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Abstract
NAND flash-based SSDs suffer from limited lifetime due to
the fact that NAND flash can only be programmed or erased
for limited times. Among various approaches to address this
problem, we propose to reduce the number of writes to the
flash via exploiting the content locality between the write
data and its corresponding old version in the flash. This
content locality means, the new version, i.e., the content of
a new write request, shares some extent of similarity with
its old version. The information redundancy existing in the
difference (delta) between the new and old data leads to
a small compression ratio. The key idea of our approach,
named ∆FTL (Delta Flash Translation Layer), is to store
this compressed delta in the SSD, instead of the original new
data, in order to reduce the number of writes committed to
the flash. This write reduction further extends the lifetime
of SSDs due to less frequent garbage collection process,
which is a significant write amplification factor in SSDs.
Experimental results based on our ∆FTL prototype show
that ∆FTL can significantly reduce the number of writes and
garbage collection operations and thus improve SSD lifetime
at a cost of trivial overhead on read latency performance.

Categories and Subject Descriptors C.4
[PERFORMANCE OF SYSTEMS]: Reliability, availability,
and serviceability

General Terms Design, Reliability, Performance

Keywords SSD, Lifetime, NAND flash, Reliability, FTL

1. Introduction
Solid state drives (SSDs) exhibit good performance,
particularly for random workloads, compared to traditional
hard drives (HDDs). From a reliability standpoint, SSDs
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have no moving parts, no mechanical wear-out, and are
silent and resistant to heat and shock. However, the limited
lifetime of SSDs is a major drawback that hinders their
deployment in reliability sensitive environments [3, 5]. As
pointed out in [5], “endurance and retention (of SSDs) is
not yet proven in the field” and integrating SSDs into
commercial systems is “painfully slow”. The reliability
problem of SSDs mainly comes from the following facts.
Flash memory must be erased before it can be written and it
may only be programmed/erased for a limited times (5K to
100K) [10]. In addition, the out-of-place writes result in
invalid pages to be discarded by garbage collection (GC).
Extra writes are introduced in GC operations to move valid
pages to a clean block [2] which further aggravates the
lifetime problem of SSDs.

Existing approaches for this problem mainly focus on
two perspectives: 1) to prevent early defects of flash blocks
by wear-leveling techniques [6, 38]; 2) to reduce the
number of write operations on the flash. For the later,
various techniques are proposed including in-drive buffer
management schemes [16, 18, 22, 48] to exploit the
temporal or spatial locality; FTLs (Flash Translation
Layer) [12, 17, 23, 24] to optimize the mapping policies or
garbage collection schemes to reduce the
write-amplification factor; or data deduplication [7, 11] to
eliminate writes of existing content in the drive.

In this paper, we aim to efficiently solve this lifetime
issue from a different aspect. We propose a new FTL
scheme, ∆FTL, to reduce the write count via exploiting the
content locality. The content locality has been observed and
exploited in memory systems [13], file systems [8], and
block devices [32, 49, 50]. Content locality means data
blocks, either blocks at distinct locations or created at
different time, share similar contents. We exploit the
content locality that exists between the new (the content of
update write) and the old version of page data mapped to
the same logical address. This content locality implies the
new version resembles the old to some extend, so that the
difference (delta) between them can be compressed
compactly. Instead of storing new data in its original form
in the flash, ∆FTL stores the compressed deltas to reduce
the number of writes.



Research contributions:

• We propose a novel FTL scheme, ∆FTL to extend SSD
lifetime via exploiting the content locality. We describe
how ∆FTL functionality can be achieved from the data
structures and algorithms that enhance the regular page-
mapping FTL.

• We propose techniques to alleviate the potential
performance overheads of ∆FTL.

• We model ∆FTL’s performance on extending SSD’s
lifetime via analytical discussions and outline the
workload characteristics favored by ∆FTL.

• We evaluate the performance of ∆FTL under real-world
workloads via simulation experiments. Results show that
∆FTL significantly extends SSD’s lifetime by reducing
the number of garbage collection operations at a cost of
trivial overhead on read latency performance.
Specifically, ∆FTL results in 33% to 58% of the
baseline garbage collection operations; and the read
latency is only increased by approximately 5%.

The rest of the paper is organized as follows: Section
2 gives an introduction to NAND flash-based SSDs and a
brief survey of techniques to extent SSD’s lifetime as well as
techniques to leverage the content locality. In Section 3, we
discuss the design of ∆FTL in detail. Analytical modeling
of ∆FTL’s performance for SSD lifetime enhancement is
expanded in Section 4. The performance evaluation under
real-world workloads is given in Section 5. We conclude this
paper and outline the future work in Section 6.

2. Background and Related Work
2.1 NAND Flash-based SSDs
The NAND flash by itself exhibits relatively poor
performance [46, 47]. The high performance of an SSD
comes from leveraging a hierarchy of parallelism. At the
lowest level is the page, which is the basic unit of I/O read
and write requests in SSDs. Erase operations operate at the
block level, which are sequential groups of pages. A typical
value for the size of a block is 64 or 128 pages. Further up
the hierarchy is the plane, and on a single die there could be
several planes. Planes operate semi-independently, offering
potential speed-ups if data is striped across several planes.
Additionally, certain copy operations can operate between
planes without crossing the I/O pins. An upper level of
abstraction, the chip interfaces, free the SSD controller
from the analog processes of the basic operations, i.e., read,
program, and erase, with a set of defined commands.
NAND interface standards includes ONFI [34],
BA-NAND [34], OneNAND [36], LBA-NAND [42], etc.
SSDs hides the underlying details of the chip interfaces and
exports the storage space as a standard block-level disk via
a software layer called Flash Translation Layer (FTL). FTL
is a key component of an SSD in that it not only is

responsible for managing the “logical to physical” address
mapping but also works as a flash memory allocator,
wear-leveler, and garbage collection engine. The mapping
policy is mostly related to our work in this paper. The
mapping policies of FTLs can be classified into two types:
page-level mapping [2, 12], where a logical page can be
placed onto any physical page; or block-level
mapping [17, 23, 24], where the logical page LBA is
translated to a physical block address and the offset of that
page in the block. Page-level mapping is believed to be
popular in modern SSD design [7, 11]. In this paper, our
design augments the regular page-mapping FTL to support
the delta-encoding of the newly written data.

2.2 Extending SSD’s Lifetime
To extend the lifetime of SSDs, many designs have been
proposed in the literature such as FTLs, cache schemes,
hybrid storage materials, etc.

FTLs: For block-level mapping, several FTL schemes
have been proposed to use a number of physical blocks to
log the updates. Examples include FAST [24], BAST [23],
SAST [17], and LAST [25]. The garbage collection of these
schemes involves three types of merge operations, full,
partial, and switch merge. The block-level mapping FTL
schemes leverage the spatial or temporal locality in write
workloads to reduce the overhead introduced in the merge
operations. For page level mapping, DFTL [12] is proposed
to cache the frequently used mapping table in the in-drive
SRAM so as to improve the address translation
performance as well as reduce the mapping table updates in
the flash; µ-FTL [27] adopts the µ-tree on the mapping
table to reduce the memory footprint. Two-level FTL [45] is
proposed to dynamically switch between page-level and
block-level mapping. Content-aware FTLs (CAFTL) [7, 11]
implement the deduplication technique as FTL in SSDs to
eliminate contents that are “exactly” the same across the
entire drive. CAFTL requires complicated FTL design and
implementation, e.g., a large finger-print store to facilitate
content lookup and multi-layer mapping tables to locate
logical addresses associated to the same content. Due to the
limited computation power of the micro-processor inside
SSDs, the complexity of deduplication via CAFTL is a
major concern. On the other hand, our ∆FTL focuses on
leveraging the similarity existing among old and new
versions of data at the same logical address (as opposed to
the entire drive), which brings a lightweight FTL design
and implementation.

Cache schemes: A few in-drive cache schemes like
BPLRU [22], FAB [16], CLC [18], and BPAC [48] are
proposed to improve the sequentiality of the write workload
sent to the FTL, so as to reduce the merge operation
overhead on the FTLs. CFLRU [35] which works as an OS
level scheduling policy, chooses to prioritize the clean
cache elements when doing replacements so that the write
operations can be reduced or avoided. Taking advantage of



fast sequential performance of HDDs, Griffin [39] and
I-CASH [49] are proposed to extend the SSD lifetime by
caching SSDs with HDDs.

Heterogeneous material: Utilizing advantages of
PCRAM, such as the in-place update ability and faster
access, Sun et al. [41] describe a hybrid architecture to log
the updates on PCRAM for flash. FlexFS [26], on the other
hand, combines MLC and SLC as trading off the capacity
and erase cycle.

Wear-leveling Techniques: Dynamic wear-leveling
techniques, such as [38], try to recycle blocks of small erase
counts. To address the problem of blocks containing cold
data, static wear-leveling techniques [6] try to evenly
distribute the wear over the entire SSD.

2.3 Exploiting the Content Locality
The content locality implies that the data in the system
share similarity with each other. Such similarity can be
exploited to reduce the memory or storage usage by
delta-encoding the difference between the selected data and
its reference. Content locality has been leveraged in various
level of the system. In virtual machine environments, VMs
share a significant number of identical pages in the memory,
which can be deduplicated to reduce the memory system
pressure. Difference engine [13] improves the performance
over deduplication by detecting the nearly identical pages
and coalesce them via in-core compression [30] into much
smaller memory footprint. Difference engine detects similar
pages based on hashes of several chucks of each page: hash
collisions are considered as a sign of similarity. Different
from difference engine, GLIMPSE [31] and DERD
system [8] work on the file system to leverage similarity
across files; the similarity detection method adopted in
these techniques is based on Rabin fingerprints over chunks
at multiple offsets in a file. In the block device level,
Peabody [32] and TRAP-Array [50] are proposed to reduce
the space overhead of storage system backup, recovery, and
rollback via exploiting the content locality between the
previous (old) version of data and the current (new) version.
Peabody mainly focuses on eliminating duplicated writes,
i.e., the update write contains the same data as the
corresponding old version (silent write) or sectors at
different location (coalesced sectors). On the other hand,
TRAP-Array reduces the storage usage of data backup by
logging the compressed XORs (delta) of successive writes
to each data block. The intensive content locality in the
block I/O workloads produces a small compression ratio on
such deltas and TRAP-Array is significantly space-efficient
compared to traditional approaches. I-CASH [49] takes the
advantage of content locality existing across the entire drive
to reduce the number of writes in the SSDs. I-CASH stores
only the reference blocks on the SSDs while logs the delta
in the HDDs.

Our approach ∆FTL is mostly similar to the idea of
TRAP-Array [50] , which exploits the content locality

between new and old version. The major differences are: 1)
∆FTL aims at reducing the number of program/erase (P/E)
operations committed to the flash memory so as to extend
SSD’s lifetime, instead of reducing storage space usage
involved in data backup or recovery. Technically, the history
data are backed up in TRAP-Array while they are
considered “invalid” and discarded in ∆FTL; 2) ∆FTL is
an embedded software in the SSD to manage the allocation
and de-allocation of flash space, which requires relative
complex data structures and algorithms that are
“flash-aware”. It also requires that the computation
complexity should be kept minimum due to limited
micro-processor capability.

3. Design of ∆FTL
In this section, we first outline the architecture of ∆FTL and
then depict its major components in detail.

3.1 Overview

Flash Array

Page Mapping Area

Delta Log Area

Original Data

On-disk Write Buffer

Delta-Encoding Engine

Delta

Old XOR New

Compression

Buffer Evictions

(new version) Fetch the old version

Mapping Tables

PMT DMT

Block I/O Interface

Write Requests

Delta 

Encode?
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Figure 1. ∆FTL Overview

∆FTL is designed as a flash management scheme that
can store the write data in form of compressed deltas on the
flash. Instead of devising from scratch, ∆FTL is rather an
enhancement to the framework of the popular
page-mapping FTL like DFTL [12]. Figure 1 gives an
overview of ∆FTL and unveils its major differences from a
regular page-mapping FTL:

• First, ∆FTL has a dedicated area, Delta Log Area (DLA),
for logging the compressed deltas.

• Second, the compressed deltas must be associated with
their corresponding old versions to retrieve the data. An
extra mapping table, Delta Mapping Table (DMT),
collaborates with Page Mapping Table (PMT) to achieve
this functionality.



• Third, ∆FTL has a Delta-encoding Engine to derive and
then compress the delta between the write buffer
evictions and their old version on the flash. We have a
set of dispatching rules (Section 3.2) determining
whether a write request is stored in its original form or
in its “delta-XOR-old” form. For the first case, the data
is written to a flash page in page mapping area in its
original form. For the later case, the delta-encoding
engine derives and then compresses the delta between
old and new. The compressed deltas are buffered in a
flash-page-sized Temp Buffer until the buffer is full.
Then, the content of the temp buffer is committed to a
flash page in delta log area.

Details of the data structures and algorithms to implement
∆FTL are given in the following subsections.

3.2 Dispatching Policy: Delta Encode?
The content locality between the new and old data allows us
to compress the delta, which has rich information
redundancy, to a compact form. Writing the compressed
deltas rather than the original data, would indeed reduce the
number of flash writes. However, delta-encoding all data
indiscriminately would cause overheads. First, if a page is
stored in “delta-XOR-old” form, this page actually requires
storage space for both delta and the old page, compared to
only one flash page if in the original form. The extra space
is provided by the over-provisioning area of the drive [2].
To make a trade-off between the over-provisioning resource
and the number of writes, ∆FTL favors the data that are
overwritten frequently. This policy can be interpreted
intuitively with a simple example: in a workload, page data
A is only overwritten once while B is overwritten 4 times.
Assuming the compression ratio is 0.25, delta-encoding A
would reduce the number of write by 3/4 page (compared
to the baseline which would take one page write) at a cost
of 1/4 page in the over-provision space. Delta-encoding B,
on the other hand, reduces the number of write by
4 ∗ (3/4) = 3 pages at the same cost of space. Clearly, we
would achieve better performance/cost ratio with such write
“hot” data rather than the cold ones. The approach taken by
∆FTL to differentiate hot data from cold ones is discussed
in Section 3.5.2. Second, fulfilling a read request targeting a
page in “delta-XOR-old” form requires two flash page
reads. This may have reverse impact on the read latency. To
alleviate this overhead, ∆FTL avoids delta-encoding pages
that are read intensive. If a page in “delta-XOR-old” form is
found read intensive, ∆FTL will merge it to the original
form to avoid the reading overhead. Again, the detailed
approach is discussed in Section 3.5.2 in detail and
evaluated in Section 5. Third, the delta-encoding process
involves operations to fetch the old, derive delta, and
compress delta. This extra time may potentially add
overhead to the write performance (discussed in
Section 3.3.2). ∆FTL must cease delta-encoding if it would

Temp Buffer (Flash page sized) 

Meta data:

Offsets,

LPA

Delta OOBDelta Delta Delta Delta

Figure 2. ∆FTL Temp Buffer

degrade the write performance. To summarize, ∆FTL
delta-encodes data that are write-hot but read-cold while
ensuring the write performance is not degraded.

3.3 Write Buffer and Delta-encoding
The in-drive write buffer resides in the volatile memory
(SRAM or DRAM) managed by an SSD’s internal
controller and shares a significant portion of it [16, 18, 22].
The write buffer absorbs repeated writes and improves the
spatial locality of the output workload from it. We
concentrate our effort on FTL design, which services write
buffer’s outputs, and adopt simple buffer management
schemes like FIFO or SLRU [19] that are usual in disk
drives. When buffer eviction occurs, the evicted write pages
are dispatched according to our dispatching policy
discussed above to either ∆FTL’s Delta-encoding Engine or
directly to the page mapping area. Delta-encoding engine
takes the new version of the page data (i.e., the evicted
page) and the corresponding old version in page mapping
area, as its inputs. It derives the delta by XOR the new and
old version and then compress the delta. The compressed
delta are buffered in Temp Buffer. Temp Buffer is of the
same size as a flash page. Its content will be committed to
delta log area once it is full or there is no space for the next
compressed delta. Splitting a compressed delta on two flash
pages would involve in unnecessary complications for our
design. Storing multiple deltas in one flash page requires
meta-data, like LPA (logical page address) and the offset of
each delta (as shown in Figure 2) in the page, to associate
them with their old versions and locate the exact positions.
The meta-data is stored at the MSB part of a page instead of
attached after the deltas, for the purpose of fast retrieval.
This is because the flash read operation always buses out
the content of a page from its beginning [34]. The content
of temp buffer described here is essentially what we have in
flash pages of delta log area. Delta-encoding engine
demands the computation power of SSD’s internal
micro-processor and would introduce overhead for write
requests. We discuss the delta-encoding latency in
Section 3.3.1 and the approach adopted by ∆FTL to control
the overhead in Section 3.3.2.

3.3.1 Delta-encoding Latency
Delta-encoding involves two steps: to derive delta (XOR the
new and old versions) and to compress it. Among many data
compression algorithms, the lightweight ones are favorable
for ∆FTL due to the limited computation power of the
SSD’s internal micro-processor. We investigate the latency
of a few candidates, including Bzip2 [37], LZO [33],



Table 1. Delta-encoding Latency
Frequency(MHz) 304 619 934
Compression(µs) 89.5 44.0 29.1

Decompression(µs) 22.2 10.9 7.2

Tbus Tdelta_encodeTread_raw

Tbus Tdelta_encodeTread_raw

Tbus Tdelta_encodeTread_raw

Tbus Tdelta_encodeTread_rawW1

W2

W3

W4

Figure 3. ∆FTL Delta-encoding Timeline

LZF [28], Snappy [9], and Xdelta [30], by emulating the
execution of them on the ARM platform: the source codes
are cross-compiled and run on the SimpleScalar-ARM
simulator [29]. The simulator is an extension to
SimpleScalar supporting ARM7 [4] architecture and we
configured a processor similar to ARM R©Cortex R4 [1],
which inherits ARM7 architecture. For each algorithm, the
number of CPU cycles is reported and the latency is then
estimated by dividing the cycle number by the CPU
frequency. We select LZF (LZF1X-1) from the candidates
because it makes a good trade-off between speed and
compression performance, plus a compact executable size.
The average number of CPU cycles for LZF to compress
and decompress a 4KB page is about 27212 and 6737,
respectively. According to Cortex R4’s write paper, it can
run at a frequency from 304MHz to 934MHz. The latency
values in µs are listed in Table 1. An intermediate
frequency value (619MHz) is included along with the other
two to represent three classes of micro-processors in SSDs.

3.3.2 Discussion: Write Performance Overhead
∆FTL’s delta-encoding is a two-step procedure. First,
delta-encoding engine fetches the old version from the page
mapping area. Second, the delta between the old and new
data are derived and compressed. The first step consists of
raw flash access and bus transmission, which exclusively
occupy the flash chip and the bus to the micro-processor,
respectively. The second step occupies exclusively the
micro-processor to perform the computations. Naturally,
these three elements, the flash chip, the bus, and
micro-processor, forms a simple pipeline, where the
delta-encoding procedures of a serial of write requests
could be overlapped. An example of four writes is
demonstrated in Figure 3, where Tdelta encode is the longest
phase. This is true for a micro-processor of 304MHz or
619MHz assuming Tread raw and Tbus take 25µs and 40µs
(Table 3), respectively. A list of symbols used in this section
is summarized in Table 2. For an analytical view of the
write overhead, we assume there is a total number of n
write requests pending for a chip. Among these requests,
the percentage that is considered compressible according to

Table 2. List of Symbols
Symbols Description

n Number of pending write pages
Pc Probability of compressible writes
Rc Average compression ratio

Twrite Time for page write
Tread raw Time for raw flash read access
Tbus Time for transferring a page via bus
Terase Time to erase a block

Tdelta encode Time for delta-encoding a page
Bs Block size (pages/block)
N Total Number of page writes in the workload
T Data blocks containing invalid pages (baseline)
t Data blocks containing invalid pages (∆FTL’s PMA)

PEgc The number of P/E operations done in GC
Fgc GC frequency
OHgc Average GC overhead
Ggc Average GC gain (number of invalid pages reclaimed)
Scons Consumption speed of available clean blocks

Table 3. Flash Access Latency
Parameter Value

Flash Read/Write/Erase 25µs/200µs/1.5ms
Bus Transfer Time 40µs

our dispatching policy is Pc and the average compression
ratio is Rc. The delta-encoding procedure for these n
requests takes a total time of:
MAX(Tread raw, Tbus, Tdelta encode) ∗ n ∗ Pc The number
of page writes committed to the flash is the sum of original
data writes and compressed delta writes:
(1− Pc) ∗ n+ Pc ∗ n ∗ Rc. For the baseline, which always
outputs the data in their original form, the page write total is
n. We define that the write overhead exists if ∆FTL’s write
routine takes more time than the baseline. Thus, there is no
overhead if the following expression is true:

MAX(Tread raw, Tbus, Tdelta encode) ∗ n ∗ Pc+
((1− Pc) ∗ n+ Pc ∗ n ∗Rc) ∗ Twrite < n ∗ Twrite

(1)

Expression 1 can be simplified to:

1−Rc > MAX(Tread raw, Tbus, Tdelta encode)

Twrite
(2)

Substituting the numerical values in Table 1 and Table 3,
the right side of Expression 2 is 0.45, 0.22, and 0.20, for
micro-processor running at 304, 619, and 934MHz,
respectively. Therefore, the viable range of Rc should be
smaller than 0.55, 0.78, and 0.80. Clearly, high performance
micro-processor would impose a less restricted constraint
on Rc. If Rc is out of the viable range due to weak content
locality in the workload, in order to eliminate the write
overhead, ∆FTL must switch to the baseline mode where
the delta-encoding procedure is bypassed.

3.4 Flash Allocation
∆FTL’s flash allocation scheme is an enhancement to the
regular page mapping FTL scheme with a number of flash



blocks dedicated to store the compressed deltas. These
blocks are referred to as Delta Log Area (DLA). Similar to
page mapping area (PMA), we allocate a clean block for
DLA so long as the previous active block is full [2]. The
garbage collection policy will be discussed in Section 3.6.
DLA cooperates with PMA to render the latest version of
one data page if it is stored as delta-XOR-old form.
Obviously, read requests for such data page would suffer
from the overhead of fetching two flash pages. To alleviate
this problem, we keep the track of the read access
popularity of each delta. If one delta is found read-popular,
it is merged with the corresponding old version and the
result (data in its original form) is stored in PMA.
Furthermore, as discussed in Section 3.2, write-cold data
should not be delta-encoded in order to save the
over-provisioning space. Considering the temporal locality
of a page may last for only a period in the workload, if a
page previously considered write-hot is no longer
demonstrating its temporal locality, this page should be
transformed to its original form from its delta-XOR-old
form. ∆FTL periodically scans the write-cold pages and
merges them to PMA from DLA if needed.

3.5 Mapping Table
The flash management scheme discussed above requires
∆FTL to associate each valid delta in DLA with its old
version in PMA. ∆FTL adopts two mapping tables for this
purpose: Page Mapping Table (PMT) and Delta Mapping
Table (DMT). Page mapping table is the primary table
indexed by logical page address (LPA) of 32bits. For each
LPA, PMT maps it to a physical page address (PPA) in page
mapping area, either the corresponding data page is stored
as its original form or in delta-XOR-old form. For the later
case, the PPA points to the old version. PMT differentiates
this two cases by prefixing a flag bit to the 31bits PPA
(which can address 8TB storage space assuming a 4KB
page size). As demonstrated in Figure 4: if the flag bit is
“1”, which means this page is stored in delta-XOR-old
form, we use the PPA (of the old version) to consult the
delta mapping table and find out on which physical page the
corresponding delta resides. Otherwise, the PPA in this
page mapping table entry points to the original form of the
page. DMT does not maintain the offset information of each
delta in the flash page; we locate the exact position with the
metadata prefixed in the page (Figure 2).

3.5.1 Store Mapping Tables On the Flash
∆FTL stores both mapping tables on the flash and keeps an
journal of update records for each table. The updates are
first buffered in the in-drive RAM and when they grow up
to a full page, these records are flushed to the journal on the
flash. In case of power failure, a built-in capacitor or battery
in the SSD (e.g., a SuperCap [43]) may provide the power to
flush the un-synchronized records to the flash. The journals
are merged with the tables periodically.

LPA

32 bits 31 bits1 bit

PPA

PMA Mapping

DLA Mapping

PPA (addr of old version)

31 bits 31 bits

PPA (addr of delta)

0: data is stored in PMA as origin

1: data is stored as old version in PMA XOR 

delta in DLA

If “1”
Figure 4. ∆FTL Mapping Entry

3.5.2 Cache Mapping Table In the RAM
∆FTL adopts the same idea of caching popular table entries
in the RAM as DFTL [12], as shown in Figure 5(a). The
cache is managed using segment LRU scheme (SLRU) [19].
Different from two separate tables on the flash, the mapping
entries for data either in the original form or delta-XOR-old
form are included in one SLRU list. For look-up efficiency,
we have all entries indexed by the LPA. Particularly, entries
for data in delta-XOR-old form associate the LPA with PPA
of old version and PPA of delta, as demonstrated in
Figure 5(b). When we have an address look-up miss in the
mapping table cache and the target page is in
delta-XOR-old form, both on-flash tables are consulted and
we merge the information together to an entry as shown in
Figure 5(b). As discussed in Section 3.4, the capability of
differentiating write-hot and read-hot data is critical to
∆FTL. We have to avoid delta-encoding the write-cold or
read-hot data and merge the delta and old version of one
page if it is found read-hot or found no longer write-hot. To
keep the track of read/write access frequency, we associate
each mapping entry in the cache with an access count. If the
mapping entry of a page is found having a read-access (or
write-access) count larger or equal to a predefined
threshold, we consider this page read-hot (or write-hot) and
vice versa. In our prototyping implementation (discussed in
Section 5), we set this threshold as 2 and it captures the
temporal locality for both read and writes successfully in
our experiments. This information is forwarded to the
dispatching policy module to guide the destination of a
write request. In addition, merge operations take place if
needed.

Protected Segment Probationary Segment

(a)

Access Count

LPA

PPA

Access Count

LPA

PPA(Old)

PPA(Delta)

OR

(b)

Figure 5. ∆FTL Buffered Mapping Entry



3.6 Garbage Collection
Overwrite operations causes invalidation of old data, which
the garbage collection engine is required to discard when
clean flash blocks are short. GC engine copies the valid data
on the victim block to a clean one and erase the victim
thereafter. ∆FTL selects victim blocks based on a simple
“greedy” policy, i.e., blocks having the most number of
invalid data result in the least number of valid data copy
operations and the most clean space reclaimed [21]. ∆FTL’s
GC victim selection policy does not differentiate blocks
from page mapping area or delta log area. In delta log area,
the deltas becomes invalid in the following scenarios:

• If there is a new write considered not compressible (the
latest version will be dispatched to PMA), according to
the dispatching policy, the corresponding delta of this
request and the old version in PMA become invalid.

• If the new write is compressible and thus a new delta
for the same LPA is to be logged in DLA, the old delta
becomes invalid.

• If this delta is merged with the old version in PMA, either
due to read-hot or write-cold, it is invalidated.

• If there is a TRIM1 command indicating that a page is no
longer in use, the corresponding delta and the old version
in PMA are invalidated.

For any case, ∆FTL maintains the information about the
invalidation of the deltas for GC engine to select the victims.
In order to facilitate the merging operations, when a block
is selected as GC victim, the GC engine will consult the
mapping table for information about the access frequency
of the valid pages in the block. The GC engine will conduct
necessary merging operations while it is moving the valid
pages to the new position. For example, for a victim block
in PMA, GC engine finds out a valid page is associated with
a delta which is read-hot, then this page will be merged with
the delta and mark the delta as invalidated.

4. Discussion: SSD Lifetime Extension of
∆FTL

Analytical discussion about ∆FTL’s performance on SSD
lifetime extension is given in this section. In this paper, we
use the number of program and erase operations executed to
service the write requests as the metric to evaluate the
lifetime of SSDs. This is a common practice in most
existing related work targeting SSD lifetime
improvement [7, 12, 39, 49]. This is because the estimation
of SSDs’ lifetime is very challenging due to many
complicated factors that would affect the actual number of
write requests an SSD could handle before failure,

1 The TRIM [44] command informs a SSD which pages of data are
no longer considered in use and can be marked as invalid. Such pages
are reclaimed so as to reduce the no-in-place-write overhead caused by
subsequent overwrites.

including implementation details the device manufacturers
would not unveil. On the other hand, comparing the P/E
counts resulted from our approach to the baseline is
relatively a more practical metric for the purpose of
performance evaluation. Write amplification is a
well-known problem for SSDs: due to the
out-of-place-update feature of NAND flash, the SSDs have
to take multiple flash write operations (and even erase
operations) in order to fulfill one write request. There are a
few factors that would affect the write amplification, e.g.,
the write buffer, garbage collection, wear leveling, etc [15].
We focus on garbage collection for our discussion,
providing that the other factors are the same for ∆FTL and
the regular page mapping FTLs. We breakdown the total
number of P/E operations into two parts: the foreground
writes issued from the write buffer (for the baseline) or
∆FTL’s dispatcher and delta-encoding engine; the
background page writes and block erase operations
involved in GC processes. Symbols introduced in this
section are listed in Table 2.

4.1 Foreground Page Writes
Assuming for one workload, there is a total number of N
page writes issued from the write buffer. The baseline has
N foreground page writes while ∆FTL has
(1− Pc) ∗N + Pc ∗N ∗Rc (as discussed in Section 3.3.2).
∆FTL would resemble the baseline if Pc (percentage of
compressible writes) approaches 0 or Rc (average
compression ratio of compressible writes) approaches 1,
which means the temporal locality or content locality is
weak in the workload.

4.2 GC Caused P/E Operations
The P/E operations caused by GC processes is essentially
determined by the frequency of GC and the average
overhead of each GC, which can be expressed as:

PEgc ∝ Fgc ∗OHgc (3)

GC process is triggered when clean flash blocks are short
in the drive. Thus, the GC frequency is proportional to the
consumption speed of clean space and inversely proportional
to the average number of clean space reclaimed of each GC
(GC gain):

Fgc ∝
Scons

Ggc
(4)

Consumption Speed is actually determined by the number
of foreground page writes (N for the baseline). GC Gain is
determined by the average number of invalid pages on each
GC victim block.

4.2.1 GC P/E of The Baseline
First, let’s consider the baseline. Assuming for the given
workload, all write requests are overwrites to existing data in
the drive, then N page writes invalidate a total number of N



existing pages. If these N invalid pages spread over T data
blocks, the average number of invalid pages (thus GC Gain)
on GC victim blocks isN/T . Substituting into Expression 4,
we have the following expression for the baseline:

Fgc ∝
N

N/T
= T (5)

For each GC, we have to copy the valid pages (assuming
there are Bs pages/block, we have Bs − N/T valid pages
on each victim block on average) and erase the victim block.
Substituting into Expression 3, we have:

PEgc ∝ T ∗ (Erase+ Program ∗ (Bs −N/T )) (6)

4.2.2 GC P/E of ∆FTL
Now let’s consider ∆FTL’s performance. Among N page
writes issued from the write buffer, (1 − Pc) ∗ N pages
are committed in PMA causing the same number of flash
pages in PMA to be invalidated. Assuming there are t blocks
containing invalid pages caused by those writes in PMA, we
apparently have t ≤ T . The average number of invalid pages
in PMA is then (1 − Pc) ∗ N/t. On the other hand, Pc ∗
N ∗ Rc pages containing compressed deltas are committed
to DLA. Recall that there are three scenarios where the
deltas in DLA get invalidated (Section 3.6). Omitting the
last scenario which is rare compared to the first two, the
number of deltas invalidated is determined by the overwrite
rate (Pow) of deltas committed to DLA: while we assume
in the workload all writes are overwrites to existing data
in the drive, this overwrite rate here defines the percentage
of deltas that are overwritten by the subsequent writes in
the workload. For example, no matter the subsequent writes
are incompressible and committed to PMA or otherwise,
the corresponding delta gets invalidated. The average invalid
space (in the term of pages) of victim block in DLA is thus
Pow ∗Bs. Substituting these numbers to Expression 4: If the
average GC gain in PMA outnumbers that in DLA, we have:

Fgc ∝
(1− Pc + PcRc)N

(1− Pc)N/t
= t(1 +

PcRc

1− Pc
) (7)

Otherwise, we have:

Fgc ∝
(1− Pc + PcRc)N

PowBs
(8)

Substituting Expression 7 and 8 to Expression 3, we have for
GC introduced P/E:

PEgc ∝ t(1 + PcRc

1−Pc
)∗

(Erase+ Program ∗ (Bs − (1− Pc)N/t))
(9)

or:
PEgc ∝ (1−Pc+PcRc)N

PowBs
∗

(Terase + Twrite ∗Bs(1− Pow))
(10)

4.3 Summary
From above discussions, we observe that ∆FTL favors the
disk I/O workloads that demonstrate: (i) High content
locality that results in small Rc; (ii) High temporal locality
for writes that results in large Pc and Pow. Such workload
characteristics are widely present in various OLTP
applications such as TPC-C, TPC-W, etc [20, 40, 49, 50].

5. Performance Evaluation
We have implemented and evaluated our design of ∆FTL
based on a series of comprehensive trace-driven simulation
experiments. In this section, we present the experimental
results comparing ∆FTL with the page mapping FTL as the
baseline. In Section 4, the total number of P/E operations
are broken down to foreground writes and GC introduced
P/E’s for intuitive analytical discussions. Essentially, the
number of foreground writes and the efficiency of GC are
reflected by the number of GC operations. Thus, in this
section we use the number of GC operations as the major
metric to evaluate ∆FTL’s performance on extending SSD’s
lifetime. In addition, we evaluate the overheads ∆FTL may
potentially introduce, including read and write
performance. Particularly, read/write performance is
measured in terms of response time.

5.1 Simulation Tool and SSD Configurations
∆FTL is a device-level software in the SSD controller. We
have implemented it (as well as the baseline page mapping
FTL) in an SSD simulator based on the Microsoft Research
SSD extension [2] for DiskSim 4.0. The simulated SSD is
configured as follows: there are 16 flash chips, each of which
owns a dedicated channel to the flash controller. Each chip
has four planes that are organized in a RAID-0 fashion; the
size of one plane is 1GB assuming the flash is used as 2-bit
MLC (page size is 4KB). To maximize the concurrency, each
individual plane has its own allocation pool [2]. The garbage
collection processes are executed in the background so as to
minimizing the interference upon the foreground requests.
In addition, the percentage of flash space over-provisioning
is set as 30%, which doubles the value suggested in [2].
Considering the limited working-set size of the workloads
used in this paper, 30% over-provisioning is believed to
be sufficient to avoid garbage collection processes to be
executed too frequently. The garbage collection threshold
is set as 10%, which means if the clean space goes below
10% of the exported space, the garbage collection processes
are triggered. Due to negligible impact that the write buffer
size has on ∆FTL’s performance compared to the baseline,
we only report the results with buffer size of 64MB. The
SSD is connected to the host via a PCI-E bus of 2.0 GB/s.
In addition, the physical operating parameters of the flash
memory are summarized in Table 3.



5.2 Workloads
We choose 6 popular disk I/O traces for the simulation
experiments. Financial 1 and Financial 2 (F1, F2) [40]
were obtained from OLTP applications running at two large
financial institutions; the Display Ads Platform and payload
servers (DAP-PS) and MSN storage metadata (MSN-CFS)
traces were from the Production Windows Servers and
described in [20] (MSN-CFS trace contains I/O requests on
multiple disks and we only use one of them); the
Cello99 [14] trace pool is collected from the “Cello” server
that runs HP-UX 10.20. Because the entire Cello99 is huge,
we randomly use one day traces (07/17/99) of two disks
(Disk 3 and Disk 8). Table 4 summarizes the traces we use
in our simulation.

Table 4. Disk Traces Information
Reads(106) Read % Writes Write % Duration(h)

F1 1.23 23.2 4.07 76.8 12
F2 3.04 82.3 0.65 17.7 12
C3 0.75 35.3 1.37 64.7 24
C8 0.56 27.4 1.48 72.6 24

DAP 0.61 56.2 0.47 43.8 24
MSN 0.82 75.0 0.27 25.0 6

5.3 Emulating the Content Locality
As pointed out in [7, 8, 32, 50], the content locality of a
workload is application specific and different applications
may result in distinctive extent of content locality. In this
paper, instead of focusing on only the workloads possessing
intensive content locality, we aim at exploring the
performance of ∆FTL under diverse situations. As
discussed in Section 4, the content locality as well as
temporal locality are leading factors that have significant
impact on ∆FTL’s performance. In our trace-driven
simulation, we explore various temporal locality
characteristics via 6 disk I/O traces; on the other hand, we
emulate the content locality by assigning randomized
compression ratio values to the write requests in the traces.
The compression ratio values follows Gaussian distribution,
of which the average equals Rc. Referring to the values of
Rc reported in [50] (0.05 to 0.25) and in [32] (0.17 to 0.6),
we evaluate three levels of content locality in our
experiments, having Rc = 0.50, 0.35, and 0.20 to represent
low, medium, and high content locality, respectively. In the
rest of this section, we present the experimental results
under 6 traces and three levels of content locality,
comparing ∆FTL with the baseline.

5.4 Experimental Results
To verify the performance of ∆FTL, we measure the number
of garbage collection operations and foreground writes, the
write latency, and overhead on read latency.

5.4.1 Number of Garbage Collection Operations and
Foreground Writes

First, we evaluate the number of garbage collection
operations as the metric for ∆FTL’s performance on
extending SSD lifetime. Due to the large range of the
numerical values of the experimental results, we normalize
them to the corresponding results of the baseline as shown
in Figure 6. Clearly, ∆FTL significantly reduces the GC
count compared to the baseline: ∆FTL results in only 58%,
46%, and 33% of the baseline GC count on average, for
Rc = 0.50, 0.35, 0.20 respectively. ∆FTL’s maximum
performance gain (22% of baseline) is achieved with C3
trace when Rc = 0.20; the minimum (82%) is with F1,
Rc = 0.50. We may observe from the results that the
performance gain is proportional to the content locality,
which is represented by the average compression ratio Rc;
in addition, ∆FTL performs relatively poorer with two
traces F1 and F2, compared to the rests. In order to interpret
our findings, we examine two factors that determine the GC
count: the consumption speed of clean space (Scons,
Expression 4) and the speed of clean space reclaiming, i.e.,
the average GC gain (Ggc). Consumption Speed: As
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Figure 6. Normalized GC #: comparing baseline and
∆FTL; smaller # implies longer SSD lifetime.

discussed in Section 4, the consumption speed is
determined by the number of foreground flash page writes.
We plot the normalized number of foreground writes in
Figure 7. As seen in the figure, the results are proportional
to Rc as well; F1 and F2 produce more foreground writes
than the others, which result in larger GC counts as shown
in Figure 6. If there are N writes in the baseline, ∆FTL
would have (1 − Pc + Pc ∗ Rc) ∗ N . The foreground write
counts are reversely proportional to Rc (self-explained in
Figure 7) as well as Pc. So, what does Pc look like? Recall
in Section 3.2 that Pc is determined by the dispatching
rules, which favor write-hot and read-cold data. The access
frequency characteristics, i.e., the temporal locality, is
workload-specific, which means the Pc values should be
different among traces but not affected by Rc. This point is
justified clearly in Figure 8, which plots the ratio of DLA
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Figure 7. Normalized foreground write #: comparing
baseline and ∆FTL; smaller # implies: a) larger Pc and b)
lower consumption speed of clean flash space.

writes (Pc) out of the total foreground writes. We may also
verify that the foreground write counts (Figure 7) are
reversely proportional to Pc: F1 and F2 have the least Pc

values among all traces and they produce the most number
of foreground writes; this trend can be also observed with
other traces. Garbage collection gain is another factor that
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Figure 8. Ratio of DLA writes (Pc).

determines GC count. Figure 9 plots the average GC gain in
terms of the number of invalid pages reclaimed. GC gain
ranges from 14 (C8, baseline) to 54 (F2, Rc = 0.20). F1
and F2 outperform the other traces on the average GC gain.
However, comparing to the baseline performance, ∆FTL
actually does not improve much with F1 and F2: we
normalize each trace’s results with its individual baseline in
Figure 10. ∆FTL even degrades average GC gain with F1
and F2 when Rc = 0.50. This also complies with the GC
count results shown in Figure 6, where ∆FTL achieves
poorer performance gain with F1 and F2 compared to the
others. The reason why ∆FTL does not improve GC gain
significantly over the baseline with F1 and F2 is: compared
to the other traces, F1 and F2 result in larger invalid page
counts in blocks of PMA, which makes ∆FTL’s GC engine
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Figure 9. Average GC gain (number of invalid pages
reclaimed): comparing baseline and ∆FTL; smaller #
implies lower GC efficiency on reclaiming flash space.
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Figure 10. Normalized average GC gain (number of invalid
pages reclaimed): comparing baseline and ∆FTL.

to choose more PMA blocks as GC victims than DLA
blocks. Thus, the average GC gain performance of ∆FTL
resembles the baseline. To the contrary, ∆FTL benefits
from the relative higher temporal locality of write requests
in the DLA than in the PMA, under the other 4 traces. This
is the reason why ∆FTL outperforms the baseline with
these traces. In order to verify this point, we collect the
number of GC executed in DLA and plot the ratio over the
total in Figure 11: the majority of the total GC operations
lies in PMA for F1 and F2 and in DLA for the rest.

5.4.2 Write Performance
In ∆FTL, the delta-encoding procedure in servicing a write
request may cause overhead on write latency if Rc is out of
the viable range (Section 3.3.2). Rc values adopted in our
simulation experiments ensures there is no write overhead.
∆FTL significantly reduces the foreground write counts,
and the write latency performance also benefits from this.
As shown in Figure 12, ∆FTL reduces the average write
latency by 36%, 47%, and 51% whenRc = 0.50, 0.35, 0.20,
respectively.
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Figure 11. Ratio of GC executed in DLA.
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Figure 12. Normalized write latency performance:
comparing baseline and ∆FTL.

5.4.3 Garbage Collection Overhead
The GC operation involves copying the valid data from the
victim block to a clean block and erasing the victim block.
The GC overhead, i.e., the time for a GC operation, may
potentially hinder the foreground requests to be serviced. We
evaluate the average GC overhead of ∆FTL and compare the
results to the baseline in Figure 13. We observe that ∆FTL
does not significantly increase the GC overhead under most
cases.

5.4.4 Overhead on Read Performance
∆FTL reduces the write latency significantly and therefore
alleviates the chip contention between the read and write
requests, resulting less queuing delay for the reads. Under
intensive workloads, the effective read latency (considering
queuing delay on the device side) is reduced in Delta-FTL.
However, ∆FTL inevitably introduces overhead on the raw
read latency (despite queuing delay) when the target page is
delta-encoded. Fulfilling such a read request requires two
flash read operations. To overcome this potential overhead,
∆FTL delta-encodes only the write-hot and read-cold data
and merges DLA pages to their original form if they are
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Figure 13. Normalized average GC overhead.

found read-hot. To evaluate the effectiveness of our
approach, we collect the raw read latency values reported
by the simulator and demonstrate the results in Figure 14.
Compared to the baseline (normalized to 1), ∆FTL’s impact
on the read performance is trivial: the read latency is
increased by 5.3%, 5.4%, and 5.6% on average2 when
Rc = 0.50, 0.35, 0.20, respectively. The maximum (F2,
Rc = 0.50) is 10.7%. To summarize, our experimental
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Figure 14. Normalized read latency performance:
comparing baseline and ∆FTL.

results verify that ∆FTL significantly reduces the GC count
and thus extends SSDs’ lifetime at a cost of trivial overhead
on read performance.

6. Conclusions and Future Work
The limited lifetime impedes NAND flash-based SSDs
from wide deployment in reliability-sensitive environments.
In this paper, we have proposed a solution, ∆FTL, to
alleviate this problem. ∆FTL extends SSDs’ lifetime by
reducing the number of program/erase operations for
servicing the disk I/O requests. By leveraging the content
locality existing between the new data and its old version,

2 x% read latency overhead implies that x% of the requested pages are
delta-encoded, which would double the raw latency compared to non-delta-
encoded pages.



∆FTL stores the new data in the flash in the form of
compressed delta. We have presented the design of ∆FTL
in detail including the data structures, algorithms, and
overhead control approaches in this paper. ∆FTL is
prototyped and evaluated via simulation. Our trace-driven
experiments demonstrate that ∆FTL significantly extends
SSD’s lifetime by reducing the number of garbage
collection operations at a cost of trivial overhead on read
latency performance. Specifically, ∆FTL results in 33% to
58% of the baseline garbage collection operations, while
the read latency is only increased by approximately 5%.

Our future work will explore the integration of
deduplication to ∆FTL to further improve the lifetime of
SSDs. The major technical challenge is to alleviate the
pressure of computation and space complexity introduced
by the need of managing the mapping of logical addresses
to the contents.
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