
An Online Performance Anomaly Detector in Cluster File Systems

Xin Chen1∗, Xubin He2†, He Guo3‡ and Yuxin Wang4§
1Department of Electrical and Computer Engineering, Tennessee Technological University, Cookeville, TN 38505, USA
2Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA

3School of Software Technology, Dalian University of Technology, Dalian, LiaoNing, China
4School of Computer Science and Technology, Dalian University of Technology, Dalian, LiaoNing, China

∗xchen21@tntech.edu, †xhe2@vcu.edu, ‡guohe@dlut.edu.cn,§wyx@dlut.edu.cn

Abstract—Performance problems, which can stem from dif-
ferent system components, such as network, memory, and
storage devices, are difficult to diagnose and isolate in a cluster
file system. In this paper, we present an online performance
anomaly detector which is able to efficiently detect performance
anomaly and accurately identify the faulty sources in a system
node of a cluster file system. Our method exploits the stable
relationship between workloads and system resource statistics
to detect the performance anomaly and identify faulty sources
which cause the performance anomaly in the system. Our
preliminary experimental results demonstrate the efficiency
and accuracy of the proposed performance anomaly detector.

Keywords-performance anomaly detector; cluster file system;

I. INTRODUCTION

Performance is critical in the study of file systems. Syn-
thetic workloads or file system benchmarks are created to
examine the behaviors of file systems. Although they are
very useful in the initial stage of the design and develop-
ment of a file system, it is insufficient for using them to
analyze or resolve one common problem called performance
anomaly in file systems [1], [2]. By performance anomaly
we mean that the current observed system behavior is not
expected according to the observed system workload. For
example, I/O throughput has a significant degradation given
a moderate amount of I/O requests. Performance anomaly is
closely related to either some resource-intensive processes
that demand large portion of system resources (CPU or
memory) or some unexpected software and hardware be-
haviors like software bugs (memory leaking) and hardware
faults (bad hard drive sectors), and it is common in file
systems. However, it remains a challenging task to efficiently
detect performance anomaly and accurately identify the
faulty sources, particularly in cluster file systems.

Cluster file systems like PVFS [3] usually consist of a
large amount of commodity computer nodes which may
have different processing capabilities. However, the overall
performance of such systems is not determined by the fastest
computer nodes in the systems, instead, the performance is
often limited by the capability of the slowest ones [4], [2].
So, if there exists performance anomaly in some node of
a cluster file system, it is highly possible that the overall
system performance will suffer negative effects, and such

effects may be accumulated and magnified due to long-
running and large-scale computations [2], which directly
hurts the reliability and availability of the system. Therefore,
it is necessary and crucial to equip cluster file systems with a
tool which is able to efficiently detect performance anomaly
and accurately identify the faulty sources.

As compared to the fail-stop failures [5], it is more
difficult to detect the existence of performance anomaly, and
even more difficult to identify the source of the anomaly,
since both dynamic workload change and many uncertain
factors such as caching and scheduling can perplex our
ability to understand the system behaviors. Currently, some
anomaly detecting approaches are threshold-based, which
set thresholds for observed system metrics and raise signals
when the thresholds are violated [6], [7]. However, it is
difficult to choose appropriate thresholds for a variety of
workloads and computer nodes with different capabilities.
Some approaches are model-based, which indicate perfor-
mance anomaly by comparing the observed system mea-
surements and the model estimations [8], [9], [2], however,
their usages are limited to the generality of their models.

In this work, we target the runtime diagnosis of perfor-
mance anomaly in cluster file systems which may consist
of heterogeneous computer nodes and experience dynamic
changed workloads. Our approach is self-diagnosis based,
which exploits some invariants exist in a computer node
of a cluster file system to detect the performance anomaly
and identify faulty sources of that node. Such invariants
refer to the stable relationships between workloads and
system resource statistics in faulty-free situations. An online
performance anomaly detector was developed based on
these invariants, and our preliminary experimental results
demonstrate the efficiency and accuracy of the detector.

The rest of the paper is organized as follows: Section 2
gives a brief discussion of related works. In section 3, we
describe our methodology for performance anomaly detec-
tion and identification, and present the design of our per-
formance anomaly detector in section 4. Section 5 describes
our experiments and lists experimental results. Finally, we
conclude the paper in section 6.

II. RELATED WORK

For large-scale systems like cluster file systems, it is a
major challenge to understand system behaviors, particu-
larly unexpected behaviors. Numerous techniques have been
proposed for detecting system anomalies. Among them, the
simplest ones are the threshold-based techniques which are
a form of service level agreements (SLAs). They are very
useful on the condition that their users clearly know the key
metric to monitor and the best value of the thresholds in
different scenarios [6], [7]. Unfortunately, it is very difficult,
even for an expert, to correctly choose the necessary metrics
to monitor and set the right values of the thresholds for
different scenarios in the context of today’s complex and
dynamic computer systems.

Recently, statistical learning or data mining techniques
are widely employed to construct probability models for
detecting various anomalies in large-scale systems based on
some heuristics and assumptions, although these heuristics
and assumptions may only hold in some particular systems
or scenarios.

Kasick et al [2] developed a statistical peer-comparison
diagnosis approach to identify a faulty node in a cluster
file system. The rationale of their approach is based on
the observation that there is an obvious difference between
the behaviors of fault-free and faulty nodes. Kavulya et
al [10] and Lan et al [9] proposed the similar approaches to
detect performance problems in replicated file systems and a
cluster system, respectively. However, the validation of these
approaches is based on a strong assumption of homogeneous
hardware and workloads, which may only hold in a few
cases.

Besides the probability models for system metrics such
as throughput, response time, etc, various relationships and
correlations among system inputs and measurements are also
explored and modeled to detect anomalies in large-scale
computer systems. Chen et al [8] developed a new tech-
nique, the principal canonical correlation analysis (PCCA),
to perform failure detection in large-scale computer systems
which provide online Internet services. The key idea of their
approach is to capture the contextual relationships between
the system inputs and their internal measurements which
hold in fault-free scenarios, and are broken in faulty scenar-
ios. However, it is required for applying their technique that
there exists a linear relationship between the system inputs
and their internal measurements.

Guo et al [11] and Gao et al [12] investigated the
probabilistic correlation between flow-intensities measured
at different points and the one between different system
measurements, respectively. In this work, we also exploit
the correlation among system measurements, however, we
not only use them to detect the existence of performance
anomaly in a cluster file system, but also pinpoint the source
of the performance anomaly.

III. PERFORMANCE ANOMALY DETECTION AND
IDENTIFICATION

In our opinion, any performance problem at a computer
node manifest symptoms of unexpected certain resource
usage. Because system resources are always limited, once
one or more processes occupies too many resources and
does not release them, the executions of other processes
are negatively impacted, as the OS kernel forces the
processes sleep until the required resources are ready [13].
Meanwhile, if a resource request from a process cannot
be satisfied immediately, the kernel also forces the process
sleep. Thus, our option of utilizing invariants in a computer
node to detect performance anomaly drive us to explore
the relationships between workloads and system resource
statistics. Here, invariants refer to the stable relationships
between workloads and system resource statistics in faulty-
free situations. By studying the trace data collected from
our previous studies on distributed storage systems [4],
[14], we concluded three invariants as follows.

[Invariant for memory] If the process of a distributed
file system at a computer node works properly, without
intervention of other processes, the total size of I/O requests
over network per second is proportional to the amount of
the allocated memory per second.

Memory is allocated to hold data either after the arrival
of write requests from clients or before sending back the
satisfied read requests to clients. Thus, if a computer node
has sufficient free memory and there is no other memory
intensive processes running on the node, the total size of
I/O requests over network per second is proportional to the
amount of the allocated memory per second. The invariant
helps us to identify the performance problems originated
from memory.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

N
et

w
or

k
re

qu
es

t:
M

B
/s

ec

Allocated memory: MB/sec

Figure 1: The relation between the total size of I/O requests
over network per second and the amount of allocated mem-
ory per second. Data is from a trace of 40 seconds I/O
activities on a computer node.

[Invariant for CPU] If the process of a distributed file sys-
tem at a computer node works properly, without intervention

of other processes, the total size of I/O requests over network
per second is proportional to the number of interrupts per
second.

Interrupts are generated during the processing of I/O
requests. For example, a network interface card raises
hardware interrupt to CPU after the arrival of I/O requests
from clients; disk interrupts are triggered when I/O requests
are issued to a hard disk drive. If more I/O requests arrive
at a computer node, more interrupts are generated, and
vice versa. Meanwhile, the generation rate of interrupts
is closely related to the CPU time of the corresponding
process, as it requires a significant amount of CPU time to
process I/O related interrupts [15]. Once the CPU resource
is insufficient for the distributed file system process, fewer
I/O related interrupts are generated, and the proportional
relationship between I/O request arrival rate and interrupt
generating rate does not hold. The invariant is used to
identify the performance problems originated from CPU.

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20

N
et

w
or

k
re

qu
es

t:
M

B
/s

ec

The number of interrupts: 103/sec

Figure 2: The relation between the total size of I/O requests
over network per second and the number of interrupts per
second. Data is from a trace of 40 seconds I/O activities on
a computer node.

[Invariant for disks] If a hard disk works properly and
has continued I/O requests, the average I/O request size is
proportional to the average I/O request service time.

I/O requests issued to a hard disk usually have different
sizes. It is intuitive that larger requests require more service
time than smaller requests. However, when hard disks pro-
cess discontinued I/O requests, small requests may require
more service time than large requests, because the disk seek
time dominates the total request service time. Thus, when
a hard disk works properly and has continued I/O requests,
the average I/O request size is proportional to the average
I/O request service time. The invariant is used to identify
the performance problems originated from hard disks.

A. Indicators of Performance Anomaly

Although one or more of our invariants does not hold
when an I/O server experiences performance problem, it
is still insufficient to only depend on them to detect the

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25

A
ve

ra
ge

 I/
O

 r
eq

ue
st

 s
iz

e:
 K

B

Average service time per I/O request: ms

Figure 3: The relation between average I/O request size and
average service time per I/O request. Data is from a trace
of 250 seconds I/O activities on a computer node.

existence of performance anomaly on the server, because
even if when an I/O server works properly, these invariants
may still not hold, for example, marginal memory allocation
by other processes may break the invariant for memory but
does not negatively impact the running of the process of a
distributed file system on the server.

To compensate the drawback of our invariants, an indica-
tor Ireq(n) is adopted to detect the performance anomaly
on an I/O server at the nth sampling period. Formula 1
gives the definition of Ireq(n), where reqn−1 denotes the
average total size of I/O requests from clients at the (n−1)th
sampling period, reqn denotes the average total size of
I/O requests from clients at the nth sampling period, and
α denotes a threshold of the degradation ratio between
reqn−1 and reqn. If the ratio is greater than or equal
to α, Ireq(n) generates a TRUE value, which suggests a
performance problem, otherwise not. Similarly, we cannot
use only Ireq(n) to detect performance anomaly on an I/O
server, because non-faulty I/O servers also observer the
degradation of receiving request rate [2]. Ireq(n) should
be combined with the indicators of our invariants to detect
performance anomaly.

Ireq(n) =

FALSE, if reqn−1−reqn
reqn < α, reqn 6= 0

FALSE, reqn = 0

TRUE, if reqn−1−reqn
reqn ≥ α, reqn 6= 0

(1)

B. Indicators of Faulty Sources

Because the invariants we discussed refer to a propor-
tional relationship between two metrics, in order to use
them in practice, such a proportional relationship needs
to be quantified. The correlation corr(x, y) provides us a
good measurement of proportional relationships between
two variables: x and y. Formula 2 gives a formal definition

of corr(x, y), where σx,y denotes the covariance of x and y;
σx and σy denote the variance of x and y, respectively; µx

and µy represent the mean value of x and y, respectively;
E(x) calculates the expectation of variable x. The sign of
corr(x, y) is more meaningful than its absolute value: once
correlation is positive, it indicates x increases as the increase
of y; otherwise, it indicates x is not proportional to y.

corr(x, y) =
σx,y

σxσy
=

E[(x− µx)(y − µy)]√
E(x− µx)2

√
E(y − µy)2

(2)

Thus, based on formula 2, three indicators Imem, Icpu,
and Idisk are defined to test our invariants by formula 3,
4, and 5, respectively. If an indicator has a boolean value
of TRUE, the corresponding invariant holds, otherwise, the
invariant does not hold, which suggests the performance
problem originates from the corresponding resource. Table I
lists the parameters used in these formulas.

Icpu =
{

FALSE, if corr(req, interrupt) < 0
TRUE, if corr(req, interrupt) ≥ 0 (3)

Imem =
{

FALSE, if corr(req,mem) < 0
TRUE, if corr(req,mem) ≥ 0 (4)

Idisk =
{

FALSE, if corr(iosize, svctm) < 0
TRUE, if corr(iosize, svctm) ≥ 0 (5)

As compared to the performance problems originated
from memory, CPU, and hard disks, the problems from
network are more difficult to diagnose, as they usually
manifest themselves as a symptom of workload change, and
it is difficult to only use the local information of an I/O
server to identify them. An indicator Inetwork is defined by
formula 6, which combines the local information of an I/O
server and the information from other related I/O servers
to identify the network problems. In formula 6, In

network

is a local indicator of network on an I/O server n, its
TRUE value suggests there may have some network problem
which causes the performance anomaly, but the value should
be confirmed by the external information from other I/O
servers; I ′network finally determines whether the network is
a faulty source or not, if a TRUE value is generated by it,
the source of performance anomaly can be pinpointed to the
network.

In
network = In

disk ∧ In
mem ∧ In

cpu ∧ In
req, n ∈ N

I ′network = I1
network ∧ I2

network ∧ · · · ∧ In
network, n ∈ N

(6)

IV. THE DESIGN OF THE ONLINE PERFORMANCE
ANOMALY DETECTOR

The online performance anomaly detector is implemented
as a daemon process which runs at each computer node of

a cluster file system. The detector sends alarms to clients
or administration nodes, when performance anomaly is de-
tected at a computer node. It is worth pointing out that once
performance anomaly is detected on a computer node, it is
most likely that the other computer nodes generate alarms
soon, and those alarms may mark other resource as faulty,
meanwhile, one or more of our invariants on the computer
node may not hold any more until the performance anomaly
is fixed. Thus, the alarms raised after the first alarm in a
short period are ignored.

Figure 4 shows the working flow of our performance
anomaly detector. The detection process is triggered when
there is a significant degradation of req, then all indicators
are evaluated accordingly to identify which system compo-
nent is the faulty source, finally an alarm is raised if the
performance anomaly is detected.

req

disk mem cpu

FALSE
TRUE

AND

TRUE

FALSE

network

network

AND

TRUE
FALSE

Suggests the faulty source is
network.

Suggests the faulty source is
either disk, memory, or CPU.

Figure 4: The working flow of the online performance
anomaly detector.

V. EXPERIMENTS

To demonstrate the efficiency of our performance de-
tector, we constructed a testbed which consisted of four
computer nodes (1 metadata server, 3 I/O servers). These
servers have different computation and I/O capabilities, as
shown in table II. Our detector was evaluated with synthetic
workloads on a parallel file system, PVFS. Four faults were
injected to produce faulty situation during the evaluation:
disk delay faults, network delay faults, CPU overuse faults,
and memory overuse faults. disk delay faults introduce extra
I/O request processing time in a hard disk driver; network
delay faults add extra delay at an I/O server for sending every
request over the network; CPU and memory overuse faults
limit the available CPU and memory resource at a low level,
respectively. In our experiments, we adopted a sampling
period of four seconds according to our prior experience,
in which four samples were taken, one per second, and all

Table I: Symbols in formula 3, 4, and 5.

Parameter Description
req the total size of incoming I/O requests from clients per second.
interrupt the number of generated interrupts per second.
mem the amount of allocated memory per second.
iosize the average I/O request size to a hard disk per second.
svctm the average I/O request service time per second.

Table II: Testbed Information.

Server
name

Type CPU Memory HDD Network Card

MDS Metadata
server

P4 CPU 2.53GHz 500MB FUJITSU IDE 8GB
5400rpm

1Gbit

IO1 IO server P4 CPU 2.40GHz 2026MB SEAGATE SCSI 18.3GB
15000 rpm

1Gbit

IO2 IO server P4 CPU 2.40GHz 1264MB WDC IDE 40GB
7200rpm

1Gbit

IO3 IO server P4 CPU 2.80GHz 1010MB WDC SATA 250G
7200rpm

1Gbit

indicators were evaluated at the end of the period; we set α
to 50% for Ireq.

In order to measure the efficiency and accuracy of our
detector, two metrics are defined: the detection latency and
the true positive rate. The former measures how long our
detector may take to detect the existence of performance
anomaly after the injection of performance faults, and the
latter measures the accuracy of our detector in terms of
the percentage of correct alarms. Formula 7 and 8 give the
definitions of the two metrics, where ∆ denotes the detection
latency, Td represents the time point at which performance
anomaly is detected, Ti denotes the fault injection time point,
Atd denotes the true positive rate, Ntd and Nfd represent
the number of true and false detections, respectively.

∆ = Td − Ti (7)

Atd =
Ntd

Ntd +Nfd
(8)

In this section, the behaviors of our performance anomaly
detector are examined with synthetic workloads in different
faulty situations. Before the discussion of our detector in
faulty situations, the system behaviors in fault-free situation
are studied first; we focus on examining whether our in-
variants hold or not, which is of ultra importance for the
correctness of our detector.

Figure 5 shows the results of 1GB sequential write tests
on PVFS in fault-free situation. In the these figures, our
three invariants perfectly hold in the presence of a significant
fluctuations of external I/O request rate for both file systems,
as the values of three correlations along the time axis are
almost positive. The only exception is in figure 5d, the
correlation of iosizen and svctmn is negative at the second
sampling period. However, it is reasonable, as in the period,
I/O servers just started to process I/O requests, hard disks
may take relative long service time for processing the first

incoming I/O requests with moderate sizes, which breaks
the third invariant.

 0

 5

 10

 15

 20

 0 10 20 30 40 50

N
et

w
or

k
R

eq
ue

st
: M

B
/s

ec

Time: seconds

IO1
IO2
IO3

(a) External I/O request rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(b) corr(req, mem)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(c) corr(req, interrupt)

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(d) corr(iosize, svctm)

Figure 5: 1GB sequential write on PVFS.

The results of 1GB sequential read tests on PVFS in fault-
free situation are shown in figure 6. As similar as in figure 5,
the invariants for memory and CPU hold through the tests,
but the invariant for disk does not always hold, as there is
no data caching for PVFS, which results in discontinuous
I/O requests. Because there is no significant drop of req in
figure 6, even if the invariant is broken, no alarm is raised
by our detector in practice.

Due to the space limit, we only discussed the results
of write tests of the following experiments, and gave a
summary of both write and read tests in section V-E.

A. Disk delay faults
This set of experiments evaluated our performance

anomaly detector in the case of disk delay faults which

 0

 5

 10

 15

 20

 0 10 20 30 40 50

N
et

w
or

k
R

eq
ue

st
: M

B
/s

ec

Time: seconds

IO1
IO2
IO3

(a) External I/O request rate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(b) corr(req, mem)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(c) corr(req, interrupt)

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(d) corr(iosize, svctm)

Figure 6: 1GB sequential read on PVFS.

do not fail any I/O request but introduce extra I/O request
processing time in a hard disk driver. The delay was set to 50
ms for the following experiments. Figure 7 shows the results
of 1GB sequential write test on PVFS where the disk delay
faults were introduced at the 4th sampling period (13rd –
16th second) at IO2.

In figure 7, although the invariants for memory and CPU
of IO3 do not hold at the 3rd sampling period, req of IO3
does not have a significant drop during such the period which
is between the 9th and 12rd second in figure 7a, thus, there
was no alarm raised. In the 13rd second, disk delay faults
were introduced at IO2, we not only observed a sharp drop of
req but also saw the FALSE value generated by Idisk of IO2
in the 4th sampling period which includes the 13rd second
time point, meanwhile, at the same sampling period, no other
invariant was broke. Thus, the performance anomaly was
detected, and the faulty source was pinpointed to the hard
disk on IO2. Because each indicator generates a boolean
value at the end of a sampling period, for this experiment,
the latency was ∆ = 4× 4− 13 = 3 seconds, and Atd was
100%, as there was no false detection.

B. Network delay faults

This set of experiments evaluated our performance
anomaly detector in the presence of network delay faults
which added extra delay at an I/O server for sending every
request over the network. The delay was set to 50 ms in
the following experiments. Figure 8 shows the results of
1GB sequential write tests on PVFS where the network delay
faults were introduced at IO2.

In figure 8, network delay faults were injected at the
15th second at IO2. Our detector correctly detected the
performance problem caused by the faults at the 5th sam-
pling period. For this experiment, the detection latency was
∆ = 5 × 4 − 15 = 5 seconds, and the true positive rate

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

N
et

w
or

k
R

eq
ue

st
: M

B
/s

ec

Time: seconds

IO1
IO2
IO3

(a) External I/O request rate

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(b) corr(req, mem)

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(c) corr(req, interrupt)

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(d) corr(iosize, svctm)

Figure 7: Disk delay faults were injected at the 13rd second,
and the workload was 1GB sequential write on PVFS.

was Atd = 4
4+1 = 0.8, as the performance anomaly was not

detected at the 4th sampling period.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

N
et

w
or

k
R

eq
ue

st
: M

B
/s

ec

Time: seconds

IO1
IO2
IO3

(a) External I/O request rate

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(b) corr(req, mem)

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(c) corr(req, interrupt)

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(d) corr(iosize, svctm)

Figure 8: Network delay faults were injected at 15th second,
and the workload was 1GB sequential write on PVFS.

C. CPU overuse

This set of experiments evaluated our performance
anomaly detector in the case of CPU overuse faults which
make the available CPU resource at a low level. In the set
of experiments, our fault injector occupied nearly 90% CPU
resource in terms of the percentage of CPU time.

Figure 9 shows the results of the results of 1GB sequential
write test on PVFS where CPU overuse faults were injected
at the 19th second at IO2. Because Ireq of IO2 generated
a FALSE value at the 5th sampling period, our detector did
not raise an alarm. However, our detector raised an alarm

at the next sampling period, and correctly pinpointed CPU
as the faulty source, as only the invariant for CPU of IO2
was broken. For this experiment, the detection latency was
∆ = 6× 4− 19 = 5 seconds, and the true positive rate was
Atd = 5

5+1 ≈ 0.83.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

N
et

w
or

k
R

eq
ue

st
: M

B
/s

ec

Time: seconds

IO1
IO2
IO3

(a) External I/O request rate

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(b) corr(req, mem)

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(c) corr(req, interrupt)

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(d) corr(iosize, svctm)

Figure 9: CPU overuse faults were injected at 19th second,
and the workload was 1GB sequential write on PVFS.

D. Memory overuse

This set of experiments evaluated our performance
anomaly detector in the case of memory overuse faults which
make the available memory resource at a low level. In the
set of experiments, our fault injector occupied up to 90%
memory resource.

Figure 10 shows the results of the results of 1GB sequen-
tial write test on PVFS where memory overuse faults were
injected at the 12nd second at IO2. At the 7th sampling
period, Ireq of IO2 generated a TRUE value, and the
invariant for memory of IO2 was broken, an alarm was
raised. Because we gradually occupied system memory,
every 100MB per second, it is reasonable that the neg-
ative impact of memory overuse faults cannot observed
immediately. For this experiment, the detection latency was
∆ = 7 × 4 − 12 = 16 seconds, and the true positive rate
was Atd = 3

3+4 ≈ 0.43.

E. Summary

Table III gives a summary of experiments with synthetic
workloads. In the table, the detection latency is limited to
two sampling periods (8 seconds), the average true positive
rate is 84%, and there are no more than two false detections
for most tests except the ones of memory overuse. The main
reason for the poor performance of our detector in the ex-
periments of memory overuse is that we gradually occupied
system memory, our detector was insensitive to the small
memory leak, as system performance was not significantly

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

N
et

w
or

k
R

eq
ue

st
: M

B
/s

ec

Time: seconds

IO1
IO2
IO3

(a) External I/O request rate

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12 14 16

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(b) corr(req, mem)

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12 14 16

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(c) corr(req, interrupt)

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12 14 16

C
or

re
la

tio
n

Sampling period: 4 seconds/period

IO1
IO2
IO3

(d) corr(iosize, svctm)

Figure 10: Memory overuse faults were injected at 12nd
second, the workload was 1GB sequential write on PVFS.

affected until a large portion of memory resource was leaked,
thus our detector cannot detect immediately the faults of
memory overuse.

VI. CONCLUSIONS

In this work, we presented an online performance anomaly
detector which is used to detect performance anomaly and
accurately identify the faulty sources in an I/O server of
cluster file systems. We concluded three invariants of an I/O
server, which referred to the stable relationships between
server workloads and resource statistics when the server
works properly. By utilizing these invariants, an online
performance detector was developed, and the detector was
evaluated with synthetic workloads on PVFS in the presence
of four different faulty situations. Our preliminary results
demonstrated the efficiency and accuracy of our detector.

ACKNOWLEDGMENTS

This research is sponsored in part by National Science
Foundation grants CNS-0720617, CCF-0937850, and CCF-
0937799. This work is also partially supported by the
SeaSky Scholar fund of the Dalian University of Technology.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the funding agencies.

REFERENCES

[1] L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and
E. Smirni, “Anomaly? Application Change? or Workload
Change? Towards Automated Detection of Application Per-
formance Anomaly and Change,” in DSN ’08: Proceedings
of the International Conference on Dependable Systems and
Networks, June 2008, pp. 452–461.

Table III: A summary of experiments with synthetic workloads.

Filesystem Workload Fault Detection Latency True positive rate # of false de-
tection

PVFS

1GB write

Disk delay 3 seconds 100% 0
CPU overuse 5 seconds 83% 1

Memory overuse 17 seconds 43% 4
Network delay 5 seconds 80% 1

1GB read

Disk delay 7 seconds 67% 2
CPU overuse 7 seconds 80% 1

Memory overuse 17 seconds 43% 4
Network delay 6 seconds 80% 1

[2] M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan, “Black-
Box Problem Diagnosis in Parallel File Systems,” in FAST
’10: Proccedings of the 8th conference on File and Storage
Technologies, February 2010, pp. 57–70.

[3] “PVFS,” March 2009, http://www.pvfs.org/.

[4] X. Chen, J. Langston, and X. He, “An Adaptive I/O Load
Distribution Scheme for Distributed Systems,” in PMEO-
UCNS’ 10: The 9th International Workshop on Performance
Modeling, Evaluation, and Optimization of Ubiquitous Com-
puting and Networked Systems in conjunction with IPDPS’10,
April 2010.

[5] R. D. Schlichting and F. B. Schneider, “Fail-stop processors:
an approach to designing fault-tolerant computing systems,”
ACM Trans. Comput. Syst., vol. 1, no. 3, pp. 222–238, 1983.

[6] E. S. Buneci and D. A. Reed, “Analysis of Application
Heartbeats: Learning Structural and Temporal Features in
Time Series data for Identification of Performance Problems,”
in SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing, November 2008, pp. 1–12.

[7] H.-L. Truong, P. Brunner, T. Fahringer, F. Nerieri, R. Sam-
borski, B. Balis, M. Bubak, and K. Rozkwitalski, “K-WfGrid
Distributed Monitoring and Performance Analysis Services
for Workflows in the Grid,” in E-SCIENCE ’06: Proceedings
of the Second IEEE International Conference on e-Science
and Grid Computing, 2006, pp. 1–15.

[8] H. Chen, G. Jiang, and K. Yoshihira, “Failure Detection in
Large-Scale Internet Services by Principal Subspace Map-
ping,” IEEE Trans. on Knowl. and Data Eng., vol. 19, no. 10,
pp. 1308–1320, 2007.

[9] Z. Lan, Z. Zheng, and Y. Li, “Toward Automated Anomaly
Identification in Large-Scale Systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 21, pp. 174–187, 2009.

[10] S. Kavulya, R. Gandhi, and P. Narasimhan, “Gumshoe: Diag-
nosing Performance Problems in Replicated File-Systems,” in
SRDS ’08: Proceedings of the 2008 Symposium on Reliable
Distributed Systems, October 2008, pp. 137–146.

[11] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira, “Tracking
Probabilistic Correlation of Monitoring Data for Fault De-
tection in Complex Systems,” in DSN ’06: Proceedings of
the International Conference on Dependable Systems and
Networks, June 2006, pp. 259–268.

[12] J. Gao, G. Jiang, H. Chen, and J. Han, “Modeling Proba-
bilistic Measurement Correlations for Problem Determination
in Large-Scale Distributed Systems,” in ICDCS ’09: Pro-
ceedings of the 2009 29th IEEE International Conference on
Distributed Computing Systems, June 2009, pp. 623–630.

[13] D. P. Bovet and M. Cesati, “Understanding the Linux Kernel:
From I/O Ports to Process Management, 3nd”. O’Reilly
Media, Inc., 2006, iSBN: 0-596-00565-2.

[14] X. Chen, J. Warren, F. Han, and X. He, “Characterizing the
dependability of distributed storage systems using a two-layer
hidden markov model-based approach,” in Proceedings of the
International Conference on Networking, Architecture, and
Storage (NAS), 2010.

[15] Y. Hu, A. Nanda, and Q. Yang, “Measurement, Analysis and
Performance Improvement of the Apache Web Server,” in
Proceedings of the IEEE International Performance, Comput-
ing, and Communications Conference, 1999, pp. 261–267.

