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Abstract—RAID-6 is widely used to tolerate concurrent failures
of any two disks to provide a higher level of reliability with
the support of erasure codes. Among many implementations,
one class of codes called Maximum Distance Separable (MDS)
codes aims to offer data protection against disk failures with
optimal storage efficiency. Typical MDS codes contain horizontal
and vertical codes. Due to the horizontal parity, in the case of
partial stripe write (refers to I/O operations that write new data or
update data to a subset of disks in an array) in a row, horizontal
codes may get less I/O operations in most cases, but suffer
from unbalanced I/O distribution. They also have limitation on
high single write complexity. Vertical codes improve single write
complexity compared to horizontal codes, while they still suffer
from poor performance in partial stripe writes.

In this paper, we propose a new XOR-based MDS array code,
named Hybrid Code (H-Code), which optimizes partial stripe
writes for RAID-6 by taking advantages of both horizontal and
vertical codes. H-Code is a solution for an array of (p + 1)
disks, where p is a prime number. Unlike other codes taking a
dedicated anti-diagonal parity strip, H-Code uses a special anti-
diagonal parity layout and distributes the anti-diagonal parity
elements among disks in the array, which achieves a more
balanced I/O distribution. On the other hand, the horizontal
parity of H-Code ensures a partial stripe write to continuous
data elements in a row share the same row parity chain, which
can achieve optimal partial stripe write performance. Not only
within a row but also within a stripe, H-Code offers optimal
partial stripe write complexity to two continuous data elements
and optimal partial stripe write performance among all MDS
codes to the best of our knowledge. Specifically, compared to
RDP and EVENODD codes, H-Code reduces I/O cost by up
to 15.54% and 22.17%. Overall, H-code has optimal storage
efficiency, optimal encoding/decoding computational complexity,
optimal complexity of both single write and partial stripe write.

Index Terms—RAID-6; MDS Code; Partial Stripe Write;
Performance Evaluation; Data Reliability

I. INTRODUCTION

Redundant Arrays of Inexpensive (or Independent) Disks
(RAID) [20] is an efficient approach to supply high reliability
and high performance storage services with acceptable spatial
and monetary cost. In recent years, RAID-6 has received much
attention because it can tolerate concurrent failures of any two
disks. It has been shown to be of increasing importance due
to technology trends [24], [6] and the fact that the possibility
of concurrent disk failures increases [27] [21] as the system
scale grows.

Among many implementations of RAID-6 based on var-
ious erasure coding technologies, one class of codes called

Maximum Distance Separable (MDS) codes [26], [3], [1],
[6], [2], [23], [5], [33], [17], [10] aims to offer data protection
against disk failures with given amount of redundancy. In other
words, MDS codes offer optimal storage efficiency, leading
to optimal full stripe write1 complexity. Except for the full
stripe write complexity, the complexity of partial stripe write
and single write is also a concern of storage system designers
[7], [19], [18], [4], [11]. Typical MDS codes can be further
categorized into horizontal codes [26], [3], [1], [6], [2], [23]
and vertical codes [5], [33], [17].

A typical horizontal RAID-6 storage system is composed
of k+2 disk drives. The first k disk drives are used to store
original data, and the last two, named P and Q, are used as
parity disk drives. Due to the P parity, in the case of partial
stripe write in a row, horizontal codes might get fewer I/O
operations most of the time, but suffer from unbalanced I/O
distribution. Let’s take an example of RDP codes [6] whose
diagonal parity layout is shown in Figure 1(a). If there is a
partial stripe write to w continuous elements2 in a row as
shown in Figure 1(b), it results in w reads and w writes to the
Q parity disk (disk 7), but one read and one write to other disks
(disk 0, 1, 2, 3 and 6). As the system scale grows, this problem
cannot be resolved by shifting the stripes’ parity strips among
all the disks just as RAID-5. In addition, horizontal codes
also have limitation on high single write complexity. Blaum
et al. have proved that with a i-row-j-column matrix of data
elements, at least (i∗j+j−1) data elements participate in the
generation of Q parities [2]. Thus the cost of a single block
write in horizontal codes requires more than two additional
writes on average, which is the lower bound of a theoretically
ideal RAID-6 codes.

Vertical codes, such as X-Code [33], Cyclic code [5], and
P-Code [17], typically offer good single write complexity and
encoding/decoding computational complexity as well as high
storage efficiency. With special data/parity layout, they do
not adopt row parity. In vertical codes, partial stripe write
to multiple data elements in a row involves the generation of
different parity elements. Let’s take an example of X-Code
whose anti-diagonal parity layout is shown in Figure 2(a).

1 In this paper, “write” can be a new write or an update.
2 Thereafter “continuous” means logically continuous among the disk arrays

in encoding/decoding.



(a) Diagonal parity layout of RDP Code with p + 1
disks (p = 7): a diagonal element can be calculated by
XOR operations among the corresponding elements, e.g.,
C0,7 = C0,0 ⊕ C5,2 ⊕ C4,3 ⊕ C3,4 ⊕ C2,5 ⊕ C1,6.

(b) A partial stripe write to 4 continuous data elements:
A, B, C and D. The I/O operations in disks 0, 1, 2, 3 and
6 are all 1 read and 1 write, while in disk 7 are 4 reads
and 4 writes. It shows that the workload in Disk 7 is very
high, which may lead to a sharp decrease of reliability and
performance of the system.

Fig. 1. Partial stripe write problem in RDP code for an 8-disk array (p = 7).

Consider the following scenario as described in Figure 2(b).
There is a partial stripe write to two data elements in the first
row of a X-Code based 7-disk RAID-6 matrix. We notice that
the two elements are in four different parity chains. Therefore,
this partial stripe write results in (2 + 4) reads and (2 + 4)
writes, for a total of 12 I/O operations. If the codes adopt
row parity, the two elements might be only in three different
parity chains. It can result in (2+3) reads and (2+3) writes,
or 10 I/O operations in total. In other words, it reduces two
I/O operations by adopting row parity. We evaluate the partial
stripe write complexity in general and only focus on the short
partial stripe write, which effects no more than (n − 3) data
elements for an array of n disks. Consider the following case,
a partial stripe write to w continuous data elements in v
parity chains. Typically, it results in one read and one write to
each data element, and one read and one write to each parity
element.

Therefore, the number of disk I/O operations (denoted by
Sw) are,

Sw = 2 ∗ (w + v) (1)

(a) Anti-diagonal parity layout of X-Code with p disks
(p = 7): an anti-diagonal element can be calculated
by XOR operations among the corresponding data ele-
ments, e.g., C5,0 = C0,2⊕C1,3⊕C2,4⊕C3,5⊕C4,6.

(b) A partial stripe write to two continuous data ele-
ments: A and B. The I/O operations are (2 + 4) reads
and (2 + 4) writes.

Fig. 2. Partial stripe write problem in X-Code for a 7-disk array.

When the number of data elements affected by a partial
stripe write in a row increases, the disk I/O reduced by
adopting a row parity will increase. Similar problem also exists
in Cyclic Code and P-code. However, almost all the horizontal
codes adopt row parity, which might cause less partial stripe
write cost. Jin et al. [17] mentioned a tweaked RDP code,
which is a semi-vertical code composed of row parity and
diagonal parity. However, for its individual diagonal parity
disk, it still suffers from the unbalanced I/O distribution caused
by partial stripe write to multiple data elements in a row as
same as the horizontal codes.

We propose a novel XOR-based RAID-6 code, named
Hybrid Code (H-Code), which takes advantages of both
horizontal and vertical codes. The parities in H-Code are
classical row parity and anti-diagonal parity. H-code does not
have a dedicated anti-diagonal parity strip, while it distributes
the anti-diagonal parity elements among disks in the array. Its
horizontal parity ensures a partial stripe write to continuous
data elements in a row share the same row parity chain, which



achieves optimal partial stripe write performance. Depending
on the number of disks in an MDS array, we design H-Code,
which is a solution for n disks (n = p+1), where p is a prime
number.

We make the following contributions in this paper:
• We propose a novel and efficient XOR-based RAID-6

code (H-Code) to take advantages of both horizontal and
vertical MDS codes and offer optimal partial stripe write
performance compared to existing MDS codes.

• We quantitatively analyze partial stripe write performance
of H-Code and prove that H-Code has not only the opti-
mal property demonstrated by traditional vertical MDS
codes including storage efficiency, encoding/decoding
computational complexity and single write complexity,
but also the optimized partial stripe write complexity to
multiple data elements.

The rest of this paper continues as follows: Section II briefly
overviews the background and related work. The design of H-
Code is described in detail in Section III. Property analysis
and evaluation are given in Section IV and Section V. Finally
we conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORK

Reliability has been a critical issue for storage systems
since data are extremely important for today’s information
business. Among many solutions to provide storage reliability,
RAID-6 is known to be able to tolerate concurrent failures
of any two disks. Researchers have presented many RAID-6
implementations based on various erasure coding technologies,
such as Reed-Solomon code [26], Cauchy Reed-Solomon
code [3], EVENODD code [1], RDP code [6], Blaum-Roth
code [2], Liberation code [23], Liber8tion code [22], Cyclic
code [5], X-Code [33], and P-Code [17]. These codes are
Maximum Distance Separable (MDS) codes, which offer pro-
tection against disk failures with given amount of redundancy
[5]. RSL-Code [8], RL-Code [9] and STAR [16] are MDS
codes tolerating concurrent failures of three disks. In addition
to MDS codes, some non-MDS codes, such as WEAVER
[13], HOVER [14], MEL code [31], Pyramid code [15], Flat
XOR-Code [12] and Code-M [29], also offer resistance to
concurrent failures of any two disks, but they have higher
storage overhead. There are also some approaches to improve
the efficiency of different codes [28][30][32]. In this paper, we
focus on MDS codes, which can be further divided into two
categories: horizontal codes and vertical codes.

A. RAID-6 based on Horizontal MDS Codes

Reed-Solomon code [26] is based on addition and multiply
operations over certain finite fields GF (2µ). The addition
in Reed-Solomon code can be implemented by XOR opera-
tion, but the multiply is much more complex. Due to high
computational complexity, Reed-Solomon code is not very
practical. Cauchy Reed-Solomon code addresses this problem
and improves Reed-Solomon code by changing the multiply
operations over GF (2µ) into additional XOR operations.

Unlike the above generic erasure coding technologies,
EVENODD [1] is a special erasure coding technology only
for RAID-6. It is composed of two types of parity: the P
parity, which is similar to the horizontal parity in RAID-
4, and the Q parity, which is generated by the elements
on the diagonals. RDP [6] is another special erasure coding
technology dedicated for RAID-6. The P parity of RDP is just
the same as that of EVENODD. However, it uses a different
way to construct the Q parity to improve construction and
reconstruction computational complexity.

There is a special class of erasure coding technologies called
lowest density codes. Blaum et al. [2] point out that in a
typical horizontal code for RAID-6, if the P parity is fixed to
be horizontal parity, then with i-row-j-column matrix of data
elements there must be at least (i ∗ j + j − 1) data elements
joining in the generation of the Q parities to achieve the lowest
density. Blaum-Roth, Liberation, and Liber8tion codes are all
lowest density codes. Compared to other horizontal codes for
RAID-6, the lowest density codes share a common advantage
that they have the near-optimal single write complexity.

However, horizontal codes have some limitations. First, the
single write complexity is one of the weaknesses for most
horizontal MDS RAID-6 codes. Second, partial stripe write to
continuous data elements in a row of a horizontal MDS RAID-
6 codes, which may result in unbalanced I/O distribution,
although the horizontal parity can reduce I/O operations in
case of partial stripe write to data elements in a row.

B. RAID-6 based on Vertical MDS Codes

X-Code, Cyclic code, and P-Code are vertical codes and
their parities are dispersed over all disks instead of ded-
icated redundant disks. This layout achieves better encod-
ing/decoding computational complexity, and improved single
write complexity.

X-Code [33] uses diagonal parity and anti-diagonal parity
and the number of columns (or disks) in X-Code must be a
prime number.

Cyclic code [5] offers a scheme to support more column
number settings with vertical MDS RAID-6 codes. The col-
umn number of Cyclic Code is typically (p−1) or 2∗ (p−1).

P-Code [17] is another example of vertical code. Construc-
tion rule in P-Code is very simple. The columns are labeled
with an integer from 1 to (p − 1). In P-Code, the parity
elements are deployed in the first row, and the data elements
are in the remaining rows. The parity rule is that each data
element takes part in the generation of two parity elements,
where the sum of the column numbers of the two parity
elements mod p is equal to the data element’s column number.

From the constructions of above vertical codes, we observe
that they suffer from high complexity of partial stripe write to
continuous data.

Figures 1 and 2 show the parity construction of two typical
MDS codes: a horizontal code that is an RDP code and a
vertical code that is an X-Code. As explained in Section I,
these figures show that RAID-6 schemes based on MDS codes



TABLE I
SYMBOLS OF H-CODE

Parameters Description& Symbols
n number of disks in a disk array
p a prime number
i, r row ID
j column ID or disk ID
Ci,j element at the ith row and jth column
f1, f2 two random failed columns with IDs f1 and f2(f1 < f2)∑

XOR operations between/among elements

(e.g.,
5∑

j=0
Ci,j ) (Ci,0 ⊕ Ci,1 ⊕ · · · ⊕ Ci,5)

〈 〉 modular arithmetic
(e.g., 〈i〉p) (i mod p)
w number of continuous data elements in a partial
(2 ≤ w ≤ n− 3) stripe write

Ns
total access frequency of all stripe writes in the
ideal sequence

F (Ci,j)
access frequency of a partial stripe write with
beginning data element Ci,j

P (Ci,j)
access probability of a partial stripe write with
beginning data element Ci,j

Sw(Ci,j)
number of I/O operations caused by a partial stripe
write to w continuous data elements with beginning
element Ci,j

Smax.(w)
maximum number of I/O operations of a partial
stripe write to w continuous data elements

Savg.(w)
average number of I/O operations of a partial stripe
write to w continuous data elements

Sj
w(Ci,j)

number of I/O operation in column j of a partial
stripe write to w continuous data elements with
beginning element Ci,j

Sj
avg.(w)

average number of I/O operations in column j of
a partial stripe write to w continuous data elements

suffer from a common disadvantage of partial stripe write to
continuous data elements.

III. H-CODE FOR AN ARRAY OF p+ 1 DISKS

To overcome the shortcomings of vertical and horizontal
MDS codes, we present a hybrid MDS code scheme, named H-
Code, to take advantage of both vertical and horizontal codes
and is a solution for n disks (n = p+ 1), where p is a prime
number. The symbols of H-Code are summarized in Table I.

A. Data/Parity Layout and Encoding of H-Code

H-Code is represented by a (p − 1)-row-(p + 1)-column
matrix with a total of (p−1)∗(p+1) elements. There are three
types of elements in the matrix: data elements, horizontal
parity elements, and anti-diagonal parity elements. Assume
Ci,j (0 ≤ i ≤ p− 2, 0 ≤ j ≤ p) represents the element at the
ith row and the jth column. The last column (column p) is used
for horizontal parity. Excluding the first (column 0) and the
last (column p) columns, the remaining matrix is a (p−1)-row-
(p− 1)-column square matrix. H-Code uses the anti-diagonal
part of this square matrix to represent anti-diagonal parity.

Horizontal parity and anti-diagonal parity elements of H-
Code are constructed based on the following encoding equa-
tions.

Horizontal parity:

Ci,p =

p−1∑
j=0

Ci,j (j 6= i+ 1) (2)

Anti-diagonal parity:

Ci,i+1 =

p−1∑
j=0

C〈p−2−i+j〉p,j (j 6= i+ 1) (3)

Figure 3 shows an example of H-Code for an 8-disk array
(p = 7). It is a 6-row-8-column matrix. Column 7 is used for
horizontal parity and the anti-diagonal elements (C0,1, C1,2,
C2,3, etc.) are used for anti-diagonal parity.

The horizontal parity encoding of H-Code is shown in
Figure 3(a). We use different shapes to indicate different sets
of horizontal elements and the corresponding data elements.
Based on Equation 2, we calculate all horizontal elements.
For example, the horizontal element C0,7 can be calculated
by C0,0⊕C0,2⊕C0,3⊕C0,4⊕C0,5⊕C0,6. The element C0,1

is not involved in this example because of j = i+ 1.
The anti-diagonal parity encoding of H-Code is given in Fig-

ure 3(b). The anti-diagonal elements and their corresponding
data elements are also distinguished by various shapes. Ac-
cording to Equation 3, the anti-diagonal elements can be cal-
culated through modular arithmetic and XOR operations. For
example, to calculate the anti-diagonal element C1,2 (i = 1),
first we should get the proper data elements (C〈p−2−i+j〉p,j). If
j = 0, by using Equation 3, p−2−i+j = 4 and then 〈4〉p = 4,
we get the first data element C4,0. The following data elements
which take part in XOR operations can be calculated similarly
(the following data elements are C5,1, C0,3, C1,4, C2,5 and
C3,6). Second, the corresponding anti-diagonal element (C1,2)
is constructed by performing an XOR operation on these data
elements, i.e., C1,2 = C4,0⊕C5,1⊕C0,3⊕C1,4⊕C2,5⊕C3,6.

B. Construction Process

Based on the above data/parity layout and encoding scheme,
the construction process of H-Code is straightforward.
• Label all data elements.
• Calculate both horizontal and anti-diagonal parity ele-

ments according to Equations 2 and 3.

C. Proof of Correctness

To prove that H-Code is correct, we consider one stripe.
The reconstruction of multiple stripes is just a matter of scale
and similar to the reconstruction of one stripe. In a stripe, we
have the following lemma and theorem,

Lemma 1: We can find a sequence of a two-integer tuple
(Tk, T ′k) where

Tk =

〈
p− 1 +

k+1+
1+(−1)k

2

2 (f2 − f1)

〉
p

,

T ′k = 1+(−1)k
2 f1 +

1+(−1)k+1

2 f2 (k = 0, 1, · · · , 2p− 1)



(a) Horizontal parity coding of H-Code: a horizontal element can
be calculated by XOR operations among the corresponding data
elements in the same row. For example, C0,7 = C0,0 ⊕ C0,2 ⊕
C0,3 ⊕ C0,4 ⊕ C0,5 ⊕ C0,6.

(b) Anti-diagonal parity coding of H-Code: an anti-diagonal element
can be calculated by XOR operations among the corresponding data
elements in all columns (except its column and column p). For
example, C1,2 = C4,0 ⊕ C5,1 ⊕ C0,3 ⊕ C1,4 ⊕ C2,5 ⊕ C3,6.

Fig. 3. H-Code (p = 7).

with a prime number of p and 0 < f2− f1 < p, the endpoints
are (p−1, f1) and (p−1, f2), and all two-integer tuples (0, f1),
(0, f2), · · · , (p− 1, f1), (p− 1, f2) occur exactly once in the
sequence. Similar proof of this lemma can be found in many
literatures in RAID-6 codes such as [1], [6], [33], [17].

Theorem 1: A (p−1)-row-(p+1)-column stripe constructed
according to the formal description of H-Code can be recon-
structed under concurrent failures from any two columns.

Proof: There are two cases of double failures, depending
on whether column 0 fails or not.

Case I: column 0 doesn’t fail.
There are further two subcases, depending on whether the

horizontal parity column fails or not.
Case I-I: Double failures, one is from the horizontal parity

column, and the other is from the anti-diagonal parity.
From the construction of H-Code, any two of the lost

data elements and parity element are not in a same parity
chain. Therefore, each of them can be recovered through the
anti-diagonal parity chains. When all lost data elements are
recovered, the horizontal parity elements can be reconstructed
using the above Equation 2.

Case I-II: Double failures of any two columns other than
the horizontal parity of the stripe.

Each column j, in the anti-diagonal parity part of the stripe,
intersects all horizontal parity chains except the horizontal
parity chain in the j−1th row. Therefore, each column misses
a different horizontal parity chain.

First, we make an assumption that there is a pseudo row
under the last row of H-Code matrix as shown in Figure 4(a).
Each element of the additional row is all-zero-bit element and
takes part into the generation of parity of its anti-diagonal,
where it does not change the original value of anti-diagonal
parity elements. This additional all-zero-bit element just par-
ticipates in the generation of the parity element in its column.
We assume that the two failed columns are f1 and f2, where

0 < f1 < f2 < p.
From the construction of H-Code, each horizontal parity

chain in the ith row intersects all columns in anti-diagonal part
of the stripe except the (i+1)th column. Any two anti-diagonal
parity elements cannot be placed in the same row. For any
two concurrent failed columns f1 and f2, the two horizontal
parity chains that are not intersected by both columns are in
the (f1 − 1)th row and the (f2 − 1)th row. Since each of
these horizontal parity chains only misses one data element,
the missing element can be reconstructed along that horizontal
parity chain with its horizontal parity. Since the horizontal
parity column does not fail which means all horizontal parity
elements are available, we can start reconstruction process
from the data element on each of the two missing columns
using the horizontal parity.

For the failed columns f1 and f2, if a data element Ci,f2
on column f2 can be reconstructed from the horizontal parity
in horizontal parity chain in the ith row, we can reconstruct
the missing data element C〈i+f1−f2〉p,f1 on the same anti-
diagonal parity chain if we have its anti-diagonal parity
element. Similarly, a data element Ci,f1 in column f1 can be
reconstructed from the horizontal parity in horizontal parity
chain in the ith row, we can reconstruct the missing data
element C〈i+f2−f1〉p,f2 on the same anti-diagonal parity chain
if we have its anti-diagonal parity element parity element.

From the above discussion, the two missing anti-diagonal
parity elements are just the two endpoints we mentioned in
Lemma 1. If there are no missing parity elements, we start
the reconstruction process from data element Cf1−1,f2 on the
f2th column to the corresponding endpoint (element Cp−1,f1
on the f1th column). In this reconstruction process, all data
elements can be reconstructed and the reconstruction sequence
is based on the sequence of the two-integer tuple in Lemma
1. Similarly, with no missing parity elements, we start the
reconstruction process from data element Cf2−1,f1 on the f1th



column to the corresponding endpoint (element Cp−1,f2 on the
f2th column).

However, the two missing anti-diagonal parity elements are
not reconstructed in this case. After we start the reconstruction
from the two data elements Cf1−1,f2 and Cf2−1,f1 , the missing
anti-diagonal parity elements Cp−1,f1 and Cp−1,f2 cannot be
recovered, because their corresponding horizontal parity and
anti-diagonal parity are both missing. Actually, we do not need
to reconstruct these two elements for they are not really in our
code matrix.

In summary, all missing data elements are recoverable. After
all data elements are recovered, we can reconstruct the two
missing anti-diagonal parity elements.

Case II: column 0 fails.
This case is similar to Case I. The difference is that in

subcase II-II, there is only one reconstruction sequence in
reconstruction process. This process starts at Cf2−1,0 and all
lost data elements can be recovered.

D. Reconstruction

We first consider how to recover a missing data element
since any missing parity element can be recovered based on
Equations 2 and 3. If we save the horizontal parity element and
the related p−2 data elements, we can recover the missing data
element (assume it’s Ci,f1 in column f1 and 0 ≤ f1 ≤ p− 1)
using the following equation,

Ci,f1 =

p∑
j=0

Ci,j (j 6= i+ 1 and j 6= f1) (4)

If there exists an anti-diagonal parity element and its p− 2
data elements, to recover the data element (Ci,f1 ), first we
should find the corresponding anti-diagonal parity element.
Assume it is in row r and this anti-diagonal parity element
can be represented by Cr,r+1 based on Equation 3, we have,

r = 〈p− 2− i+ f1〉p (5)

And then according to Equation 3, the lost data element can
be recovered,

Ci,f1 = Cr,r+1 ⊕
p−1∑
j=0

C〈i−f1+j〉p,j

(j 6= f1 and j 6= 〈p− 1− i+ f1〉p)
(6)

Based on Equations 2 to 6, we can easily recover the
elements with single disk failure. If two disks fail (for example,
column f1 and column f2, 0 ≤ f1 < f2 ≤ p), based on
Theorem 1, we have our reconstruction algorithm of H-Code,
shown in Figure 5.

As the proof of Theorem 1, there are two cases in our
reconstruction algorithm of H-Code: failure in column 0 or
not. Each has two subcases, subcases I-I and II-I focus on the
scenario where at least one failure involves a horizontal parity
column while in subcases I-II and II-II, failures don’t involve
the horizontal parity. The reconstruction examples of subcases

Algorithm 1: Reconstruction Algorithm of H-Code

Step 1: Identify the double failure columns: f1 and f2 (f1 < f2).
Step 2: Start reconstruction process and recover the lost data and
parity elements.
switch 0 ≤ f1 < f2 ≤ p do

case I: f1 6= 0 (column 0 is saved)
case I-I: f2 = p (horizontal parity column is lost)

Step 2-I-IA: Recover the lost data elements in colomn f1.
repeat

Compute the lost data elements (Ci,f1 , i 6= f1 − 1) based
on Equations 5 and 6.

until all lost data elements are recovered.
Step 2-I-IB: Recover the lost anti-diagonal parity element
(Cf1−1,f1) based on Equation 3.
Step 2-I-IC: Recover the lost horizontal parity elements in
colomn f2.
repeat

Compute the lost horizontal parity elements (Ci,f2) based
on Equation 2.

until all lost horizontal parity elements are recovered.

case I-II: f2 6= p (horizontal parity column is saved)
Step 2-I-IIA: Compute two starting points (Cf2−1,f1 and
Cf1−1,f2) of the recovery chains based on Equation 4.
Step 2-I-IIB: Recover the lost data elements in the two
recovery chains.
Two cases start synchronously:
case starting point is Cf2−1,f1 repeat

(1) Compute the next lost data element (in colomn f2) in
the recovery chain based on Equations 5 and 6;
(2) Then compute the next lost data element (in colomn
f1) in the recovery chain based on Equation 4.

until at the endpoint of the recovery chain.
case starting point is Cf1−1,f2 repeat

(1) Compute the next lost data element (in colomn f1) in
the recovery chain based on Equations 5 and 6;
(2) Then compute the next lost data element (in colomn
f2) in the recovery chain based on Equation 4.

until at the endpoint of the recovery chain.
Step 2-I-IIC: Recover the lost anti-diagonal parity element
in colomn f1 and f2.
repeat

Compute the lost anti-diagonal parity elements (Cf1−1,f1

and Cf2−1,f2) based on Equation 3.
until all lost anti-diagonal parity elements are recovered.

case II: f1 = 0 (column 0 is lost)
case II-I: f2 = p (horizontal parity column is lost)

Step 2-II-IA: Recover the lost data elements in colomn 0.
repeat

Compute the lost data elements (Ci,0) based on Equations
5 and 6.

until all lost data elements are recovered.
Step 2-II-IB: Recover the lost horizontal parity elements in
colomn f2.
repeat

Compute the lost horizontal parity elements (Ci,f2) based
on Equation 2.

until all lost horizontal parity elements are recovered.

case II-II: f2 6= p (horizontal parity column is saved)
Step 2-II-IIA: Compute the starting point of the recovery
chain (Cf2−1,0) based on Equation 4.
Step 2-II-IIB: Recover the lost data elements in the
recovery chain.
repeat

(1) Compute the next lost data element in colomn f2
based on Equations 5 and 6;
(2) Then compute the next lost data element in colomn 0
based on Equation 4.

until at the endpoint of the recovery chain.
Step 2-II-IIC: Recover the lost diagonal parity element in
colomn f2.
Compute the lost anti-diagonal parity element (Cf2−1,f2)
based on Equation 3.

1

Fig. 5. Reconstruction Algorithm of H-Code.

I-II and II-II are shown in Figure 4(a) and Figure 4(b), which
are situations with different numbers of recovery chains.

IV. PROPERTY ANALYSIS

In this section, we first prove that H-Code shares some
optimal properties as other vertical codes, including: optimal
storage efficiency, optimal encoding/decoding computational



(a) Reconstruction by two recovery chains (there are double failures in
columns 3 and 4): First we identify the two starting points of recovery
chain: data elements A and F. Second we reconstruct data elements
according to the corresponding recovery chains until they reach the
endpoints (data elements E and J). The next anti-diagonal elements
after E and J do not exist (Cp−1,f1 and Cp−1,f2 in the proof of
Theorem 1, we use two “Xs” here), so the recovery chains end. The
orders to recover data elements are: one is A→B→C→D→E, the
other is F→G→H→I→J. Finally we reconstruct anti-diagonal parity
elements K and L according to Equation 3.

(b) Reconstruction by one recovery chain (there are double failures in
columns 0 and 1): First we identify the starting point of recovery chain:
data element A. Second we reconstruct data elements according to the
corresponding recovery chain until it reaches endpoint (data element K).
The next anti-diagonal element after K does not exist (we use an “X”
here), so the recovery chain ends. The order to recover data elements is:
A→B→C→D→E→F→G→H→I→J→K. Finally we reconstruct the
anti-diagonal parity element L according to Equation 3.

Fig. 4. Reconstruction Process of H-Code.

complexity, optimal single write cost. Then, we prove that H-
Code has optimal complexity of partial stripe write to two data
elements in the same row. Furthermore, H-Code has optimal
complexity of partial stripe write to two data elements in a
stripe. Finally, we evaluate partial stripe write cost of different
codes in two aspects: in the same row and across two rows.

A. Optimal Property of H-Code

Vertical codes have the optimal storage efficiency, optimal
encoding/decoding computational complexity, optimal single
write complexity [33], [5], [17]. We will prove that H-Code
shares the optimal property as other vertical codes.

1) Optimal Storage Efficiency: From the proof of H-
Code’s correctness, H-Code is a MDS code. Since all MDS
codes have optimal storage efficiency [33], [5], [17], H-Code
is storage efficient. Because H-Code doesn’t use a dedicated
anti-diagonal strip, it will not suffer from the unbalanced
I/O distribution as evidenced by our results shown in Figure
11, which will be discussed in more detail later. By shifting
the stripes’ horizontal parity strips among all the disks just
as RAID-5, H-Code does not suffer from the intensive I/O
operations on dedicated parity disk caused by random writes
among stripes, either.

2) Optimal Encoding/Decoding Computational Complex-
ity: From the construction of H-Code, to generate all the
2 ∗ (p − 1) parity elements in a (p − 1)-row-(p + 1)-column
constructed H-Code, each of the remaining (p − 1) ∗ (p − 1)
data elements needs to take part into two XOR operations.
Thus, the encoding computational complexity of H-Code is
[2∗(p−1)∗(p−1)−2∗(p−1)]/[(p−1)∗(p−1)] XOR operations
per data element on average. To reconstruct 2 ∗ (p− 1) failed

elements in the case of double disk failures, it need use
2 ∗ (p − 1) parity chains. Every parity chain in H-Code has
the same length of (p− 1). Thus, the decoding computational
complexity of H-Code is (p − 3) XOR operations per lost
element on average. P-Code [17] has already proved that an
i-row-j-column constructed code with x data elements, has an
optimal encoding computational complexity of (3x− i ∗ j)/x
XOR operations per data element on average, and decoding
computational complexity of (3x − i ∗ j)/(i ∗ j − x) XOR
operations per lost element on average. Therefore, H-Code’s
encoding/decoding computational complexity is optimal.

3) Optimal Single Write Property: From the construction
of H-Code, each of the data elements takes part into the
generation of two and only two parity elements. Therefore,
a single write on one data element in H-Code only causes one
additional write on each of the two parity elements, which has
been proved to be optimal in a double disk failures tolerated
codes [33], [5], [17].

B. Partial Stripe Writes to Two Continuous Data Elements in
H-Code

Now, we prove that the cost of any partial stripe write to
two continuous data elements of H-Code is optimal among all
vertical lowest density MDS codes.

Theorem 2: Any two data elements in a stripe of a lowest
density vertical MDS code are in at least three parity chains.

Proof: From [33], [5], [17], it has been proved that, in
a stripe of a lowest density MDS code, any one data element
takes part into the generation of two and only two parity
elements. Assume there exist two data elements in two or less
parity chains. Consider the following case: both data elements



are lost when double disk failures occur. Now, these two lost
data elements are unrecoverable, because all parity chains in
the code include either messages of both of these two data
elements or none of them. Thus, the assumption is invalid.
Therefore, in a stripe of a lowest density MDS code, any two
data elements should be in at least three parity chains.

From the construction, any two continuous data elements in
the same row of H-Code share a same horizontal parity and
must not share the same anti-diagonal parity. In other words,
any two continuous data elements in the same row are in three
different parity chains including a horizontal parity chain and
two different anti-diagonal parity chains. From Equation 1,
any partial stripe write to two continuous data elements in a
row of H-Code causes 2 ∗ (2 + 3) = 10 I/O operations.

Furthermore, as shown in Figure 6, from the construction of
H-Code, any two continuous data elements across two different
rows share the same anti-diagonal parity and must not share
a same horizontal parity. From Equation 1, in this condition
H-Code also causes 10 I/O operations per partial stripe write.

Fig. 6. Partial stripe writes to two continuous data elements in H-Code for an
8-disk array (a partial stripe write to data elements A and B in two different
rows, and the other partial stripe write to data elements C and D in the same
row. In these two cases, there are only 3 parity elements modified for each
partial stripe write, which shows that our H-Code reduces partial stripe write
cost and improves the performance of storage system).

In summary, any partial stripe write to two continuous data
elements of H-Code are in three different parity chains. This
is the lowest bound we proved in Theorem 2. From Equation
1 and Theorem 2, the cost of any partial stripe write to
two continuous data elements locally of H-Code is 10 I/O
operations, which is optimal.

C. Different Cases of Partial Stripe Writes to w Continuous
Data Elements

There are two cases for a partial stripe write to w continuous
data elements: one is the w written continuous data elements
in the same row, the other is these data elements across rows.

The case of partial stripe writes to w continuous data
elements (2 ≤ w ≤ n− 3) in the same row is very simple,
we only need to calculate the number of parity chains based
on Equation 1. For example, when a partial stripe write to w
continuous data elements in H-code, these data elements to be

written share one horizontal parity chain, but are in w different
anti-diagonal parity chains. According to Equation 1, the total
I/O operations are (4w + 2).

However, for a partial stripe write to w continuous data
elements (2 ≤ w ≤ n− 3), there are many scenarios
where partial stripe writes are crossing different rows (will
be discussed in Section V), which are not as simple as partial
stripe writes to two continuous data elements. For example,
as shown in Figure 1, if w = 3, the cost of a partial stripe
write to three elements C0,4C0,5C1,0 in RDP is different from
a partial stripe write to C1,4C1,5C2,0.

V. PERFORMANCE EVALUATION

In this section, we give our evaluations to demonstrate the
effectiveness of our H-Code for partial stripe writes to w
continuous data elements (2 ≤ w ≤ n− 3).

A. Evaluation Methodology

We compare H-Code with following popular codes in typi-
cal scenarios (when p = 5 and p = 7):

(1) Codes for p−1 disks: P-Code-13 [17] and Cyclic code
[5];

(2) Codes for p disks: X-Code [33] and P-Code-2 [17];
(3) Codes for p+ 1 disks: H-Code and RDP code [6];
(4) Codes for p+ 2 disks: EVENODD code [1].
To reflect the status of partial stripe writes among different

codes, we envision an ideal sequence to partial stripe writes
as follows,

For each data element4, it is treated as the beginning written
element at least once in a partial stripe write to w continuous
data elements (2 ≤ w ≤ n− 3, including partial stripe writes
in the same row and across two rows). If there is no data
element at the end of a stripe, the data element at the beginning
of the stripe will be written5.

Based on the description of ideal sequence, for H-Code
shown in Figure 3 (which has (p − 1)2 total data ele-
ments in a stripe), the ideal sequence to w partial stripe
writes is: C0,0C0,2 · · · , C0,2C0,3 · · · , C0,3C0,4 · · · , and so
on, · · · · · · , the last partial stripe write in this sequence is
Cp−2,p−2C0,0 · · · .

We use two types of access patterns based on this ideal
sequence,

(a) Uniform access. Each partial stripe write occurs only
once, so each data element is written w times.

(b) Random access. Since the number of total data elements
in a stripe is less than 49 when p = 5 and p = 7, we use 50
random numbers (ranging from 1 to 1000) generated by a
random integer generator [25] as the frequencies of partial
stripe writes in the sequence one after another. These 50

3P-Code has two variations, which are denoted by P-Code-1 and P-Code-2.
4For p = 5 and p = 7 in different codes, the number of data elements in

a stripe is less than 7 ∗ 7 = 49.
5A partial stripe write across different stripes is a little different from the

one in our ideal sequence, which need more I/O operations but has little effect
on the evaluation results.



TABLE II
50 RANDOM INTEGER NUMBERS

221 811 706 753 34 862 353 428 99 502
969 800 32 346 889 335 361 209 609 11
18 76 136 303 175 71 427 143 870 855
706 297 50 824 324 212 404 199 11 56
822 301 430 558 954 100 884 410 604 253

random numbers are shown in Table II. For example, the first
number in the table,“221” is used as the frequency of the first
stripe writes C0,0C0,2 · · · (for H-Code).

As summarized in Table I, we use F (Ci,j) and P (Ci,j)
to denote the access frequency and the access probability of
a partial stripe write to w continuous data elements starting
from Ci,j , respectively. If Ns is the total access frequency of
all stripe writes in the ideal sequence, we have,

P (Ci,j) =
F (Ci,j)

Ns
,
∑

P (Ci,j) = 1 (7)

For example, in uniform access, the access frequency and
access probability of any stripe write are,

F (Ci,j) = 1, P (Ci,j) =
1

Ns
(8)

We evaluate H-Code and other codes in terms of the
following metrics. The first metric is denoted by Sw(Ci,j),
which is the number of I/O operations a partial stripe write
to w continuous data elements starting from Ci,j . We define
“average number of I/O operations of a partial stripe
write to w continuous data elements (Savg.(w))” to evaluate
different codes. The smaller value of Savg.(w) is, the lower
cost of partial stripe writes and the higher performance of
storage system is. Savg.(w) can be calculated by,

Savg.(w) =
∑

Sw(Ci,j) · P (Ci,j) (9)

For uniform access in H-Code, Ns = (p − 1)2. According
to Equation 8, the average number of I/O operations of the
ideal sequence of partial stripe writes is calculated using the
following equation,

Savg.(w) =

p−2∑
i=0

[
p−1∑
j=0

Sw(Ci,j)

]
(p− 1)2

(j 6= i+ 1) (10)

As described in Section IV-B and Figure 6, it takes 10 I/O
operations for any partial stripe write to two continuous data
elements. According to Equation 12, we have the Savg.(w)
value of H-Code,

Savg.(w = 2) =
10(p− 1)2

(p− 1)2
= 10

According to Equation 1, for a random partial stripe write,
the numbers of read and write I/O are the same, so we use
average number of I/O operations to evaluate different codes.

Our next metric is the “maximum number of I/O opera-
tions of a partial stripe write to w continuous data elements
(Smax.(w))”. It is the maximum number of I/O operations of
all partial stripe writes in the sequence and calculated by,

Smax.(w) = max [Sw(Ci,j)] (11)

To show the I/O distribution among different disks, we
use another metric, Sjw(Ci,j), to denote the number of I/O
operations in column j of a partial stripe write to w continuous
data elements starting from Ci,j . We define “average number
of I/O operations in column j of a partial stripe write to
w continuous data elements (Sjavg.(w))” as follows,

Sjavg.(w) =
∑

Sjw(Ci,j) · P (Ci,j) (12)

For H-Code, we have the following equation,

Sjavg.(w) =

p−2∑
i=0

[
p−1∑
j=0

Sjw(Ci,j)

]
(p− 1)2

(j 6= i+ 1) (13)

B. Numerical Results

In this subsection, we give the numerical results of H-Code
compared to other typical codes using above metrics.

1) Average I/O Operations: First we calculate the average
I/O operation counts (Savg.(w) values) for different codes6

with various w and p shown in Figure 7 and Figure 8. The
results show that H-Code can reduce the cost of partial stripe
writes, and thus improve the performance of storage system.

We also summarize the costs in terms of I/O operations
of our H-Code compared to other codes, which are shown in
Table III and IV. It is obvious that H-Code has the lowest
I/O cost of partial stripe writes. For uniform access, there
is a decrease of I/O operations up to 14.68% and 20.45%
compared to RDP and EVENODD codes, respectively. For
random access, compared to RDP and EVENODD codes,
H-Code reduces the cost by up to 15.54% and 22.17%,
respectively.

2) Maximum I/O Operations: Next we evaluate the max-
imum I/O operations shown in Figure 9 and 10. It clearly
shows that H-Code has the lowest maximum number of I/O
operations compared to other coding methods in all cases.

The above evaluations demonstrate that H-Code outper-
forms other codes in terms of average and maximum I/O
operations. The reasons that H-Code has the lowest partial
stripe write cost are: First, H-Code has a special anti-diagonal
parity (the last data element in a row and the first data element
in the next row share the same anti-diagonal parity) , which
can decease the partial stripe write cost when continuous data
elements are crossing rows like vertical codes. Second, we
keep the horizontal parity similar to EVENODD and RDP

6In the following figures and tables, due to the constraint of 2 ≤ w ≤
n− 3, the average/maximum number of I/O operations in some codes are
not available.
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Fig. 7. Average number of I/O operations of a partial stripe write to w continuous data elements of different codes with different value of w when p = 5
(5 disks for X-Code, 6 disks for H-Code and RDP code, and 7 disks for EVENODD code).
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Fig. 8. Average number of I/O operations of a partial stripe write to w continuous data elements of different codes with different value of w when p = 7
(6 disks for P-Code-1 and Cyclic code, 7 disks for X-Code and P-Code-2, 8 disks for H-Code and RDP code, and 9 disks for EVENODD code).
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Fig. 10. Maximum number of I/O operations of a partial stripe write to w continuous data elements of different codes with different value of w when p = 7
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TABLE III
IMPROVEMENT OF H-CODE OVER OTHER CODES IN TERMS OF AVERAGE PARTIAL STRIPE WRITE COST (UNIFORM ACCESS)

w & p EVENODD code X-Code RDP code Cyclic code P-Code-1 P-Code-2
w = 2, p = 5 16.67% 14.75% 14.02% − − −
w = 3, p = 5 12.50% 18.60% 11.84% − − −
w = 2, p = 7 20.45% 15.04% 14.68% 9.09% 3.19% 3.85%
w = 3, p = 7 18.32% 20.18% 12.83% 5.60% 2.30% 1.89%
w = 4, p = 7 14.85% 22.21% 11.72% − − −
w = 5, p = 7 10.46% 22.83% 10.20% − − −

TABLE IV
IMPROVEMENT OF H-CODE OVER OTHER CODES IN TERMS OF AVERAGE PARTIAL STRIPE WRITE COST (RANDOM ACCESS)

w & p EVENODD code X-Code RDP code Cyclic code P-Code-1 P-Code-2
w = 2, p = 5 13.19% 15.75% 15.25% − − −
w = 3, p = 5 12.12% 19.22% 14.00% − − −
w = 2, p = 7 22.17% 15.82% 15.54% 8.76% 13.79% 5.75%
w = 3, p = 7 20.04% 20.90% 13.58% 4.89% 2.23% 4.31%
w = 4, p = 7 15.65% 22.84% 12.15% − − −
w = 5, p = 7 10.53% 23.29% 11.15% − − −
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Fig. 9. Maximum number of I/O operations of a partial stripe write to w
continuous data elements of different codes with different value of w when
p = 5 (5 disks for X-Code, 6 disks for H-Code and RDP code, and 7 disks
for EVENODD code).

codes, which is efficient for partial stripe writes to continuous
data elements in the same row. Therefore, our H-Code takes
advantages of both horizontal codes (such as EVENODD and
RDP) and vertical codes (such as X-Code, Cyclic and P-Code).

3) Partial Stripe Write in the Same Row: Third, we
evaluate the cost for a partial stripe write to w continuous data
elements in the same row of H-Code and some other typical
codes shown in Table V. Compared to EVENODD and X-
Code, H-Code reduces I/O cost by up to 19.66% and 16.67%,
respectively.

From Table V, we find that, for a partial stripe write within
a row, H-code offers better partial stripe write performance
compared to other typical codes. Due to the horizontal parity,
H-code performs better than X-Code (e.g., 10 vs. 12 I/O
operations when w = 2) in partial stripe write performance in
the same row. H-Code has much lower cost than EVENODD
because of different anti-diagonal construction schemes.

4) I/O Workload Balance: As we mentioned before, H-
Code doesn’t suffer from unbalanced I/O distribution which

TABLE V
COST OF A PARTIAL STRIPE WRITE TO w CONTINUOUS DATA ELEMENTS

IN THE SAME ROW (p = 7, UNIFORM ACCESS)

H-Code EVENODD X-Code
w = 2 10 12.44 12
w = 3 14 16.8 16
w = 4 18 20.5 20

is an issue in RDP code. To verify this, we calculate the
Sjavg.(w) values for H-Code and RDP code as shown in
Figure 11. It shows that for RDP code, the workload is not
balance (in disk 6 and disk 7 it is very high, especially in disk
7). However, our H-Code balances the workload very well
among all disks because of the dispersed anti-diagonal parity
in different columns.

1
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Fig. 11. Average number of I/O operations in column j of a partial stripe
write to three continuous data elements of different codes in an 8-disk array
(p = 7, w = 3).



VI. CONCLUSIONS

In this paper, we propose a Hybrid Code (H-Code), to
optimize partial stripe writes for RAID-6 in addition to take
advantages of both horizontal and vertical MDS codes. H-
Code is a solution for an array of (p + 1) disks, where p
is a prime number. The parities in H-Code include horizon-
tal row parity and anti-diagonal parity, where anti-diagonal
parity elements are distributed among disks in the array. Its
horizontal parity ensures a partial stripe write to continuous
data elements in a row share the same row parity chain to
achieve optimal partial stripe write performance. Our theoret-
ical analysis shows that H-Code is optimal in terms of storage
efficiency, encoding/decoding computational complexity and
single write complexity. Furthermore, we find H-Code offers
optimal partial stripe write complexity to two continuous data
elements and optimal partial stripe write performance among
all MDS codes to the best of our knowledge. Our H-code
reduces partial stripe write cost by up to 15.54% and 22.17%
compared to RDP and EVENODD codes. In addition, H-Code
achieves better I/O workload balance compared to RDP code.
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