
A Fast Read/Write Process to Reduce RDMA Communication Latency

Li Ou, Xubin He, Member, IEEE
Electrical and Computer Engineering Department

Tennessee Technological University�
lou21, hexb � @tntech.edu

Jizhong Han, Member, IEEE
Institute of Computing Technology

Chinese Academy of Sciences
hjz@ict.ac.cn

Abstract

RDMA reduces network latency by eliminating unnec-
essary copies from network interface cards to applica-
tion buffers, but how to reduce memory registration cost
is a challenge. Previous studies use pin-down cache and
batched deregistration to address this issue. In this paper,
we propose a new design of communication process: Fast
RDMA Read and Write Process (FRRWP), to reduce the
overhead of the memory registration and message synchro-
nization in the critical data path of RDMA operations. FR-
RWP overlaps memory registrations between a client and a
server, and allows applications to submit RDMA write op-
erations without being blocked by message synchronization.
We use a mathematic model to calculate the overall latency
of FRRWP. Compared to traditional RDMA operations, our
results show FRRWP reduces the total communication la-
tency dramatically in the critical data path.

1 Introduction

Remote Direct Memory Access (RDMA)[1, 5, 13, 3, 6]
offers low latency, high throughput, and low CPU overhead
communication in network storage systems. While RDMA
decreases latency by eliminating unnecessary copies from
network interface cards to application buffers, there are a
number of challenges to be addressed. One of them is ef-
ficient communication buffer management to reduce mem-
ory registration and deregistration cost. Previous research
[15, 17, 18, 14] shows that memory registration is an expen-
sive operation since it requires pinning of pages in physical
memory and accessing the on-chip memory of the network
interface card. The overhead caused by memory registra-
tion dramatically degrades the performance of RDMA and
increases network latency in the critical data path of I/O op-
erations.

Basically, a RDMA operation is a two-fold process: it
requires memory registrations in both clients and servers,
and exchange synchronization messages to accomplish reg-

istration before the real RDMA read or write operations.
The cost of a complete RDMA process includes the cost
of the memory registrations in the client and server, the
overhead of synchronization messages, and the cost of
real RDMA read or write operations. Several attempts
[15, 20, 17, 18, 4, 14, 12] have been made to reduce the
overhead of memory registration directly. In general ap-
plications, a pin-down cache [15] is incorporated into the
memory manager. Several cache designs for memory reg-
istration [17, 14, 12] are proposed based on the pin-down
cache to take advantage of temporal locality of memory ac-
cesses of RDMA. Another way to improve the performance
of RDMA is to overlap the memory registrations between
the client and the server, and reduce the overhead of syn-
chronization messages.

In this paper, we evaluate the cost of memory registration
in both user and kernel space. We analyze latency of mem-
ory registration and find three main parts which contributes
most to the total costs. We then propose a new commu-
nication scheme between a RDMA client and server, Fast
RDMA Read and Write Process (FRRWP), to minimize the
cost of memory registration in the critical data path. FR-
RWP re-schedules the communication process of RDMA
to overlap memory registrations between the client and the
server. It allows issues of RDMA operations without being
blocked by the synchronization messages: the applications
may submit a RDMA write immediately after they finish
local memory registrations, without waiting for the confir-
mation of registrations from the peer node. We compare the
performance of FRRWP with traditional RDMA operations
using a mathematic model. The results show that compared
to traditional RDMA operations, FRRWP can reduce the
total communication latency in the critical data path by at
least 22us.



Figure 1. Comparison between latency of
memory registration and RDMA write with
various size of messages in user space.

2 Cost analysis of memory registrations

2.1 Background Review

In RDMA, a network interface card (RNIC or InfiniBand
HCA) writes or reads user specified buffers directly with-
out unnecessary copies, so before each RDMA operation, it
is required to register a memory region where user buffers
are located. In the process of registration, the device driver
first maps the virtual memory address to the physical ad-
dress, then pins the memory region to make sure that in the
operations of RDMA, the memory region is not swapped
out from physical memory. After map and pin, the driver
reports the information of the memory region to NIC, in
which a table is used to keep information of all registered
memory regions. A memory region cannot be pinned for-
ever, otherwise the effective size of physical memory used
for other purpose is reduced. On the other side, the number
of entries in the registration table is limited. For instance, a
typical implementation of Myrinet only contains 1024 page
table entries [15], and the Giganet cLan card used in [20]
allows 1GB of outstanding registered buffers, which is still
much smaller than the total size of physical memory that a
high performance server is equipped. When the number of
registered buffers exceeds this limit, the application needs
to deregister memory and free resources on the NIC, which
involves the operation of unpin of the memory region and
remove the entry from the table. Memory registration and
deregistration are time-consuming operations.

The cost of memory registration and deregistration varies
with the performance of hosts. For instance, in a pretty old
Pentium Pro machine (200MHz), one memory page (4KB)
registration takes 26us [15], while the same operation only
need 7us with a much faster Intel Xeon 2.4GHz proces-
sor [18]. Although high performance servers reduce time
of memory registrations, the cost is still almost same as

Figure 2. Comparison of memory registration
latency between user space and kernel space
with various size of messages.

Table 1. Latency of fast and ordinary memory
registrations in kernel space.

Memory size (KB) Fast MR (us) Ordinary MR (us)
4kB 0.506637 40.08733
8kB 0.513922 40.32209

16kB 0.561122 40.18301
32kB 0.626815 40.32764
64kB 0.785199 40.22049
128kB 1.026974 40.44059

the network latency of the contemporary interconnect used
by servers [15, 18]. If every RDMA operation has to be
blocked by the registration and deregistration, the overhead
is very large and overall latency of the communication is
very high. Previous studies [15, 18] show that without any
optimization, the RDMA performance is hurt by the mem-
ory registration and deregistration so much that even the tra-
ditional send and receive operations, which involve several
memory copies, could outperform RDMA if the message
size is small. Experiments [15, 18] show that if message
size of most operations is less than 1K, RDMA with normal
memory registration may not provide better performance
than traditional way, and in some case, even worse.

2.2 Experimental setup

To study the cost of memory registrations in RDMA, we
setup our experimental environments with two Dell servers
and InfiniBand network. The server is equipped with a
2 � 8GHz Intel P4 microprocessor, 1024MB memory, and a
HCA: MT25204 (FW 1.0.8, Rate 20Gbps). Two servers are
connected with a InfiniBand switch MT47396(FW 0.8.4).
The operating system is Suse SLES 10 linux-2.6.13-15-
smp. The InfiniBand software package is IBG2-2.0.1.



We developed a Client-Server program to test the latency
of memory registration and RDMA write operation between
two servers. We vary the message size from 1KB to 128KB,
and compare latency in both the user space and the kernel
space. For each message size, we record the average latency
from multiple tests: 1000 times for small size messages in
the user space, 100 times for large size messages in the user
space, and 50 times in the kernel space.

2.3 Result analysis

First we compare the latency of memory registration and
RDMA write with various size of messages in user space in
Fig. 1. It is obvious that the cost of memory registration is
so huge that it is much higher than the latency of RDMA
operation itself, especially with small size messages. With
such high cost, the benefit of RDMA is reduced, and fur-
thermore, the latency of RDMA operation of small size
messages, including memory registration and real RDMA
write, makes it unattractive compared to traditional network
protocol stack. The result is consistent with previous re-
search [15, 18], but the difference is that in our experiments,
the cost of memory registration are higher than real RDMA
operations in some cases. It is reasonable because reducing
memory registration cost is limited by performances of PCI
bus of hosts, which improves very slowly, while the latency
and bandwidth of network subsystems improve quickly.

We explain in Section 2.1 that the cost of memory reg-
istration consists of three main parts: maps the virtual ad-
dress to physical address, pins the memory region, and reg-
isters to RDMA card. With such high latency of memory
registrations, we want to know how those three parts con-
tribute to whole costs. We examine the latency of mem-
ory registrations in kernel space. We use get free pages
to allocate memory regions and register the memory region
using ib reg phys mr, which is a kernel service provided
by the kernel VAPI module. The memory region allocated
by get free pages is returned with physical address and
physically contiguous, so there is no need to map address.
Any memory region allocated in kernel space will not be
swapped out any time, so there is no cost of pining memory.
With such configurations, we expect that the cost of mem-
ory registration in kernel space only includes the latency of
registering to RDMA card. Our results are presented in 2.
First we find that latency in kernel space is about 40us less
than that of user space, when the memory size is smaller
than 32KB. Since the registration in kernel space only in-
cludes latency of registering to RDMA card and the regis-
tration in user space includes all three parts, we know that
the costs of mapping address, pining memory, and crossing
user-kernel interfaces count about half of the total latency,
and cost of registering to physical card counts the other half.
when the memory region is larger than 32KB, the latency of

user space increases dramatically, but the latency of kernel
space is still independent to the memory size. The reason
is that in user space, the system call malloc dos not guaran-
tee that allocated memory region is physically contiguous.
In our experiments, we find that memory regions less than
32KB are contiguous, but it is not the case for larger re-
gions. With separated physical memory regions, the latency
of mapping address, pinning memory, and even registering
to RDMA card should be higher, because kernel do those
jobs in terms of physically region.

From previous experiments, we know that the latency of
registering to RDMA card counts about 40us, 50% of to-
tal cost. Since other costs may be eliminated by allocating
contiguous physical spaces and pre-pining, it is important
to know that what is the main part of cost to register to
RDMA card, and if it is possible to eliminate it. The cost
of registering to RDMA card includes two parts: allocate a
table in kernel memory and record phsical address of mem-
ory region, and write I/O registers of RDMA card to reg-
ister memory information. With fast memory registration,
user pre-allocates a table in kernel memory to record phsi-
cal address of memory region, and pre-writes I/O registers
of RDMA card to register memory information, and only
fills the table for phsical address of memory region during
the real memory registration operations. We compare the
latency of fast registration and ordinary registration in ker-
nel space and show the results in Table 1. Amazingly, the
latency of fast registration is so low that it can be almost
ignored. It is obvious that the main part of latency in regis-
tering to RDMA card is the cost of communicating with I/O
card and writing I/O registers.

Research in [18] showed that cost of fast memory regis-
tration in user space consists of two parts. First part is the
cost of per registration, and second part is cost of per page.
In [18], the cost of registering memory region is modeled
as T � a � p � b, where a is the registration cost per page,
and b is the overhead per operation, and p is the size of the
memory region in pages. In their testbed, the costs of per
page in registration is 0 � 77us. The overhead per registration
and deregistration operations is 7 � 42us. With this result, we
find that our design reduces the latency in the entire com-
munication process by Tr � 0 � 77 � p � 7 � 42. Our results of
fast memory registration in kernel space is consistent with
the previous research, because the cost of kernel space fast
registration is so small that the main cost of user space fast
registration comes from latency of crossing user-kernel in-
terfaces. Our results show that latency of switching environ-
ment is about 5us, which is main part of cost per operations
in previous model.

From our experimental results, we find that the latency
of communicating with I/O card and writing I/O registers
counts about half of the cost of memory registration, and
unfortunately, unlike other parts of cost, it can not be elim-



inated by optimizing kernel and modifying software.That
part of latency is still high enough, especially when com-
pared to latency of RDMA write itself. Actually, although
the cost of fast memory registration in user space is very
low, compared to ordinary registrations, it is still almost
same with the cost of real network operations, because of la-
tency of switching environment. To improve RDMA perfor-
mances, researchers considers several ways, such as mem-
ory registration cache [15, 20, 17, 18, 4, 14, 12]. In this
paper, we reduce the overhead of memory registration and
improve the performances of RDMA by overlaps memory
registrations of client and server and allowing the applica-
tions submit RDMA write immediately after they finish lo-
cal memory registrations.

3 Design of FRRWP

Before issuing real RDMA read/write operations, the
client and server need to finish registration operations,
and there are several synchronization message between the
client and server to exchange peer Rkey. In the typical com-
munication process, shown in Fig 3, the registration oper-
ations in both sides and the synchronization messages are
totally sequential, in which both the client and server have
to wait the complete of peer registrations.

In FRRWP, we change the flow of communication pro-
cess to overlap the registrations, shown in Fig 4. The client
first sends a synchronization message to the server to start
a new RDMA transaction. Then both sides start the mem-
ory registrations. After that, one side sends a synchroniza-
tion message to inform Rkey to the the other side where
real RDMA write will be submitted. After both Rkey (peer
memory region) and Lkey (local memory region) are re-
ceived, the real RDMA write operation starts. In FRRWP,
the registrations on both the client and server are processed
in parallel, so the overall latency of RDMA is reduced.

From Fig 3, we find that the client or server is still
blocked before the stage of a RDMA write, because they
need to wait for the synchronization message with the Rkey
being sent from the peer. After finish the local registra-
tion, the server or client application need poll or wait for
the event of the incoming synchronization message (using
RDMA receive operation). Before that, they cannot submit
any RDMA write requests to the device driver. In this case,
the overhead of context switching between the device driver
and application is considerable. To improve the perfor-
mance, we introduce a new operation, Conditional RDMA
Write (CRW), in which, the RDMA write can be issued be-
fore receiving the peer Rkey. The device driver will hold
CRW requests, until associated Rkey from the peer is re-
ceived. Another operation, Send Tag for CRW (STCRW), is
also introduced in the peer side to send the associated Rkey
for the CRW. A CRW and a STCRW operations are coupled

Figure 5. Traditional RDMA Operation.

Figure 6. Conditional RDMA Write (CRW).

together by a common tag, CWTAG, which may be sent
from a client to a server through a synchronization message
at the beginning of the transaction. Using CRW, the client
(or server) can submit a RDMA write to the device driver
following the local registration without being blocked by
the peer. After receiving a synchronization message con-
taining a CWTAG from peer, the driver checks the issued
CRW with the same CWTAG, and submits the real RDMA
write operation along with the Rkey from the peer.

Fig 5 shows the interaction between the application and
the kernel in traditional RDMA operations. (1) The RDMA
card writes the synchronization message to the a buffer of
the receive queue (RQ). (2) The driver constructs a data
structure to inform completion of the receive operation and
insert it into the completion queue (CQ). (3) The application
polls the completion queue and retrieves the synchroniza-
tion message. (4) The application processes the message
and retrieves Rkey. (5) The application inserts a RDMA
write request to the send queue (SQ) (6) The driver then
submits the real RDMA write to the RDMA card. For
comparison, Fig 6 shows our design of Conditional RDMA
Write (CRW). (1) The application immediately inserts a
conditional write request to the (SQ) without being blocked.
Then, the application is free and the driver will take care
of the following processes. (2) The RDMA card writes the
synchronization message to the a buffer of the (RQ). (3) The



(a) Read (b) Write

Figure 3. Typical RDMA Read and Write Process.

(a) Read (b) Write

Figure 4. Read and Write Operations in FRRWP.

driver uses STCRW in the message to locate the RDMA re-
quests with the same STCRW in the (SQ). (4) The driver
submits the RDMA write to the RDMA card with the Rkey
in the message. Comparing Fig 5 and Fig 6, we find that
Conditional RDMA Write (CRW) is more efficient: first,
the new design removes Step 3 in the traditional RDMA
process; second, the application does not have to wait for
the Rkey.

4 Latency analysis

We expect that the FRRWP reduces the communica-
tion latency in the critical data path of RDMA operations.
The benefit of FRRWP comes from two sides. First, the
overlapped memory registrations between a client and a
server; Second, the non-blocking Conditional RDMA Write
(CRW).

Research in [18] showed that the cost of memory reg-
istration consists of two parts, the cost of each registration
and the cost of each page. In [18], the cost of registering
memory regions is modeled as T � a � p � b, where a is the
registration cost per page, and b is the overhead per regis-
tration operation, and p is the size of the memory region
in pages. In their testbed, the cost per page is 0 � 77us. The
overhead per registration is 7 � 42us. With this result, we find
that our design reduces the latency in the entire communica-
tion process by Tr � 0 � 77 � p � 7 � 42, because of overlapped
memory registrations.

Comparing Fig 5 and Fig 6, we find that CRW reduces
latency for following reasons. First, after receiving a syn-
chronization message, the driver does not need to construct
a data structure and insert it into the complete queue. The la-
tency of this part is T1. Second, the driver directly processes
the message and sends a RDMA write to the card without



the participation of the application, so the latency caused by
the operation that the application polls the complete queue
and inserts a request to send queue is eliminated. They are
T2 and T3, respectively. To find T1, we use a test program
which is a kernel module and performs 1000 times of con-
structing a completion data structure and inserting it into a
queue. The program monitors the entire process and calcu-
lates the average time for each operation. The test machine
in our lab is a Dell Power Edge 420, with a 2 � 8GHz Intel
Pentium-4 microprocessor, 2048M memory and a 40G IDE
disk. The experimental result shows that T1 is 4us. T2 and
T3 are the cost of context switch between the device driver
and the application. We use a test program to monitor 1000
times of getpid() and find that the average cost per opera-
tion is 5us. getpid() is a very simple system call which only
returns an integer from a kernel data structure, so it reflects
the minimum latency of switching environment. Actually,
T2 and T3 should be large than 5us, but we use it as an es-
timation. According to all those results, the latency Tc re-
duced by CRW is about 4 � 2 � 5 � 14us.

Add Tr and Tc together, the cost saved by the FRRWP
in the whole communication process is approximately T �
Tr � Tc � 21 � 42 � 0 � 77 � p, where p is the size of the memory
region in term of pages. We find that the minimum latency
reduced by FRRWP is 22us per page.

5 Related Work

Previous researchers have evaluated the performances of
RDMA at various platforms. In [11, 19, 9, 8, 10, 16, 17, 18],
authors compare RDMA latency and bandwidth using In-
finiBand. In [7, 9], performances of RDMA over IP
are evaluated with RNIC. While RDMA decreases latency
by eliminating unnecessary copies from network interface
cards to application buffers, there are a number of chal-
lenges to be addressed. One of them is efficient commu-
nication buffer management to reduce memory registration
and deregistration cost. Previous research [15, 17, 18, 14]
shows that memory registration is an expensive operation.
Our research in evaluating RDMA performances and mem-
ory registration costs is based on but different to previous
work, because we compare cost of memory registration in
both user space and kernel space, and analyze the three main
parts of memory registration costs, then find where the main
latency comes from.

Several studies have been done to reduce the over-
head caused by memory registration and deregistration in
RDMA. Tezuka et al. [15] propose a pin-down cache for
Myrinet. Pin-down cache postpones deregistration of reg-
istered buffers and caches the registration information for
possible future accesses to the same memory region. Zhou
et al. [20] eliminate pinning and unpinning from regis-
tration and deregistration path by combining memory pin-

ning and allocation together. They also demonstrate that
batched deregistration is an efficient way to reduce average
cost of memory deregistration. In [17], Wu et al. propose
a two-level architecture, FMRD, for memory registration
by adopting both pin-down cache and batched deregistra-
tion. Based on pin-down cache, a lazy cache is proposed in
[14], which combines a cache of registration mapping with
a lazy approach to memory deregistration. In [12], Ou et al.
propose an effective cache scheme: Memory Registration
Region Cache (MRRC), to minimize the cost of memory
registration in the critical data path of RDMA operations.
MRRC manages memory in terms of memory region, and
replaces old memory regions according to both their sizes
and recency. Both MRRC and FRRWP try to reduce the la-
tency of RDMA operations in the critical data path, but they
achieve the object through different ways. MRRC focuses
on the latency of RDMA memory registration, and reduces
the cost by using a novel cache. FRRWP concentrates on
the entire process of RDMA communications and reduces
the communication latency overlapping memory registra-
tions between clients and servers.

In some application, memory region is predefined and
can be pre-registered in the initialization phase to avoid ex-
tra cost in the critical path of data transferring. In the de-
sign of Unifier [19], the cache buffers are divided into two
groups (ready buffers and raw buffers). The ready buffers
are registered and resident in the system during the Unifier’s
life time. In the implementation of RDMA-Based MPI, Liu
et al. [11] introduced a technique called persistent buffer as-
sociation, in which buffers at both send and receiver side are
allocated, registered, and associated during the initialization
phase. In [4], a firehose algorithm is proposed for RDMA
in shared memory system. The firehose algorithm starts by
determining the largest amount of application memory that
can be shared with remote machines, then all shared mem-
ory are pinned and registered, and linked to a firehose in-
terface, from which remote machines can write and read
shared memory at any time.

Other research focuses on reducing cost of memory
registration directly. In RDMA Protocol Verbs Specifica-
tions (RDMAVS 1.0) [6] and Mellanox IB-Verbs extension
(VAPI) [2], a new registration schema: Fast Memory Reg-
istration (FMR) is introduced, in which registration opera-
tions are divided into two distinct steps. In the first step, ap-
plications apply a handle and allocate resource in the NIC.
This step can be done in the initialization of the application.
In the second step, application issues the fast registration
requests with the pre-allocated handle and the detail infor-
mation of the memory region, then memory is pinned at last.
The second step is finished before the RDMA read or write
operations. Since the resource of NIC is pre-allocated, the
overhead of FMR in the critical data path is smaller than that
of the traditional memory registration operations. Experi-



mental results [14] show that the delay of memory registra-
tion is reduced 50us by using FMR with Intel Xeon 2.4GHz
processors. In [18], Wu et al. propose an Optimistic Group
Registration (OGR) to reduce the cost of memory registra-
tion for noncontiguous accesses. Optimistic Group Reg-
istration integrates multiple registrations of noncontiguous
memories into one operation, and registers a large memory
region containing several noncontiguous buffers.

6 Conclusions

In this paper, we evaluate the cost of memory registra-
tion in both user and kernel space. We analyze three main
parts of latency and find out which part contributes most to
the total costs. Based on latency analysis, we propose a new
communication scheme between a RDMA client and server,
Fast RDMA Read/Write Process (FRRWP), to reduce the
overhead of the memory registration and synchronization
messages in the critical data path. FRRWP overlaps mem-
ory registrations between RDMA clients and servers. It al-
lows the applications to submit a RDMA write immediately
after they finish local memory registrations, without waiting
for the confirmation of registrations from the peer node. Our
analysis show that FRRWP dramatically reduces the total
communication latency in the critical data path of RDMA.

Acknowledgments

This work was supported in part by the Research Of-
fice under a Faculty Research Grant and the Center for
Manufacturing Research at Tennessee Technological Uni-
versity. It was also partially supported by the 973 Program
of China under contract No. 2004CB318202, and Faculty
Research Grant at Institute of Computing Technology, Chi-
nese Academy of Sciences. The authors would like to thank
the REU student, Karthik Sankar, for conducting literature
survey on RDMA. He is supported by the US National Sci-
ence Foundation under a REU grant SCI-0453438. The au-
thors would also like thank Ian Jiang for helping collect part
of the experimental data.

References

[1] Infiniband trade association. infiniband architecture specifi-
cation, release 1.0, october 24, 2000.

[2] Mellanox technologies. mellanox IB-Verbs API(VAPI), rev.
0.95, march 2003.

[3] RDMA consortium. architectural specifications for RDMA
over TCP/IP.

[4] C. Bell and D. Bonachea. A new dma registration strategy
for pinning-based high performance networks. In 17th In-
ternational Parallel and Distributed Processing Symposium,
2003.

[5] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. K. Su. Myrinet: A gigabit-
perSecond local area network. IEEE-Micro, 15(1):29C366,
February 1995.

[6] J. Hilland, P. Culley, J. Pinkerton, and R. Recio. RDMA
protocol verbs specification (version 1.0). Technical report,
RDMA Consortium, April 2003.

[7] H. W. Jin, S. Narravula, G. Brown, K. Vaidyanathan, P. Bal-
aji, and D. K. Panda. Performance evaluation of rdma over
ip: A case study with the ammasso gigabit ethernet nic.
In Workshop on High-Performance Interconnects for Dis-
tributed Computing (at HPDC’05), July 2005.

[8] S. Liang, R. Noronha, and D. Panda. Exploiting remote
memory in infiniband clusters using a high performance net-
work block device. Technical report, Ohio State University.

[9] S. Liang, R. Noronha, and D. K. Panda. Swapping to re-
mote memory over infiniband: An approach using a high
performance network block device. In IEEE International
Conference on Cluster Computing (Cluster 2005), Septem-
ber 2005.

[10] J. Liu, D. K. Panda, and M. Banikazemi. Evaluating the
impact of rdma on storage i/o over infiniband. In SAN-03
Workshop, Feb. 2004.

[11] J. Liu, J. Wu, S. Kini, P. Wyckoff, and D. K. Panda. High
performance rdma-based mpi implementation over infini-
band. In ICS ’03, June 2003.

[12] L. Ou, X. He, and J. Han. Mrrc: A efficient cache for fast
memory registration in rdma. In Proc. of the NASA/IEEE
Conference on Mass Storage Systems and Technologies
(MSST), 2006.

[13] F. Petrini, W. C. Feng, A. Hoisie, S. Coll, and E. Fracht-
enberg. The quadrics network (QsNet): High-performance
clustering technology. In In Hot Interconnects, 2001.

[14] M. Rangarajan and L. Iftode. Building a user-level direct
access file system over infiniband. In 3rd Workshop on Novel
Uses of System Area Networks, 2004.

[15] H. Tezuka, F. OCarroll, A. Hori, and Y. I. Pindown. Pin-
down cache: A virtual memory management technique for
zero-copy communication. In Int. Parallel Processing Sym-
posium, March 1998.

[16] V. Tipparaju, G. Santhanaraman, J. Nieplocha, and D. K.
Panda. Host-assisted zero-copy remote memory access com-
munication on infiniband. In Int’l Parallel and Distributed
Processing Symposium (IPDPS 04), April 2004.

[17] J. Wu, P. Wyckoff, and D. K. Panda. PVFS over InfiniBand:
Design and performance evaluation. In International Con-
ference on Parallel Processing, Oct 2003.

[18] J. Wu, P. Wyckoff, and D. K. Panda. Supporting efficient
noncontiguous access in PVFS over InfiniBand. In Cluster
2003 Conference, December 2003.

[19] J. Wu, P. Wyckoff, D. K. Panda, and R. Ross. Unifier: unify-
ing cache management and communication buffer manage-
ment for pvfs over infiniband. In CCGrid ’04, April 2004.

[20] Y. Zhou, A. Bilas, S. Jagannathan, C. Dubnicki, J. F. Philbin,
and K. Li. Experiences with vi communication for database
storage. In ISCA, 2002.


