
E[F ] = e−λ(N+Tov) − 1

and,

E[Tfail|Tfail < N+Tov] =
1− e−λ(N+Tov)(λ(N + Tov) + 1)

λ− λe−λ(N+Tov)

B. Analysis

To gain a better understanding of the behavior of the
proposed system, we can plug in the parameters of our
model with previously published performance statistics. As
mentioned before, published MTBFs of high-end clusters can
be as low as 3 hours MTBF, giving a failure rate (λ) of 9.26e-
5 failures/sec. We set our execution time to 2 days (typical of
long-running HPC application), and the baseline overhead is
40 ms, which conforms to figures given commonly in many
Live Migration papers [9] [7]. We look at the expected time
to completion and compare the ratio of this time with the time
to completion under no faults. We also compare our method
with a baseline disk-full checkpointing method.

In both cases, we can essentially look at the amount of
data and speed of data transmission for each operation to



Fig. 5. Diskless Checkpointing vs. Normal Disk-full Checkpointing: We
vary the checkpointing interval (Tint) and calculate how the expected time
ratio changes. The X marks indicate minima, or optimal checkpoint intervals
for each method. In this test case, we use the configuration seen in 4, with
four physical machines and 12 virtual machines.

determine overhead times. In both diskless and baseline, the
checkpointing itself is commensurable. Both also incur net-
work overhead: the baseline to send to a NAS, and diskless to
migrate checkpoints to calculate parity. However, the network
step in the baseline is bottlenecked by a single NAS, whereas
diskless checkpointing distributes the traffic evenly among
nodes. Finally, the last step is to write to the NAS, in baseline,
or to calculate parity through a large XOR operation in
diskless.

To compare our proposed method with a normal checkpoint-
ing system, we ran an analysis, varying the checkpoint interval,
to find the optimal checkpoint times in both systems. We then
compared the optimal checkpointing times in both systems
by looking at the overhead with respect to a perfect, fault-
free run of the job. The results of this analysis are shown in
Figure 5. Under the sample scenario, diskless checkpointing
reduces estimated time to completion by 18% over disk-based
checkpointing, with 1% overhead ratio from Tbase.

There are two important differences here that contribute to
performance: First, the network step for DVDC is sped up by
a factor roughly linear in the number of machines, since the
traffic is distributed equally among all machines. Second, an
in-memory XOR operation is going to be orders-of-magnitude
faster than a disk write operation of the same size. These
two factors taken together show nearly negligible overhead
costs over the ideal fault-free execution, while the traditional
checkpointing, even at an optimal interval, adds nearly 20%
to the total execution time.

VI. RELATED WORK

There is much recent work devoted to implementing check-
pointing features in distributed virtual systems. Much of
the work either centers around maintaining global consis-
tency [1], file system consistency [28], developing frame-
works [19] [33], or highly optimized, low overhead solutions
using asynchronous techniques [9] or by exploiting multicore

topologies [4]. It should be noted that these techniques also
can be applied to virtual machines designed to implement
sandboxes around codes, such as the OCAML VM or the Java
VM [2]. Also, several frameworks that implement distributed
checkpoints can be found in [34] and [15].

Remus is one particular example of a virtual checkpointing
system for high fault tolerance [9]. Remus runs servers in
pairs, in active/standby mode, where the active node runs
speculatively and asynchronously sends checkpoints to the
standby node. Because the active node is running “in the
future,” the checkpoint contained by the standby node will
always be the most recent image available to the entire system.
This feat is achieved through use of buffers that wait for
checkpoint confirmation. These checkpoints can be taken as
many as 40 times per second. The end result is a system that
can transparently tolerate up to one failure per server pair and
incur no downtime in the presence of failure.

Another rich topic related to our methods includes
many modifications to and frameworks for live migra-
tion [17] [3] [27]. Other strategies from improvement looks at
virtualizing device drivers [26] [13] or paravirtualization [31].

Our virtual diskless checkpointing system is most similar
to Remus [9], with some significant differences. In virtual
diskless checkpointing, each host is both considered “active”
and “backup” at the same time. The reason this is possible is
due to the partitioning of VMs into different RAID groups.
Also, the stored backups are not fully functional VM’s but
a single parity checkpoint of the entire RAID group. Re-
mus adopts a replication approach using the active/standby
paradigm: the authors suggest that Remus can run in an N-
to-1 fashion for active and backup hosts, respectively, for
additional flexibility. Virtual diskless checkpointing has no
such restriction and can accommodate clusters of varying
sizes. One trade-off between DVDC and Remus is that Remus
runs the active host speculatively and updates the backup
asynchronously, so that at any time, the backup contains the
“most up-to-date copy” available of the system. In the presence
of failure, DVDC requires all nodes to roll back to their
previous checkpoints, compute the failed node’s checkpoint
from parity and data, and then resume. The distinction is
somewhat blurred by the fact that Remus essentially “runs
in the past” and thus still will lose the speculated portion
of execution during failure. Nevertheless, Remus can resume
execution upon failure immediately while DVDC must roll
back and do parity calculations before resuming.

VII. CONCLUSIONS

We have shown different diskless checkpointing architec-
tures for clusters of virtualized systems. We combine ideas
from orthogonal RAID, RAID5, and diskless checkpointing
to achieve a high-performing virtualized cluster architecture
that can withstand physical machine failures. We have derived
equations for system performance and models to corroborate
our equations and test different configurations. We feel that
our novel method of diskless checkpointing using a virtualized
cluster is unique in that for a modest memory overhead, we



are able to achieve a low-latency, low-overhead failure tolerant
configuration of virtual machines. These findings have spurred
us to explore other ways to improve aspects of our design, and
we are currently looking at the benefits of using page hashes
to speed up live migration when similar VMs reside at the host
destination. We have found our algorithms to be relatively easy
to implement and understand, and they confer many benefits
of reliability and performance.

Virtual diskless checkpointing shows many promising ben-
efits over both traditional virtual checkpointing and non-
virtualized diskless checkpointing. Diskless virtual check-
pointing removes the primary bottleneck when capturing and
storing state, and relies on the RAID paradigm to provide
extra fault tolerance in the face of unreliable hardware. High-
performance computing is suffering a crisis in that hardware
reliability issues are consuming more and more usable CPU
time. We believe that virtualization could be an effective
platform to base tomorrow’s high-end systems to meet the
demands of both performance and fault tolerance.
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