
Victim Disk First: An Asymmetric Cache to Boost the Performance of Disk
Arrays under Faulty Conditions

Shenggang Wan, Qiang Cao∗, Jianzhong Huang, Xubin He
Siyi Li, Xin Li, Shenghui Zhan, Li Yu, Changsheng Xie Electrical & Computer Engineering

Huazhong University of Science & Technology Virginia Commonwealth University
Wuhan, China 430074 Richmond, VA 23284, USA

∗Corresponding Author: Caoqiang@hust.edu.cn xhe2@vcu.edu

Abstract

The buffer cache plays an essential role in smoothing the
gap between the upper-level computational components
and the lower-level storage devices. A good buffer cache
management scheme should be beneficial to not only the
computational components, but also to the storage com-
ponents by reducing disk I/Os. Existing cache replace-
ment algorithms are well optimized for disks in normal
mode, but inefficient under faulty scenarios, such as a
parity-based disk array with faulty disk(s).

To address this issue, we propose a novel asymmet-
ric buffer cache replacement strategy, named Victim (or
faulty) Disk(s) First (VDF) cache, to improve the relia-
bility and performance of a storage system consisting of
a buffer cache and disk arrays. The basic idea is to give
higher priority to cache the blocks on the faulty disks
when the disk array fails, thus reducing the I/Os directed
to the faulty disks.

To verify the effectiveness of the VDF cache, we
have integrated VDF into two popular cache algorithms
LFU and LRU, named VDF-LFU and VDF-LRU, re-
spectively. We have conducted extensive simulations as
well as a prototype implementation. The simulation re-
sults show that VDF-LFU can reduce disk I/Os to sur-
viving disks by up to 42.3% and VDF-LRU can reduce
those by up to 36.2%. Our measurement results also
show that VDF-LFU can speed up the online recovery by
up to 46.3% under a spare-rebuilding mode with online
reconstruction, or improve the maximum system service
rate by up to 47.7% under a degraded mode without a re-
construction workload. Similarly, VDF-LRU can speed
up the online recovery by up to 34.6%, or improve the
system service rate by up to 28.4%.

1 Introduction

To reduce the number of I/O requests to the low level
storage device, such as disk arrays, a cache is widely

used and many cache algorithms exist to hide the long
disk latencies. These cache algorithms work well for disk
arrays under normal fault-free mode. However, when
some disks in a disk array fail, the RAID may still work
under this faulty scenario, either in a spare-rebuilding
mode with online reconstruction or in a degraded mode
without online reconstruction. The cost of a miss to
faulty disks might be dramatically different compared to
the cost of a miss to surviving disks. Existing cache algo-
rithms cannot capture this difference because they treat
the underlying (faulty or surviving) disks the same.

We take an example as shown in Figure 1, which il-
lustrates two different cache miss situations in a stor-
age subsystem composed of a parity-based RAID with
one faulty disk in degraded mode. As shown in Fig-
ure 1(a), the missed data resides in the faulty disk. The
RAID controller accesses the surviving disks to fetch all
data and parity in the same stripe to regenerate the lost
data. Therefore, to service one cache miss, several read
requests are needed depending on the RAID organiza-
tion. However, if the missed data is in a surviving disk as
shown in Figure 1(b), only one read request to the corre-
sponding surviving disk is generated. Similar situations
are observed in spare-rebuilding mode. A simple analy-
sis shows that in a RAID5 system consisting of n disks,
when a disk fails, the cost to fetch data from a faulty disk
might be n − 1 times higher than the cost to access data
from a surviving disk. This extra disk I/O activity will
in turn reduce the effective array bandwidth available for
reconstruction or user access.

When a disk array starts online reconstruction, it uses
up regular bandwidth. Compared to offline reconstruc-
tion, during the process of online reconstruction, the
user workflow interferes with the reconstruction work-
flow. As a result, the online reconstruction duration
grows significantly compared to offline reconstruction.
Wu et al. [1] point out that, in a heavy user workflow, the
duration of online reconstruction would grow as much
as 70 times as that of the offline reconstruction. In this



(a) A read miss to a faulty disk might result in several
additional read requests to the surviving disks.

(b) A read miss to a surviving disk would result in only
one request to the corresponding surviving disk.

Figure 1: Two typical cache-miss situations in a storage subsystem composed of a parity-based RAID in degraded
mode.

case, more requests to the surviving disks, caused by user
requests, reduce the available reconstruction bandwidth
and lengthen the reconstruction duration, which reduces
the reliability of the storage system.

On the other hand, in a degraded mode without a
reconstruction workflow, a miss to faulty disks would
cause all the surviving data in the same parity chain
(stripe in RAID-5) to be read and add additional work-
flow to surviving disks. With a decreasing serviceabil-
ity and an increasing user workflow caused by misses to
faulty disks, the storage subsystem might be overloaded
under a heavy user workflow.

Therefore, in parity-based disk arrays under faulty
conditions, a miss to faulty disks is much more expen-
sive than a miss to surviving disks. Based on this obser-
vation, we propose an asymmetric buffer cache replace-
ment strategy, named Victim (or faulty) Disk(s) First
cache, or VDF for short, to improve the performance of
storage subsystem composed of a parity-based disk ar-
ray and its buffer cache. The basic idea is to design a
cache scheme to treat the faulty disks more favorably, or
give higher priority to cache the data associated with the
faulty disks. The goal of this scheme is to reduce the
cache miss directed to the faulty disk, and thus to reduce
the I/O requests to the surviving disks overall. Reduced
disk I/O caused by the user workflow will (1) improve the

performance of the disk array, and (2) allow more band-
width for online reconstruction which in turn speeds up
the recovery, and thus improves the reliability. We make
the following four contributions in this paper:

1. We proposed a new metric, Requests Generation
Ratio or RGR, to capture the disk I/O activities
of user workflows on the surviving disks when a
storage system is under faulty conditions. This
would directly influence the maximum bandwidth
for reconstruction in a spare-rebuilding mode and
the bandwidth available to user workflows in a de-
graded mode.

2. We developed a novel cache-replacement scheme,
VDF, by giving higher priority to cache the data as-
sociated with the faulty disks, to minimize the RGR.
VDF is flexible and could be integrated into existing
cache algorithms such as LRU and LFU.

3. We conducted extensive simulations to verify the ef-
fectiveness of VDF under different workloads. The
simulation results show that VDF-LRU can reduce
overall disk I/Os to surviving disks by up to 36.2%
and VDF-LFU can reduce those by up to 42.3%.

4. We implemented VDF in the Linux software RAID
system. As a result, VDF-LFU can speed up the on-
line recovery by up to 46.3% under spare-rebuilding



mode, or improve the maximum system service rate
by up to 47.7% under degraded mode. Similarly,
VDF-LRU can speed up the online recovery by up
to 34.6%, or improve the system service rate by up
to 28.4%.

The rest of the paper is organized as follows: Section
2 gives a brief overview of the background information
and related work. In Section 3, we describe our new met-
ric, RGR, and the design of VDF. A case study of VDF
cache is given in Section 4; we describe integrating VDF
into two typical cache-replacement algorithms, LRU and
LFU, based on RAID-5. We provide our simulation re-
sults of VDF in Section 5, and prototyping and measure-
ment results in Section 6. We conclude our paper and
describe future work in Section 7.

2 Background and Related Work

In this section we briefly overview some background ma-
terials and related work.

2.1 Optimizations of Disk Arrays under
Faulty Conditions

Redundant Arrays of Independent Disks RAID [2] are
popular solutions to provide high performance and re-
liability for today’s storage systems. Depending on its
organizations, RAID could prevent data loss incurred by
disk failures and even offer online services under faulty
conditions. With a faulty disk, these RAIDs would work
in a spare-rebuilding mode to support online reconstruc-
tion, or in a degraded mode without reconstruction.

RAID can offer continuous online services even in
faulty mode. However, the recovery workload and user
request can interfere with each other, and lead to longer
recovery times. Many solutions are proposed to solve
this problem, such as optimizations of data/parity/spare
layout [3–7], reconstruction workload [8–12], and user
workload [1, 13, 14].

Menon et al. present a method to distribute spares to
all disks, which would not only reduce the lost data per
disk but also parallelize the reconstruction [4]. Holland
et al. [3] propose a trade-off between RAID-1 (mirror)
and RAID-5, named parity declustering, to balance the
storage efficiency and the recovery performance. Xin et
al. use a RUSH-like hash algorithm to evenly distribute
data, parity, and spares among the nodes in a distributed
environment [5].

The track-based recovery (TBR) [8] algorithm pro-
vides a trade-off between block-based recovery and
cylinder-based recovery, and balances the user response
time and the recovery duration. However, TBR requires

much more buffer space compared to block-based re-
covery. The pipelined recovery (PR) scheme [9] ad-
dresses this problem, and significantly reduces the buffer
requirements close to that of the block-based recovery
algorithms. The disk-oriented recovery (DOR) algo-
rithm [10] rebuilds the array at the disk-level instead
of the stripe-level. With this approach, DOR could ab-
sorb the bandwidth of the array as much as possible.
The popularity-based recovery (PRO) algorithm [11,12],
builds upon the DOR algorithm, further improving the
recovery performance by utilizing the spatial locality of
user requests.

Two techniques named redirection of reads and pig-
gybacking of writes [13] are proposed to reduce the user
workflow by employing the reconstructed spare disk to
absorb parts of the requests to the faulty disk. How-
ever, they need to maintain a bitmap in the dedicated
cache in the RAID device to record the reconstruction
status; as the increasing of disk size, a fine-granularity
bitmap would consume too much memory, and increase
synchronization costs. For example, a bitmap with gran-
ularity of 4KB for a 2TB disk would require 64MB of
memory, which limits the use of piggybacking of writes.
During the reconstruction, at most a coarse-granularity
bitmap could be used only to redirect reads. MICRO
[14] achieves improved recovery performance by writ-
ing back the in-memory surviving data of the faulty disks
into a spare disk first and using a file popularity table
to find the hotspot. MICRO treats all the blocks in the
cache equally, which is similar to the general cache-
replacement algorithms and has the same limitations.
WorkOut [1], an array-cache-array method, offloads the
write requests and popular read requests to another disk
array. As a result, WorkOut speeds up the recovery pro-
cess and improves the user response time. However,
WorkOut requires another disk array to help with the re-
construction and need maintain an addressing translation
map, which might be much larger than a fine-granularity
bitmap, in the dedicated cache on the RAID device. This
suffers from the same problem as redirection of reads and
piggybacking of writes.

2.2 Buffer Cache Replacement Algorithms

RAID-based storage systems usually work together with
the buffer cache. To improve the efficiency of the
buffer cache, researchers have proposed many cache-
replacement algorithms, such as LRU [15], LFU, FBR
[16], LRU-k [17, 18], 2Q [19], LRFU [20, 21], MQ [22,
23], LIRS [24, 25], ARC [26], DULO [27], DISKSEEN
[28] and more. Each cache-replacement algorithm weigh
the cached blocks with a different method, such as access
interval, access frequency and so on, then decide which
cached blocks to evict.



Table 1: Variables and Definitions

Symbols Definition
C Total number of blocks in the buffer cache
T Total number of data blocks in a disk array
Bi Data block i
pi Access probability of each block Bi

MPi Miss penalty of each block Bi

BW Total serviceability of all surviving disks in terms of I/O bandwidth
BWU I/O bandwidth available to user workload, or service rate of the system from the user’s point of view
BWR I/O bandwidth for an online reconstruction workload
RGR The ratio of the # of requested blocks to surviving disks and the # of requested blocks to buffer cache
Q Total amount of data from surviving disks to reconstruct faulty disks

The LRU (Least-Recently-Used) algorithm is one of
the most popular and effective policies for buffer cache
management. When a block needs to be inserted into
the cache, the candidate to be evicted is the block which
is least recently used. That is to say, the weight of
the cached blocks in LRU is its last access timestamp.
The block with the smallest last access timestamp is
evicted. The LFU (Least-Frequently-Used) algorithm re-
places the least frequently used block. In other words,
the weight of the cached blocks in LFU is its number
of accesses. The block with the smallest number of ac-
cesses is evicted. Other algorithms, such as LRU-k, 2Q,
LRFU, MQ, LIRS, and ARC, integrate LRU and LFU al-
gorithm together and demonstrate good performance un-
der various scenarios. DULO and DISKSEEN consider
both temporal and spatial locality when a block needs to
be replaced.

However, the above cache-replacement algorithms
work well when the RAID system is under normal oper-
ating mode. When some disks in the RAID system fail,
it runs under faulty condition, but the buffer cache layer
is not aware of the underlying failures in RAID and thus
the existing cache algorithms do not work well as ex-
plained in Section 1. This motivates us to propose VDF:
a cache scheme to treat the faulty disks more favorably,
or give a higher priority to cache the data associated with
faulty disks. The goal is to reduce the cache misses di-
rected to the faulty disk and thus to reduce the I/O re-
quests to the surviving disks overall. As our VDF only
increases the weight of blocks in the faulty disks, theo-
retically it could work with the above-mentioned general
cache-replacement algorithms.

3 Design of VDF

In this section, we propose a new metric to describe the
cache efficiency of disk I/O activities. We show how to
use it to evaluate disk arrays under faulty conditions, and

then we describe our VDF scheme. Before our discus-
sion, we summarize the symbols in Table 1.

3.1 RGR: A New Metric to Evaluate
Cache Performance with Various Miss
Penalty

Traditional cache-replacement algorithms are essentially
evaluations on access probability of cached blocks, based
on the assumption that the penalty of each miss at the
same level is the same. However, in parity-based RAID
with faulty disk(s), the penalty of a miss to the lost data in
the faulty disks might be much more expensive than that
of a miss to surviving data. Therefore, from the aspect
of a RAID device, the buffer cache performance should
not be simply evaluated by the traditional metrics such
as Hit Ratio or Miss Ratio, particularly when the RAID
is under faulty conditions. To address this issue, we pro-
pose a new metric called Requests Generation Ratio or
RGR. This is the ratio of the number of requested blocks
to the surviving disks and the number of the requested
blocks to buffer cache, to evaluate the cache performance
from the view point of a faulty RAID device. RGR rep-
resents the disk activities to service an I/O request to the
buffer cache. Ideally, if all I/O requests are serviced by
the buffer cache, RGR will be 0 (no disk I/Os are gen-
erated). For missed I/O requests, RGR will be different
depending on the penalty to each underlying disk. For
example, in Figure 1(a) the RGR of a miss to the faulty
disk is 4 because 4 disk I/Os are generated to service the
missed I/O request, and in Figure 1(b), the RGR of a miss
to surviving disks is 1.

To calculate the RGR, we assume a parity-based RAID
of T data blocks with a buffer cache of C blocks. The ac-
cess probability of a block Bi is pi, where 0 ≤ i ≤ T−1,
with a miss penalty of MPi in terms of the total re-
quested blocks to surviving disks caused by a miss. From
the viewpoint of a certain workload, pi actually repre-



sents the ratio of the number of request on Bi and the
number of total block requests. If block Bi is not ref-
erenced in this workload, pi should be 0. As we have
mentioned above, different cache algorithms evaluate pi
with different approaches in runtime environments. If a
block is serviced by the cache, the corresponding miss
penalty MPi = 0. Therefore, the RGR of the next block
request can be described by the following Equation 1.

RGR =

T−1∑
i=0

(pi ×MPi) (1)

3.2 Using RGR to Evaluate the Cache Effi-
ciency in Faulty Mode

Consider a system composed of a buffer cache and a
RAID in faulty mode which service a certain user work-
load. We have the following symbols. First, the total ser-
viceability of all surviving disks is BW in terms of I/O
bandwidth. Second, the unfiltered user workload would
take BWU bandwidth, which is the service rate of the
system from a user’s perspective. The average RGR of
the buffer cache is RGR. Therefore, the filtered user
workload should take about BWU × RGR bandwidth.
Third, all the remaining bandwidth BWR of all surviv-
ing disks could be utilized for reconstruction. Lastly,
the total amount of surviving data for reconstruction is
Q. Equation 2 describes the relationships among BW ,
BWU , RGR, and BWR.

BW = BWU ×RGR+BWR (2)

We first consider the spare-rebuilding mode. The sur-
viving disks would suffer from more requests as ex-
plained in Section 1. It means that the I/O bandwidth
available for reconstruction on the surviving disks would
be less than the I/O bandwidth for reconstruction on the
spare disk. The total amount of requested data for recon-
struction on each disk (including the surviving disks and
the spare disks) is the same. Therefore, to the online re-
covery process, the I/O bandwidth for reconstruction on
the surviving disks is the bottleneck. The reconstruction
duration RD could be described with Equation 3.

RD =
Q

BW −BWU ×RGR
(3)

From Equation 3, we can find that, if Q, BW , and
BWU are fixed, with the decreasing RGR, the re-
construction duration RD (and thus MTTR) decreases.
Therefore, to minimize the MTTR, we should minimize
the RGR.

We next consider the degraded mode without recon-
struction. Each surviving disk would suffer from the ex-
tra requests caused by the access to faulty disks. The

filtered user workload should not exceed the total ser-
viceability of all surviving disks. In another words, the
maximum unfiltered user workload BWU should not ex-
ceed BW

RGR . Therefore, we should minimize the RGR to
maximize the system serviceability, which is described
with a maximum BWU .

From the above discussion, we notice that compared to
the traditional metrics on cache evaluation, such as miss
ratio, RGR is useful to demonstrate two important indi-
cators of a faulty disk array more clearly and directly.
One is the reconstruction time which is directly related
to MTTR and affects the system reliability. The other is
the throughput that indicates the storage system perfor-
mance.

3.3 VDF Cache
Based on the above analysis, we propose our VDF cache
aiming at reducing the RGR for parity-based RAID un-
der faulty conditions, either to enhance the system relia-
bility by speeding up the reconstruction process in spare-
rebuilding mode, or to improve the system performance
by increasing the system serviceability in degraded mode
without reconstruction workloads. As it operates at the
buffer cache level, VDF is practical and does not suffer
from the same problems of the small dedicated cache in
a RAID controller.

Cache-replacement algorithms are essentially evalua-
tions on access probability of cached blocks. Once a
miss occurs, typically a block should be evicted from
cache, and the missed block would be loaded to the free
space. General replacement algorithms evict the block
with the smallest access probability to reduce the total
access probability of the remaining blocks out of buffer
cache. However, to minimize the RGR, the eviction of a
block should not only be determined by the access proba-
bility but also by the miss penalty. In our VDF cache, we
adopt the same evaluation approach of access probability
pi for each cached block as the general cache. Further-
more, the miss penalty MPi of each block is evaluated
with the requested blocks to the surviving disks of this
block; the block with the minimum product of pi×MPi

is evicted from the cache to minimize the RGR.

4 A Case Study of VDF

To verify the effectiveness of VDF, we apply VDF in a
RAID-5 system of n disks where one disk fails. We focus
on read operations for two reasons: first, in many appli-
cations, users are typically sensitive to read latency, par-
ticularly in a disk array under faulty conditions; second,
in many storage systems, independent non-volatile mem-
ory is deployed as a write cache to enhance the reliability
and this cache uses a dedicated write cache algorithm.



Figure 2: VDF implementation with two types of stacks.

4.1 Integrating VDF into LRU and LFU

Although VDF cache can cooperate with caches at
other levels by adjusting the miss penalty of blocks,
for demonstration purposes we just consider a one-level
buffer cache above the disk array. Therefore, the miss
penalty of blocks on the faulty disk would be n − 1 in
our following discussion, which means one cache miss
to the faulty disk will result in n − 1 I/O requests to the
surviving disks. To integrate VDF with any cache algo-
rithm, the access probability should be evaluated with a
quantitative approach. Different cache-replacement al-
gorithms evaluate the access probability of blocks using
different approaches. Most existing cache management
algorithms can be categorized into LRU-like and LFU-
like algorithms. In LRU-like algorithms, the weight of
blocks is often evaluated by the access time interval. As
it is costly to record the real access timestamp, a simple
alternative is to record the access sequence number, and
use the reciprocal of the interval access sequence number
as the access probability. This approach is widely used in
many LRU-like algorithms. In LFU-like algorithms, the
weight of blocks is majorly evaluated by the access fre-
quency. Thus, to integrate VDF into these LFU-like al-
gorithms, it needs only to keep the original evaluation ap-
proach. Furthermore, different from the access sequence
number, the access frequency of two blocks might be the
same. Therefore, in VDF based LFU-like algorithms, the
access sequence number is also employed for choosing
which block to evict with the same access frequency. In
VDF cache the access probability of a block would not
be the absolute but the relative value, because both the
reciprocal of interval of access sequence number and the
access frequency are actually the relative values.

The conversion from the original cache algorithms to
the VDF-based algorithms should be smooth, because

Algorithm 1: VDF-LRU for RAID-5 with n disks
Input: The request stream x1, x2, x3, ..., xi, ...
VDF LRU Replace(xi){
/*For every i ≥ 1 and any xi, one and only one of the following cases
must occur.*/
if xi is in LSk ,0 ≤ k < n then

/*A cache hit has occurred.*/
Update TS of xi, by TS = GTS;
Move xi to the heads of LSk and GS.

else
/*A cache miss has occurred.*/
if Cache is full then

foreach block at the bottom of LSj , 0 ≤ j < n do
if LSj is a corresponding stack to a faulty disk then

Its weight W=GTS − TS;
else

Its weight W=(GTS − TS) ∗ (n− 1);

Delete the block with maximum W to obtain a free block;
else

/*Cache is not full.*/
Get a free block.

Load xi to the free block.
Update TS of xi, by TS = GTS;
Add xi to the heads of GS and the corresponding LS.

Update GTS, by GTS = GTS + 1;
}

VDF takes effect in faulty mode. In other words, the
buffer cache should be managed with the original algo-
rithms in fault-free mode, and the VDF policy becomes
effective when disk failures occur. Thus, a smooth run-
time conversion between the original algorithm and the
VDF-based algorithm is needed, which is quite differ-
ent from the general cache algorithms. Therefore, in
VDF-based algorithm, we employ two types of stacks to
achieve the smooth runtime conversion: one is the global
stack (GS) which is similar to the stack in a general al-
gorithm such as global LRU stack, and the other is the
local stack (LS) holding the blocks on the same disk in
cache. All blocks should be in two types of stacks con-
currently as shown in Figure 2. When the system works
in fault-free mode, it evicts the block with the smallest
weight at the bottom of the GS stack. Once a disk ar-
ray drops to a faulty mode, it evicts the block with the
smallest weight at the bottom of each LS stack instead of
evicting the block at the bottom of the GS stack.

4.2 Detailed Description of VDF-LRU and
VDF-LFU

Detailed descriptions of VDF-LRU and VDF-LFU for n-
disk RAID-5 are given in Algorithm 1 and Algorithm 2,
respectively, using the variables summarized in Table 2.

5 Simulation Results and Analysis

To evaluate the effectiveness of VDF, we conducted sim-
ulations under three typical workloads: SPC-1-web, LM-
TBE, and DTRS.



Table 2: Variants in VDF and Explanation

Variants Explanation
x A block request to buffer cache
LS The local stack holding the blocks on one certain disk in the buffer cache
GS The global stack holding all the blocks on all the disks in the buffer cache
n The total number of disks including the faulty disk and surviving disks
TS The timestamp of a block: records the access sequence number
F The access frequency of a block

GTS The global timestamp: it is equal to the timestamp of currently accessed block
W The weight of a block

Algorithm 2: VDF-LFU for RAID5 of n disks
Input: The request stream x1, x2, x3, ..., xi, ...
VDF LFU Replace(xi){
/*For every i ≥ 1 and any xi, one and only one of the following cases
must occur.*/
if xi is in LSk ,0 ≤ k < n then

/*A cache hit has occurred.*/
Update F and TS of xi, by F = F + 1;
Move xi to right place of LSk and GS according to F and TS.

else
/*A cache miss has occurred.*/
if Cache is full then

foreach block at the bottom of LSj , 0 ≤ j < n do
if LSj is a corresponding stack to a faulty disk then

Its weight W=F ∗ (n− 1);
else

Its weight W=F ;

Delete the block with minimum W and GTS − TS to obtain
a free block;

else
/*Cache is not full.*/
Get a free block.

Load xi to the free block.
Initialize the frequency F and TS of xi, by F = 1 and
TS = GTS;
Move xi to right place of LSk and GS according to F and TS.

Update GTS, by GTS = GTS + 1;
}

SPC-1-web, a trace used in the SPC-1 benchmark
suites, was collected in a search engine, which is widely
used in the evaluation of storage systems [1,11,14]. LM-
TBE and DTRS are provided by Microsoft Corporation
collected in 2008. The LM-TBE trace was collected in
back-end servers supporting a front-end Live Maps ap-
plication. The DTRS trace was collected in a file server
accessed by more than 3000 users to download various
daily builds of Microsoft Visual Studio. Both traces were
taken in a period of 24 hours and broken into pieces with
1-hour intervals [29]. We choose only the piece with
most intensive I/O activities. For fairness and simplicity,
we consider only the read operations and all block sizes
are 4KB. We report RGR of LRU, LFU, VDF-LFU, and
VDF-LRU under these workloads as shown in Figures 3,
4, and 5, respectively.

Our simulator, named VDF-Sim, is written in C
and the source code is approximately 3000 lines. It

slices/splits the trace records into block requests as the
input. Data blocks in a stack or blocks with the same
hash values are linked via double circular lists. For a
certain block in our simulator, we record its logical off-
set as the unique ID since the disk array is transparent to
the upper level systems such as a file system. According
to the data/parity distribution of the disk array and the
logical offset of a block, it is easy to identify on which
disk the block resides. The arriving timestamps of the re-
quests are also recorded to evaluate pi as we mentioned
in Section 4 and to generate the misses trace used in the
prototype discussed in the next section.

The results show that, compared to the original
LRU and LFU algorithms, VDF optimized algorithms
achieved better performance consistently by reducing the
RGR. Compared to LRU, VDF-LRU reduces the RGR
by up to 31.4%, 36.2%, and 22.7% under SPC-1-web,
LM-TBE, and DTRS traces, respectively. Compared
to LFU, VDF-LFU reduces the RGR by up to 42.3%,
39.4%, and 24.4%, respectively.

We find that the efficiency of VDF grows with the
increased number of disks under the same number of
cache-resident blocks in most cases. The efficiency of
VDF is more significant with a moderate number of
cache-resident blocks than that with a too small or too
large number of cache-resident blocks. This can be ex-
plained as follows. The cache-resident blocks of a faulty
disk in the original algorithm would occupy 1/n cache
space with total n disks. With the fixed cache-resident
blocks and the increased n, the number of cache-resident
blocks of the faulty disk would be smaller. From the as-
pect of cache management, the impact of the marginal
utility of blocks on hit ratio tends to decrease with the in-
creased cache size. For example, adding P1 blocks to a
cache with P2 blocks might improve the hit ratio with a
larger gain compared to adding P1 blocks to cache with
P3 blocks when P2 < P3. Thus, the marginal utility
of blocks would be more obvious with more disks and
thus the efficiency of VDF grows accordingly. However,
if the number of cache-resident blocks is too small, it is
hard to find hot blocks even with an extended period due



Figure 3: Simulation results under the SPC-1-web trace. The number of disks ranges from 5 to 8, and number of cache
blocks varies from 64K to 2M with the block size of 4KB.

Figure 4: Simulation results under the LM-TBE trace with various numbers of disks and cache blocks. The block size
is 4KB.

Figure 5: Simulation results under the DTRS trace with various numbers of disks and cache blocks. The block size is
4KB.



to the large access interval. On the other hand, if the
number of cache-resident blocks is too large, most of the
requested blocks from the faulty disks would be cached,
and the marginal utility of blocks becomes insufficient.

We also find that the VDF strategy becomes more ef-
ficient with LFU than LRU under the three workloads.
One possible reason is that the temporal locality of these
traces is weak as they are server-end traces and already
filtered by upper level caches. Thus, the Stack Depth
Distribution property of these traces is weak. As a re-
sult, the Independent Reference Model property of these
traces would be relatively improved. Although we im-
prove the weight of the blocks on faulty disk to n − 1
times in both VDF-LRU and VDF-LFU, the efficiency
is not the same. Mostly, the caching duration of blocks
from a victim disk in VDF-LFU is longer than that in
VDF-LRU, especially when the total number of cache-
resident blocks is not large. Therefore, VDF-LFU works
better than VDF-LRU in these traces in most cases.

6 Prototyping of VDF

To further evaluate VDF, we implemented a prototype
of VDF in a software RAID system in Linux known as
MD. In this section, we present our measurement results,
including the efficiency of online recovery duration in
full-bandwidth reconstruction mode and system service
rate under the degraded mode without reconstruction.

6.1 Evaluation Methodology
Measurements on real world systems are welcome in re-
search of computer systems. However, implementation
in a real system is a lengthy process and always complex
and challenging. Here, we use a straightforward and ac-
curate measurement approach to evaluate the efficiency
of VDF. The architecture of our prototype is shown in
Figure 6. First, we collect the cache miss information
during our simulation in Section 5, which includes not
only the block ID but also the real access timestamps.
Then, we treat the RAID as a file device, and use an ap-
plication in user mode to play the traces we have col-
lected from our simulations which is similar to RAID-
meter [1, 11]. However, the difference is that our ap-
plication uses direct I/O (available in Linux 2.6 and up)
instead of buffered I/O to avoid the requests being re-
cached by the file system buffer cache. All missed I/O
requests sent to the MD layer directly. Thus our simula-
tion and the application join together to exploit the buffer
cache and replacement algorithm. The trace player is
also written in C and the source code is approximately
500 lines.

In our experiment, we evaluated the effectiveness of
VDF, including the online reconstruction duration in full-

Figure 6: Architecture of VDF prototype.

bandwidth reconstruction mode, and the system service-
ability in the degraded mode without reconstruction. For
online reconstruction in full-bandwidth reconstruction
mode, an open-loop measurement approach is adopted,
where all filtered traces are played according to their
timestamps as recorded in the original trace file. For
degraded mode, a closed-loop measurement approach is
adopted, where all filtered traces are played only accord-
ing to their original sequence one by one and without any
interval, to find the system serviceability.

6.2 Experimental Environment
In our experiment, we employ a SuperMicro storage
server with two Intel(R) Xeon(R) X5560 @2.67GHz (six
cores) CPUs, 12GB DDR3 main memory. All disks are
Western Digital WD10EALS Caviar Blue SATA2, which
are connected by an Adaptec 31605 SAS/SATA RAID
controller with a 256MB dedicated cache. We disabled
the RAID function of the controller and only used the
direct I/O mode to connect each disk. The operating sys-
tem is Linux Fedora 12 x86 64 with the kernel version
of 2.6.32.

In Linux, there is a software implementation of RAID
called Multiple Devices MD, which is popular in veri-
fication of RAID optimization scheme [1, 11]. To fa-
cilitate the analysis and verification of VDF cache, we
also used MD as our experimental platform. We used
the default settings of MD: the chunk size is 64KB, the
number of stripe-heads is 256 and the data layout is
left-symmetric. In our open-loop testing, the minimum
reconstruction bandwidth is set to 100MBps to utilize



Table 3: Experimental Results of an Open-loop Testing Using 5 to 8 Disks

Disks Blocks LRU (s) VDF-LRU (s) Improvement LFU (s) VDF-LFU (s) Improvement

5 disks
131072 2662 2543 4.5% 2710 1929 28.8%
262144 2958 1935 34.6% 2851 1531 46.3%
524288 1845 1407 23.7% 1786 1310 26.7%

6 disks
131072 1176 1147 2.5% 1175 964 18.0%
262144 1234 943 23.6% 1226 921 24.9%
524288 1027 818 20.4% 1005 806 19.8%

7 disks
131072 730 685 6.2% 733 652 11.1%
262144 758 659 13.1% 761 657 13.7%
524288 691 599 13.3% 687 598 13.0%

8 disks
131072 504 485 3.8% 509 485 4.7%
262144 558 501 10.2% 560 501 10.5%
524288 527 483 8.4% 526 479 8.9%

all remaining bandwidth for reconstruction besides the
bandwidth taken by user workloads.

As VDF targets the storage server consisting of disk
arrays which run under faulty conditions, we chose the
server-end trace SPC-1-web as our experimental mate-
rial, which spans a 60GB dataset. The workload is fil-
tered by 131,072 to 524,288 blocks in our simulation
to generate the experimental inputs. In the open-loop
measurement, we test VDF with 5 to 8 disks. The re-
sults are reported in terms of reconstruction speed. The
improvements of VDF over the original LRU and LFU
are calculated. In the close-loop measurement, we used
a multi-threaded application to play the filtered trace to
measure the service rate. We also evaluated the impact of
thread number to service rate, in addition to the impact
of the number of blocks and the number of disks. The re-
sults are reported as system service rate improvement by
VDF cache compared to original LFU and LRU. We ran
each test three times and report the average. The results
are very stable and consistent as the difference among all
three rounds was very small (less than 5%).

6.3 Open-loop Measurement Results and
Analysis

Table 3 describes the results under an open-loop testing
using the SPC-1-web trace, where the number of disks
ranges from 5 to 8 and the number of blocks ranges
from 131,072 to 524,288. The experimental results of
the open-loop testing show that compared to the origi-
nal LRU and LFU algorithms, the VDF-optimized algo-
rithm speeds up the online reconstruction process. The
speedup of VDF-LFU is up to 46.3% compared to LFU.
VDF-LRU speeds up the online reconstruction by up to
34.6% compared to LRU.

With the same number of cache-resident blocks, the
experimental results show that the improvement of re-

construction durations of VDF-LFU to LFU decreases
with the increased number of disks. A similar trend is
also observed for the improvement of VDF-LRU over
LRU, except for a smaller improvement of RGR using
VDF when the number of blocks is 131,072. These
trends are in contrast to our previous simulation results
where the efficiency of VDF tends to be more suffi-
cient with increased number of disks. From Equation
3, the improvement of reconstruction durations of VDF-
LFU to LFU, which is presented by Imprv, could be
described with Equation 4. BWU × RGRV DF is al-
ways less than BW otherwise the system would be
overloaded, so BW

RGRV DF
is larger than BWU . VDF

works in most cases where RGRORI

RGRV DF
is larger than 1,

thus BWU∗RGRORI

RGRV DF
is larger than BWU . Therefore, the

change rate of improvement according with the number
of total disks should only be determined by the chang-
ing rates of BWU × RGRORI and BW . Obviously,
BW linearly grows with the total number of disks. From
the simulation result, we can find that the changing rate
of BWU × RGRORI is slower than that of BW with
the number of disks from 5 to 8. Therefore, in most of
the above cases, the improvement of reconstruction dura-
tions of VDF cache to original cache decreases with the
increased number of disks.

RDImprv =
BWU∗RGRORI

RGRV DF
−BWU

BW
RGRV DF

−BWU

(4)

With the same number of disks, we notice that the
reconstruction duration of the trace filtered by 131,072
blocks is less than the reconstruction duration of trace
filtered by 262,144 blocks in many cases. On one hand,
as we use a number of blocks to warm up the cache, this
part of the miss information is not recorded in our fil-
tered trace file. The first 131,072 block misses in the
trace filtered by 262,144 blocks has a lower average ar-



Figure 7: Service rate improvement of VDF in degraded
mode of a RAID-5 of 8 disks. The number of blocks is
524,288 and the number of threads ranges from 20 to 80.

Figure 8: Service rate improvement of VDF in de-
graded mode of a RAID-5 of 8 disks. The number of
blocks ranges from 131,072 to 524,288 and the number
of threads is 60.

rival rate than the remaining part. On the other hand,
when the number of blocks in the cache is 131,072 or
262,144, the cache is too small to find the hot blocks,
which implies fewer hits in those cases and the RGRs
are similar. Therefore, the reconstruction duration of the
trace filtered by 131,072 blocks might be less than that
of the trace filtered by 262,144 blocks in those cases.

6.4 Close-loop Measurement Results and
Analysis

Figures 7, 8, and 9 present the close-loop testing re-
sults under different scenarios with various numbers of
threads, disks, and data blocks. The results are reported
as service rate improvement, which is inversely propor-
tional to the Play Duration (PD) of a whole filtered
trace. For example, the corresponding service rate im-
provement of VDF-LRU to LRU should be calculated by
PDLRU−PDV DF−LRU

PDV DF−LRU
.

From the experimental results, we find that VDF is ef-

Figure 9: Service rate improvement of VDF in degraded
mode of a RAID-5 of 5 to 8 disks. The number of blocks
is 524,288 and the number of threads is 60.

fective in improving the system service rate. Compared
to LFU, VDF-LFU improves the system service rate up
to 46.8% with 60 threads under 8 disks and 262,144
blocks. Compared to LRU, VDF-LRU improves the sys-
tem service rate by up to 28.4% with 80 threads under 8
disks and 524,288 blocks.

With the increasing number of I/O threads, the service
rate improvement increases accordingly and gets close
to the theoretical value calculated by the simulation re-
sults. Although the whole trace would be evenly dis-
tributed on all disks due to the round-robin addressing in
RAID, the incoming user requests might not be evenly
distributed on all the disks during a short period. There-
fore, with a larger number of threads, which implies a
longer scheduling window, the distribution of incoming
user requests is more balanced and the user service rate
is closer to the maximum system service rate.

With the same number of blocks and a fixed number
of threads, the service rate improvement of VDF-LRU
to LRU is consistent with the trend of the simulation re-
sult. However, to our surprise, the results of VDF-LFU
to LFU were just opposite with the trend of the simula-
tion result. As per our analysis, this was primarily due
to two reasons. First, from the simulation result, the rel-
ative RGR reduction of VDF-LFU to LFU with 524,288
blocks is in a small area from 33.7% to 35.6%. Sec-
ond, the number of concurrent threads is fixed, which
means that the number of threads per disk would increase
with the decreased total number of disks. Thus, based
on the above analysis, when the total number of disks is
small, the improvement is closer to the theoretical value.
Therefore, under close to theoretical peak service rates
and more I/O threads per disk, the trend of service rate
improvement of VDF-LFU to LFU is very possibly op-
posite with the trend of the simulation result. As a re-
sult, with the same number of disks and a fixed number
of threads, which means a fixed number of I/O threads



per disk, the service rate improvement is quite consistent
with the trend of the simulation results.

6.5 Further Discussion

Several more issues deserve further discussion. The first
issue is the implementation cost of VDF. As we men-
tioned in Section 4, to make the smooth conversion be-
tween the original cache algorithms and the VDF-based
algorithms, two types of stacks should be employed to
implement VDF cache. This adds both spatial and tem-
poral overhead. The spatial overhead include the extra
information in each block head such as the timestamp
and the extra stack pointer of the local stack. Compared
to the buffer cache size, this overhead is very small. The
temporal overhead is the computation of the weight of
block at the bottom of each LS stack. Due to the high
computation ability of today’s CPU, this should not in-
fluence the overall system performance.

Second, can we integrate VDF into other optimiza-
tions in faulty mode? As the VDF cache essentially
reduces the user requests to the surviving disks, it can
be integrated with other optimizations in faulty mode,
such as optimization on data/parity/spare layout and re-
construction workloads. The approach of redirection of
reads utilizes the reconstructed data in a spare disk to
serve part of the reads to the faulty disk. Thus the miss
penalty of these reconstructed data block is zero in terms
of extra requests to the surviving disks. There still exist
hot data with large miss penalty on faulty disks. There-
fore, VDF can still help.

Third, could RGR be suitable to describe the status
of write operation? From its definition, RGR is deter-
mined by MPi and pi. The calculation of pi in write
operations is similar to read operations. However, the
calculation of MPi in write operations is quite differ-
ent from read operations, as they might be done with
two approaches based on the parity distribution in RAID
with faulty disk(s). One is the Read-Modify-Write, and
the other is Parity-Reconstruction-Write. Here, we take
an example of short writes on an n-disk RAID-5 with
one faulty disk to demonstrate the MPi calculation for
write operations. Once a short write is sent to the sur-
viving disks and the corresponding parity is not on the
faulty disk, the Read-Modify-Write should be performed
which results in two reads and two writes on the surviv-
ing disks, and thus the MPi is 4. Otherwise, the Parity-
Reconstruction-Write should be performed which results
in n − 1 reads and one write on the surviving disks, and
thus the MPi is n.

7 Conclusions and Future Work

In this paper, we present an asymmetric buffer cache
replacement strategy, named Victim (or faulty) Disk(s)
First (VDF) cache, to improve the reliability and perfor-
mance of a RAID-based storage system, particularly un-
der faulty conditions. The basic idea of VDF is to treat
the faulty disks more favorably, or give a higher priority
to cache the data associated with the faulty disks. The
benefit of this scheme is to reduce number of the cache
miss directed to the faulty disk, and thus to reduce the
I/O requests to the surviving disks overall. Less disk I/O
activity caused by the user workflow will (1) improve the
performance of the disk array, and (2) allow more band-
width for online reconstruction which in turn speeds up
the recovery, and thus improves the reliability. Our re-
sults based on both simulation and prototyping imple-
mentation has demonstrated the effectiveness of VDF in
terms of reduced disk I/O activities and a faster recovery.

To further understand VDF, we have the following
plans as our future work. First, we plan to build VDF into
more general cache algorithms such as CLOCK [30] and
ARC [26]. Second, we are working to implement VDF in
the kernel level and thus to directly run real benchmarks
to conduct more extensive measurements. Third, in addi-
tion to RAID-5, we will investigate the scheme to apply
VDF to other RAID levels such as RAID-4 and RAID-6.

Acknowledgments

We are very grateful to our shepherd Erez Zadok
and anonymous reviewers for their helpful comments.
This research is sponsored in part by the National Ba-
sic Research 973 Program of China under Grant No.
2011CB302303, the National Natural Science Founda-
tion of China under Grant No. 60933002, the National
863 Program of China under Grant No. 2009AA01A402,
and the Innovative Foundation of Wuhan National Labo-
ratory for Optoelectronics. The author He’s work is sup-
ported by the U.S. National Science Foundation (NSF)
under Grant Nos. CCF-1102605, CCF-1102624, and
CNS-1102629. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views
of the funding agencies.

References
[1] S. Wu, H. Jiang, D. Feng, L. Tian, and Bo Mao. WorkOut: I/O

workload outsourcing for boosting RAID reconstruction perfor-
mance. In Proceedings of the 7th USENIX Conference on File
and Storage Technologies, San Francisco, USA, February 2009.

[2] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for redun-
dant arrays of inexpensive disks (RAID). In Proceedings of the



1988 ACM SIGMOD international conference, Chicago, Illinois,
USA, June 1988.

[3] M. Holland and G. A. Gibson. Parity declustering for continuous
operation in redundant disk arrays. In Proceedings of the 5th Con-
ference on Architectural Support for Programming Languages
and Operating Systems, pages 23–35, Boston, Massachusetts,
USA, October 1992.

[4] J. Menon and D. Mattson. Distributed sparing in disk arrays. In
Proceedings of the 37th international conference on COMPCON,
pages 410–421, San Francisco, California, USA, Feb 1992.

[5] Q. Xin, P. L. Miller, and T. J. E. Schwarz. Evaluation of dis-
tributed recovery in large-scale storage systems. In Proceedings
of 13th IEEE International Symposium on High Performance Dis-
tributed Computing, pages 172–181, June 2004.

[6] G. K.M, X. Li, and J. J. Wylie. Flat XOR-based erasure codes in
storage systems: Constructions, efficient recovery, and tradeoffs.
In IEEE 26th Symposium on Mass Storage Systems and Technolo-
gies, Incline Village, NV, May 2010.

[7] S. Wan, Q. Cao, C. S. Xie, B. Eckart, and X. He. Code-M: A non-
MDS erasure code scheme to support fast recovery from up to
two-disk failures in storage systems. In IEEE/IFIP International
Conference on Dependable Systems and Networks, Chicago, IL,
USA, June 2010.

[8] R. Y. Hou, J. Meno, and Y. N. Patt. Balancing I/O response time
and disk rebuild time in a RAID5 disk array. In Proceeding of
the Twenty-Sixth Hawaii International Conference on System Sci-
ences, pages 70–79, Jan 1993.

[9] J. Y.B. Lee and J. C.S. Lui. Automatic recovery from disk failure
in continuous-media servers. The Computer Journal, 13(5):499–
515, May 2002.

[10] M. Holland, G. A. Gibson, and D. P. Siewiorek. Fast, on-line fail-
ure recovery in redundant disk arrays. In The Twenty-Third Inter-
national Symposium on Fault-Tolerant Computing, pages 422–
431, Toulouse , France, Jun 1993.

[11] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang,
and Z. Song. PRO: A popularity-based multi-threaded recon-
struction optimization for RAID-structured storage systems. In
Proceedings of the 5th USENIX Conference on File and Storage
Technologies, pages 277–290, February 2007.

[12] L. Tian, H. Jiang, and D. Feng. Implementation and evaluation
of a popularity-based reconstruction optimization algorithm in
availability-oriented disk arrays. In 24th IEEE Conference on
Mass Storage Systems and Technologies, pages 233–238, San
Diego, CA, USA, Sep 2007.

[13] R. R. Muntz and J. C. S. Lui. Performance analysis of disk arrays
under failure. In Proceedings of the 16th International Confer-
ence on Very Large Databases, pages 162–173, 1990.

[14] T. Xie and H. Wang. MICRO: A multilevel caching-based recon-
struction optimization for mobile storage systems. IEEE Trans-
actions on Computers, 57(10):1386–1398, Oct 2008.

[15] A. Dan and D. Towsley. An approximate analysis of the LRU and
FIFO buffer replacement schemes. In Proceedings of the 1990
ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, pages 143–152, Boulder, Colorado, USA,
May 1990.

[16] J. T. Robinson and M. V. Devarakonda. Data cache management
using frequency-based replacement. In Proceedings ACM SIG-
METRICS Conference on Measurement and Modeling of Com-
puter Systems, pages 134–142, Boulder, Colorado, USA, May
1990.

[17] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page re-
placement algorithm for database disk buffering. In Proceedings
of the ACM SIGMOD international Conference on Management
of data, pages 297–306, Washington, D.C., USA, May 1993.

[18] E. J. O’Neil, P. E. O’Neil, and G. Weikum. An optimality proof
of the LRU-K page replacement algorithm. Journal of ACM,
46(1):92–112, Jan 1999.

[19] T. Johnson and D. Shasha. 2Q: A low overhead high performance
buffer management replacement algorithm. In Proceedings of
the Twentieth International Conference on Very Large Databases,
pages 439–450, Santiago de Chile, Chile, USA, September 1994.

[20] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. On the existence of a spectrum of policies that subsumes
the least recently used (LRU) and least frequently used (LFU)
policies. In Proceedings of the ACM SIGMETRICS Conference
on Measurement and Modeling of Computer Systems, pages 134–
143, Atlanta, Georgia, USA, May 1994.

[21] D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. LRFU: A spectrum of policies that subsumes the least re-
cently used and least frequently used policies. IEEE Transactions
on Computers, 50(12):1352–1361, Dec 2001.

[22] Y. Zhou, J. F. Philbin, and K. Li. The multi-queue replacement
algorithm for second level buffer caches. In Proceedings 2001
Annual USENIX Technical Conference, pages 91–104, Boston,
Massachusetts, USA, June 2001.

[23] J. F. Philbin Y. Zhou and K. Li. Second-level buffer cache man-
agement. IEEE Transactions on Parallel and Distributed Sys-
tems, 15(6):505–519, June 2004.

[24] S. Jiang and X. Zhang. LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance. In Proceedings of the 2002 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems, pages
31–42, Marina Del Rey, California, USA, June 2002.

[25] S. Jiang and X. Zhang. Making LRU friendly to weak lo-
cality workloads: a novel replacement algorithm to improve
buffer cache performance. IEEE Transactions on Computers,
54(8):939–952, Aug 2005.

[26] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead
replacement cache. In Proceedings of 2nd USENIX Conference
on File and Storage Technologies, pages 115–130, San Francisco,
CA, USA, Mar 2003.

[27] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. DULO: An
effective buffer cache management scheme to exploit both tem-
poral and spatial localities. In Proceedings of the 4th USENIX
Conference on File and Storage Technologies, pages 14–16, San
Francisco, CA, USA, December 2005.

[28] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang. DiskSeen:
Exploiting disk layout and access history to enhance I/O prefetch.
In Proceedings of the USENIX Annual Technical Conference,
Santa Clara, CA, USA, Jun 2007.

[29] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda. Char-
acterization of storage workload traces from production windows
servers. In IEEE International Symposium on Workload Charac-
terization, Seattle, WA, USA, Sept 2008.

[30] F. J. Corbato. A paging experiment with the Multics system. In
MIT Project MAC Report MAC-M-384, May 1968.


	Introduction
	Background and Related Work
	Optimizations of Disk Arrays under Faulty Conditions
	Buffer Cache Replacement Algorithms

	Design of VDF
	RGR: A New Metric to Evaluate Cache Performance with Various Miss Penalty
	Using RGR to Evaluate the Cache Efficiency in Faulty Mode
	VDF Cache

	A Case Study of VDF
	Integrating VDF into LRU and LFU
	Detailed Description of VDF-LRU and VDF-LFU

	Simulation Results and Analysis
	Prototyping of VDF
	Evaluation Methodology
	Experimental Environment
	Open-loop Measurement Results and Analysis
	Close-loop Measurement Results and Analysis
	Further Discussion

	Conclusions and Future Work

