Hybrid Co-Scheduling Optimizations for Concurrent
Applications in Virtualized Environments

Yulong Yu*, Yuxin WangT, He Guo*, Xubin Hef
* School of Software
Dalian University of Technology, Dalian, China
T School of Computer Science and Technology
Dalian University of Technology, Dalian, China
i Department of Electrical and Computer Engineering
Virginia Commonwealth University, Richmond, VA, USA

Abstract—Concurrent applications in virtualized environments
(VE) have some problems such as Lock Holder Preemption
(LHP). Hybrid Co-scheduling is an effective approach to address
such problems of concurrent applications in VE. However, the
contention and exclusiveness in hybrid co-scheduling, especially
when multiple concurrent domains reside in a virtualization
system, cause a very serious performance degradation and
unfairness. To alleviate the contention meanwhile keeping the
advantages of hybrid co-scheduling, we propose two optimization
schemes named Partial Co-Scheduling (PCS) and Boost Co-
Scheduling (BCS) using finer space granularity. Instead of raising
co-scheduling signals for all online CPUs, PCS scheme raises
the co-scheduling signals only for the necessary CPUs, while the
operations of other CPUs are not affected. BCS scheme boosts the
priorities for co-scheduled virtual CPUs (VCPUs) to induce the
scheduler to pick the appropriate VCPUs when co-scheduling.
We implement both PCS and BCS into Credit Scheduler in
Xen 4.0.1, and evaluate their performance compared with orig-
inal hybrid co-scheduling and co-descheduling under different
configurations. The experiment results show that our proposed
schemes effectively alleviate the CPU run-time contention and
achieve better performance and fairness than existing hybrid co-
scheduling approaches.

Index Terms—Concurrent Application; Hybrid Co-scheduling;
Credit Scheduler; Virtualization; Partial Co-Scheduling; Boost
Co-Scheduling

I. INTRODUCTION

The virtualization technology resurges because of the per-
formance enhancement in current personal computers, which
brings the possibility to consolidate a large cluster of services
into a single server or a small cluster. The total cost reduction
makes the virtualization an attractive solution to resource
sharing.

With the increased popularity of multi-core processors,
more and more applications tend to parallelism for higher
performance. The parallel programming tools (such as MPI
[1], PVM [2] and OpenMP [3]) help programmers efficiently
write concurrent applications. In concurrent applications, mul-
tiple threads run simultaneously on different CPU cores to
handle their own portions of the task. It is inevitable that
these threads need communicate and synchronize to exchange
signals and data with each other. The state of the art solutions
for synchronization are using locks and semaphores. In a

non virtualized environment, all CPU cores in a machine are
physical and run online simultaneously, so the locks held by
some CPUs will be released soon, and a lock requester is
aware of lock releasing as soon as possible. However, this
prerequisite that all CPU cores are online at the same time is
no longer tenable in virtualized environments (VE), because
the CPU cores in a virtual machine (VM) become virtual
CPUs (VCPUs), which have to share the physical CPU running
time with other VCPUs. The scheduler in the virtual machine
monitor (VMM) may schedule a VCPU which is waiting for
a lock held by another preempted VCPU or a synchronization
signal from other preempted VCPUs, thus this picked VCPU
just wastes its time slice on meaningless spinning, seriously
affects the system performance.

Some work have been proposed for the lock-holder preemp-
tion (LHP) problem and the synchronization problems in VE,
such as lock-aware delay preemption [4], spin yield [5], [6],
co-scheduling [7], [8] and gang-scheduling [9], [10] (which
will be discussed in more detail in Section VII). Co-scheudling
is a scheduling scheme that enforces concurrent threads to be
scheduled on respective CPU cores simultaneously to avoid
the meaningless spinning. Weng et al [8] propose a hybrid
co-scheduling framework in VE as an optimization scheme
to co-scheduling. Hybrid co-scheduling allows non-concurrent
domains to reside in a system to achieve higher CPU uti-
lization by filling the co-scheduling gaps with non-concurrent
VCPUs. Some other work on co-scheduling include co-
descheduling [6], [11], approximate co-scheduling [6], task-
aware co-scheduling [12], [13] and etc. Comparied with other
schemes for concurrent applications in VE, co-scheduling have
advantages in four aspects, i.e. 1) co-scheduling keeps the pre-
requisite in native system; 2) no concurrent or synchronization
detection is needed; 3) co-scheduling is orthogonal to under-
lying scheduler in VMM; 4) co-scheduling is not intrusive
to guest OS, and easy to implement. In addition, hybrid co-
scheduling achieves higher CPU utilization than traditional co-
scheduling. Because of these advantages, hybrid co-scheduling
is widely used to improve performance for concurrent applica-
tions in VE. However, hybrid co-scheduling still suffers from
exclusiveness and contention among domains, especially when

there are more than one concurrent domains in a virtualized
system. They cause unsatisfactory CPU utilization and many
scheduling fragments, which seriously affect the performance
of concurrent domains. Our experimental results show that
the performance may drop by 50% on average in hybrid co-
scheduling when there are two concurrent domains in a system,
much slower than non-co-scheduling underlying scheduler.

To address these problems in hybrid co-scheduling, we
propose two optimizations using finer space granularity named
Partial Co-Scheduling (PCS) and Boost Co-Scheduling (BCS).
Both optimizations aim to reduce exclusiveness and con-
tention among CPUs. PCS allows multiple domains to be
co-scheduled concurrently by only raising the co-scheduling
signals to the CPUs which contain the corresponding co-
scheduled VCPU, while other CPUs remain untouched. PCS
co-schedules the concurrent VCPUs in time and space pre-
cisely, at the cost of increased complexity to pick next VCPU.
In many applications, such time precision is unnecessary,
therefore from another perspective, BCS is proposed to achieve
finer space granularity without precisely co-scheduling in time.
Quoting the idea in BOOST mechanism in Credit Scheduler in
Xen, BCS promotes the priority of corresponding co-scheduled
VCPUs instead of co-scheduling signals to induce the sched-
uler to pick the appropriate VCPUs for co-scheduling. BCS
exchanges precise time alignment to further alleviate the
scheduling fragments. It can achieve good performance for
most concurrent applications, but for some applications which
need strict synchronized, such as MPI cross domain concurrent
applications, BCS cannot achieve satisfactory performance that
PCS achieves.

We consider that our work on PCS and BCS have the
following contributions. 1) Our proposed PCS and BCS not
only maintain the advantages of hybrid co-scheduling, but also
improve the performance and fairness compared to hybrid co-
scheduling when multiple concurrent domains reside in a sys-
tem; 2) PCS and BCS alleviate exclusiveness and contention
among concurrent domains, support multiple concurrent do-
mains to be co-scheduled simultaneously, and achieve higher
CPU utilization than hybrid co-scheduling; 3) BCS uses a
voluntary approach, which takes advantage of the underlying
scheduler, simplifies the implementation, and improves code
reliability. We implement prototypes of both optimizations in
Credit Scheduler [14] in Xen 4.0.1 [15], [16], and evaluate
PCS and BCS and compare them with hybrid co-scheduling
[8] and co-descheduling [6] to demonstrate the effectiveness
of PCS and BCS. The experimental results show that PCS and
BCS maintain the performance of hybrid co-scheduling when
one concurrent domain resides in a system. While, when two
concurrent domains reside in a system, our performance gain
compared to non-co-scheduling underlying scheduler (Credit
Scheduler in our case) is about 25% on average; moreover
PCS and BCS double the performance compared to existing
hybrid co-scheduling and co-descheduling.

The rest of this paper is organized as follows. We emphasize
the motivation of our work in Section II, where we analyze the
problems of concurrent applications in VE and the problems

of hybrid co-scheduling. Some background materials including
Xen and its default Credit Scheduler are introduced in Section
1. Our proposed optimizations PCS and BCS are introduced
in Section IV and Section V. The experiments and measure-
ment results are given in Section VI. We discuss the related
work in Section VII. Finally, our conclusions and future work
are given in Section VIIL

II. MOTIVATION

We first analyze the problems of concurrent applications in
current mainline schedulers in VMMs, and present a scenario
of the problem to verify our analysis. Then we introduce the
hybrid co-scheduling and point out the problems in existing
hybrid co-scheduling schemes, which motivate us to propose
our optimizations.

A. Problems in Concurrent

Current schedulers in VMMs have been focusing on
throughput and fairness. They operate on each CPU indepen-
dently, and may neglect the cooperation among the VCPUs.
Thus, concurrent applications such as MPI applications which
contain a large quantities of cooperative operations, such as
synchronizing signal, suffer from performance degradation be-
cause of such lack of cooperation concern in scheduler. Further
more, some prerequisites are no longer tenable while shifting
from native environment to VE, e.g. VCPUs in a domain are
not always online at the same time. Thus, a scheduler might
schedule a VCPU which is waiting for synchronizing signal
from or a lock held by a preempted VCPU.

Hybrid co-scheduling is an efficient strategy for concurrent
domains in VMM. We summarize the advantages of hybrid
co-scheduling as follow.

1) Keeping the prerequisite in a native environment. The
co-scheduling claims that the VCPUs in concurrent
domain are scheduled concurrently, which maintains
the prerequisite in native environments for concurrent
applications that all concurrent CPU cores (they become
VCPUs in VE) run at the same time.

2) No semantic detection requirement. Because hybrid co-
scheduling keeps the prerequisite in native environments,
the schemes in native environments remain valid with
hybrid co-scheduling, and thus it is unaware of guest
OS semantics.

3) Orthogonal to underlying scheduler. The hybrid co-
scheduling does not require special approaches to
guarantee the fairness or isolation, so the hybrid co-
scheduling can be deployed on most of underlying
schedulers.

4) Transparent to guest OS. For similar reason, we need
not modify guest OS to integrate hybrid co-scheduling.

Additionally, hybrid co-scheduling allows non-concurrent
VCPUs in a system co-exist with concurrent VCPUs. When
a co-scheduling is taken, the CPUs which run queues do
not contain a co-scheduled VCPU will pick a non-concurrent
VCPU to fill the time slice. This approach improves CPU

!

CPU3 | 1 1
i i i i
o
! !

CPUO Lo
i i
} I

+ + t + +
0 1 2 3 4 5 6 7 8 9

|
CPUL |
|
|

[ML

Time-/-slot

Fig. 1. The scenario of non-co-scheduling. The wait is occurred on CPU1
and CPU2 at 2nd time slot, and on CPU 0 and CPU3 at 9th time slot.

—
o
i i
cpuL [I'
—
A
CPUO
| |
[R—

+ + t + + + + + t + i
0 1 2 3 4 5 6 7 8 9 10 11 12

Time-/-slot

Fig. 2. The scenario of co-scheduling. No idle slots.

utilization, and achieves higher throughput than traditional co-
scheduling.

To further understand the problem, we consider the fol-
lowing scenario. Assuming that there is a concurrent domain
with 4 VCPUs running on a physical machine with 4 CPU
cores. The four VCPUs are evenly distributed on these CPUs,
and each contains a concurrent thread. All threads synchronize
with each other at the end of each time slot. If a VCPU has
been scheduled, the time slice it gains is just one time slot.
The scenario of the non-co-scheduling is shown in Fig. 1. It is
obvious that CPU1 and CPU?2 just waste time at Slot 3 because
they are spinning to wait the never-arriving synchronizing
signal from CPU3. In the first ten time slots, although each
VCPU is scheduled three times, only two steps of task are
finished. One third of the time is wasted on the worthless
spinning. In contrast, in a co-scheduling scenario which is
shown in Fig. 2, none of the time slots are wasted, because the
VCPUs in concurrent domain are scheduled simultaneously.

B. Problems in Hybrid Co-scheduling

Hybrid co-scheduling is an effective scheme for concurrent
application scheduling in VE, and achieves better perfor-
mance than underlying scheduler when only one concurrent
domain resides in a system. However there are still some
problems caused by exclusiveness and contention in hybrid
co-scheduling. Especially when there are multiple concurrent
domains in a virtualized system, the problems are obvious,
edge out the advantages, and may even cause a serious
performance degradation. We summary them from several
aspacts below.

1) Unsatisfactory CPU Utilization. Although hybrid co-

scheduling allows concurrent domains and non-

60

50

40

30

20

solo-CON dual-CON

Fig. 3. experimental results of multiple domains running under co-scheduling
(CS) and co-descheduling (CDS) schemes. In solo-CON configuration, both
CS and CDS achieves about 25% higher performance, while in dual-CON
configuration, they degrade the performance about 50%. The approximately
27% execution time difference in CS and CDS display their unfairness.

concurrent domains to co-exist in a system simultane-
ously, which improves CPU utilization, it still inherits
exclusiveness in some extent. Hybrid co-scheduling can-
not co-schedule two concurrent domains at the same
time. When a concurrent domain is co-scheduled, the
CPUs which run-queue do not contain corresponding
VCPUs have to schedule either a non-concurrent VCPU
or remain idle. Thus, it causes an unsatisfactory CPU
utilization and unfairness, especially in many-core pro-
cessors, when multiple concurrent domains reside in a
system.

2) Scheduling Fragments. Hybrid co-scheduling is manda-
tory. When a CPU launches co-scheduling, it raises the
co-scheduling signals to all CPUs in the system, and
forces other CPUs to reschedule regardless their own
scheduling status. Thus, more scheduling fragments are
produced than original underlying scheduler, and addi-
tionally more CPU time is consumed on the scheduling
operation.

3) Scheduling Contention. Due to the exclusiveness in
hybrid co-scheduling, only one concurrent domain can
be co-scheduled at a time. When there are multiple con-
current domains in a system, the contention among them
occurs that when one concurrent VCPU launches co-
scheduling, the running concurrent VCPUs are pushed
out from running state mandatorily regardless when they
are picked. These phenomena raises so many scheduling
signals and causes so many scheduling operations, and
thus seriously affects the performance when there are
multiple concurrent domains.

To visualize the effect of the problem, we conduct an
experiment and the results are presented in Fig. 3. We run
LU kernel in SPLASH?2 benchmark [17], [18] on one and two
concurrent domains (as solo- and dual-CON configurations in
figure) using hybrid co-scheduling (CS) and co-descheduling
(CDS) implemented in Credit Scheduler in Xen 4.0.1, and
measure their execution time. If one concurrent domain resides
in the system (i.e. solo-CON configuration), the CS and CDS
speedup is about 26% on average. However, when two concur-
rent domains are in the system (i.e. dual-CON configuration),

the performance degrades seriously. The execution time is
about 50s in CS and CDS, which is about twice the Credit
Scheduler on average. The fairness is also not satisfactory, the
execution time difference between the two concurrent domains
is about 27% on average in CS and CDS.

In hybrid co-scheduling, each co-scheduling operation is
global, affects all online CPUs, regardless whether the run
queues of CPUs contain the corresponding concurrent VC-
PUs. We observe that the current hybrid co-scheduling is
coarse space granularity. Therefore we consider hybrid co-
scheduling optimization schemes in finer space granularity.
Based on our above analysis, we propose two hybrid co-
scheduling optimizations for finer space granularity to alleviate
the exclusiveness and contention: PCS and BCS, which are
discussed in detail Sections IV and V.

III. XEN AND CREDIT SCHEDULER

The implementation of our proposed optimizations and
experiments are conducted in Xen virtualization platform and
Credit Scheduler. Here we briefly review Xen and Credit
Scheduler.

A. Xen

Xen [16] is an open source virtualization platform support-
ing paravirtualization, which uses a modified guest OS kernel
to coordinate with VMM. Xen adopts the hypervisor-domain
architecture. The hypervisor runs on bare hardware, and ad-
ministrators can use a privileged domain named Domain-0 to
manage the virtualization system. Xen employs the frontend-
backend model to handle the I/O operation in domains. The
native hardware drivers are installed in the driver domain,
which also keeps the backend driver. When a domain requests
I/O operation, its frontend driver notifies the backend driver,
which performs the actual I/O operations. Due to the paravir-
tualization and the hypervisor-domain architecture, the guest
OS in Xen can achieve high performance close to a native OS.

B. Credit Scheduler

There are several schedulers in Xen’s history. Credit Sched-
uler [14] is implementedas the default scheduler in current
Xen. Credit Scheduler depicts the domainwith weight and
cap. The credit value of each VCPU is used to ensure the
fairness among the domains. Every 30ms, Credit Scheduler
adjusts the credit for each VCPU according to the weight of its
domain. The running VCPU uses a constant credit every 10ms.
There are two basic priorities in Credit Scheduler: UNDER if
a VCPU keeps a positive credit, and OVER if a VCPUs credit
becomes negative. The VCPUs are sorted in each run queue of
CPU according to their priorities (not credit). Credit Scheduler
always picks the first VCPU from the queue to schedule I/O.
The cap value is used to limit the execution time of VCPUs
in Non-Work-Conserving (NWC) Mode. To quickly respond
latency sensitive domains, Credit Scheduler introduces the
highest BOOST priority. When an UNDER VCPU is woken
from blocking, the schedule will temporarily BOOST it for
running as soon as possible.

IV. PARTIAL CO-SCHEDULING

To address the problems mentioned above, we proposed
two optimizations for hybrid co-scheduling named Partial
Co-scheduling (PCS) and Boost Co-scheduling (BCS). We
introduce PCS in this section and BCS is discussed in next
section.

A. Design of PCS

In our previous analysis, the main problems in hybrid co-
scheduling are exclusiveness and contention. If we find out
a way of finer space granularity that when one concurrent
domain is co-scheduled, only the involved CPUs are distrubed
to co-schedule the corresponding VCPUs, the remaining online
CPUs still perform their ongoing tasks, we can achieve finer
space granularity, and thus exclusiveness and contention can
be alleviated or even removed. Our proposed PCS just follows
this idea. PCS scheme features in three main aspects. First, we
use a per-CPU array instead of a global variable to record the
current co-scheduled domains. Second, we introduce a CPU
mask variable in each concurrent domain to record the VCPU
distribution on CPUs for precise partial co-scheduling. Third,
we introduce global CPU mask variables to record the system
wide co-scheduling states. Thus, the co-scheduling operations
are migrated from a global system operation to an operation
in partial systems.

PCS has the following advantages. First, this fine-
grainularity co-scheduling scheme only co-schedules the nec-
essary online CPUs precisely, and the rest CPUs can launch
another co-scheduling at the same time. Thus, not only the
advantages of hybrid co-scheduling are maintained, but also
contention between multiple concurrent domains are allevi-
ated. Second, two or more concurrent domains can be co-
scheduled simultaneously in PCS, which achieves higher CPU
utilization and better fairness than hybrid co-scheduling. Third,
the scheduling fragments will be decreased, because less
scheduling signals are propagated around the whole system in
such finer apace granularity. Fourth, the tolerance is improved
since the configuration mistakes by administrators for co-
scheduling are limited in a subset of online CPUs in PCS
instead of the whole system. These benefits are supported in
our experiments as shown in Section VI.

B. Implementation

PCS can be implemented with underlying credit scheduler
in a Xen system. First, we use a per-CPU array CoDom to
record the current co-scheduled domain instead of a global
variable. Thus, PCS changes the co-scheduling operation is
a partial operation, and each online CPU may co-schedule a
distinct concurrent VCPU at the same time. Second, to pre-
cisely co-schedule the necessary CPUs when a co-scheduling
operation is launched, we introduce a per-domain CPU mask
variable CoC PU' s to record the VCPU distribution on online
CPUs. Each CoCPUs is configured as soon as a domain
becomes to concurrent. Moreover, in order to make PCS
working continuously, We use two global CPU mask variables,
CoWorkers and CoPartners, to record the state of the

Algorithm 1 Partial Co-scheduling Kernel

Put the current VCPU back to RUNQ(cur_cpu);
Let Next = NIL;
if this_cpu(CoDom) then
for all Iter € RUNQ(cur_cpu) do
if Iter.Dom = CoDom then
Let Next = Iter;
break;
end if
end for
if Next = NIL then
Pick Next the first HIT VCPU in RUNQ(cur_cpu);
end if
cpu_clear(CoWorkers, cur_cpu);
Let CoCPU s =this_cpu(CoDom).CoCPUs;
if cpus_empty(cpus_and(CoW orkers, CoCPU s)) then
cpus_andnot(C'oPartners, CoCPUs);
end if
Let this_cpu(CoDom)= NIL;
else
Pick Next using underlying scheduler rules;
if Next.Dom.Type = CON then
Let CoCPUs = Next.Dom.CoCPUs;
cpu_clear(CoC PU's, cur_cpu);
if cpus_empty(cpus_and(CoPartners,CoCPU s))
then
for all cpu € CoCPUs do
Let per_cpu(CoDom, cpu)= Next.Dom;
end for
cpus_or(CoWorkers,CoC PU s);
cpus_or(CoPartners,CoCPUs);
cpu_raise(CoCPUs, SCHED_SIG);
else
Pick Next the first HIT domain’s VCPU in
RUNQ(cur_cpu);
end if
end if
end if
return Next;

current co-scheduling participant CPUs. CoWorkers records
the CPUs which are pending a request to co-schedule. When
any CPU is scheduled, the corresponding bit in CoW orkers
will be cleared. CoPartners records the CPUs which are
in VCPU distribution of the current co-scheduled domains.
When a co-scheduling operation for a domain is finished, i.e.
no bits corresponding to the domain’s CoC'PUs is set in
CoWorkers. All these CoC' PUs’s bits will be cleared from
CoPartners. When a domain’s co-scheduling is launched,
the bits recorded in the domain’s C'oC PUs are set in both
CoWorkers and CoPartners. Thus, a concurrent domain
can be co-scheduled, only if no bits corresponding to the
domain’s CoCPU's are set in CoPartners.

The pseudo-code of PCS scheme is show as Alg. 1. We use

Type to distinguish whether a domain is concurrent with two
alternative values CON and HIT representing Concurrent
and High Throughput respectively. The outer “if” condition
statement is used to judge whether there is a pending co-
scheduling operation for this CPU. The “if” branch describes
the situation when there is a pending co-scheduling operation.
PCS first lookup and schedule the co-scheduled VCPU ac-
cording to the domain recorded in CoDom. Then, it clears the
corresponding bit in CoW orkers for current CPU, and checks
whether all the VCPUs in this domain has been co-scheduled.
If so, the bits corresponding to CoCPUs in CoPartners
will be clear to declare that this co-scheduling operation is
finished. For “else” branch, the scheduler picks the next VCPU
as underlying scheduler rules in advance. If the selected VCPU
belongs to a concurrent domain, the algorithm check whether
a co-scheduling operation can be lauched for this domain.
If the co-scheduling is not allowed, just pick a VCPU from
HIT domains as Next instead; else, set the corresponding bits
in CoWorkers and CoParters according to the concurrent
domain’s CoCPUs. Then co-scheduling signal is sent to
CPUs in the CoC PU s to launch a co-scheduling operation. It
is obvious that PCS is orthogonal to the underlying scheduler,
which means that we can plant PCS into any scheduler such
as the Xen’s default Credit Scheduler.

Furthermore, the VCPUs in concurrent domains are scat-
tered among the online CPUs for effective co-scheduling
operation. In our implementation, the VCPU scatter is done as
soon as a domain becomes concurrent. The algorithm iterates
all VCPUs in the new configured concurrent domain, and puts
each VCPUs into the run queue of a CPU, such that there are
least VCPUs of this domain in the run queue of the CPU.
If there are more than one CPUs which satisfy the above
condition, the algorithm selects the one which contains least
concurrent VCPUs.

V. BoosT CO-SCHEDULING
A. Design of BCS

PCS complexes the hybrid co-scheduling to guarantee the
space and time preciseness, but sometimes the system does
not need such precise time edge alignment among the co-
scheduled VCPUs. To reduce the algorithm complexity, we
propose BCS using a voluntary approach which trades time
preciseness for lower complexity. Different from PCS, BCS in-
duce the scheduler to pick the appropriate concurrent VCPUs,
through boosting the priorities for corresponding VCPUs, in-
stead of raising a mandatory re-scheduling signal. When BCS
finds that the next scheduled VCPU belongs to a concurrent
domain, it iterates all the VCPUs of this domain, and boost
their priorities to the highest level. Then the scheduler picks
and schedules these boosted concurrent VCPUs on each CPU
respectively, and achieves the similar effect as PCS.

Obviously, BCS shares the most important advantages with
PCS. They are both fine space granularity, only co-schedule
the necessary CPUs and leave the rest CPUs untouched.
Furthermore, BCS achieves some more benefits. The most sig-
nificant feature of voluntary approach is to utilize the original

Algorithm 2 Boost Co-scheduling Kernel

Select Next using the underlying scheduler rules.
if Next.Pri = COS then
Let Next.Pri = Default_Pri;
else if Next.Dom.Type = CON then
for all IterVCPU in Next.Dom.ActiveVCPUs do
Let Next.Dom.Pri = COS,
end for
end if
return Next;

underlying functions and mechanisms as much as possible.
Therefore, BCS is Simple to implement. We just add several
lines of codes to update the priorities of co-scheduled VCPUs,
reserving all the mechanisms of the underlying scheduler such
as fairness and isolation guarantee. Less codes bring safer,
more stable and less cost for development and maintenance.
Hence BCS finds a balance between co-scheduling and the
underlying scheduler. Moreover, due to no more scheduling
signals are raised by BCS, the scheduling fragments are less
than PCS, as evidenced in our experimental results in Section
VI

While, BCS does not align the co-scheduling time precisely,
because no scheduling signal is raised. For some strict con-
current applications such as frequent synchronizing and cross
domain concurrent applications, BCS does not perform better
than PCS. The experiments results demonstrate that the co-
scheduling time edge difference is much smaller than the
scheduling period of scheduler, so we assert that in most
practical situations, we can ignore the time edge difference.

B. Implementation

We implement BCS into the Xen’s default Credit Scheduler.
We add a new priority level named C'OS for co-scheduling.
When the scheduler picks a concurrent VCPU as the next
VCPU and the priority of this VCPU is not COS, a co-
scheduling operation need to be launched. Then, the scheduler
iterates and boosts all the VCPUs in this concurrent domain
to COS. While the VCPU with COS priority is picked
by the scheduler, its priority will be fallen back to default
priority (UNDER in Credit Scheduler). The pseudo-codes
are displayed in Alg. 2.

Similar to PCS, BCS also need scatter the VCPUs of each
concurrent domain among online CPUs. We use the same
strategy to ensure the VCPU scatter among online CPUs as in
PCS.

Besides, a user interface is necessary to configure the type of
domains running in system. As we have mentioned in Section
IV-B, we add a field to the domain data structure in scheduler
named type, and provide two alternative constant values HIT
and CON for type. For HIT domains, the scheduler treats
them with original underlying scheduler (Credit Scheduler
in our current implementation); and for CON domains, the
scheduler treat them with hybrid co-scheduling schemes. We
add a parameter type(-t) into the credit-sched command in xm,

so the user can configure the type of domains on the fly. When
a domain is configured to CON from H IT, the scheduler will
call the VCPU scatter module to scatter the VCPUs in the new
concurrent domain for the future co-scheduling. We implement
this user interface into both BCS and PCS.

VI. EXPERIMENT MEASUREMENT AND ANALYSIS

We conduct experiments and collect scheduler data to
verify the effectiveness of our proposed hybrid co-scheduling
optimizations, PCS and BCS. In this section, we describe our
experiments and analyze the results.

A. Testbed

Our testbed system has a quad-core CPU (Intel Core i5
760, 2.8 GHz) and 4GB RAM (two 2GB DDR3 RAM,
1333Mhz). We use Xen 4.0.1 as VMM, and the operating
system installed in Domain-O is Ubuntu 10.04 Server x64
with Xen patched Linux kernel 2.6.31. We implement our
proposed PCS and BCS into the default Credit Scheduler
respectively. We also implement the hybrid co-scheduling (CS)
and the co-descheduling (CDS) schemes into Credit Scheduler
for comparison. Four guest domains run in experiments. Each
domain has two VCPU cores and 394MB RAM. The operating
system installed in each domain is CentOS 5.5 x64 with Xen
patched kernel. Most of our experiments only need one or two
guest domains. Thus the rest domains in such experiments just
remain idle with HIT type, in order to observe the effect
by domains with different types. We use our modified xm
(described in Section V-B) to configure the type of domains.

B. Benchmarks

We select two parallel performance benchmarks, LU kernel
in SPLASH?2 [17], [18] and NPB [19], to evaluate PCS and
BCS in practice.

1) LU: The LU kernel in SPLASH?2 is a computational
intensive benchmark. The LU kernel split a dense matrix
with N x N array of B x B blocks into a upper and
lower triangle matrix. In LU experiments, we measure
the execution time, co-scheduling frequency, as well as
time differences among VCPUs in concurrent domain
when co-scheduling for BCS. We run LU kernel with 2
processors, and let N = 4096 and B = 16.

2) NPB: NAS Parallel Benchmarks (NPB) are used to
evaluate the performance of parallel computing systems,
which are mainly derived from computation fluid dy-
namics (CFD) programs. NPB benchmarks are recog-
nized as the standard indicator of computer performance.
We select six benchmarks in NPB for our experiments,
which are BT, CG, EP, FT, LU, and MG. We compiled
BT in Class A with 1 and 4 processors for single- and
dual-CON configurations respectively, FT and LU in
Class A with 2 processors, CG, EP and MG in Class B
with 2 processors. We measure the execution time for
each benchmark under different configurations.

In experiments, we run each benchmark in each schedul-
ing scheme with two configurations respectively, solo-CON

60

50

404

30+

20

solo-CON dual-CON

Fig. 4. experimental results of LU benchmark in Execution time. For
solo-CON configuration, PCS and BCS keep the higher performance. For
dual-CON configuration, PCS and BCS avoids the performance degradation,
achieve higher performance than Credit and better fairness than CS and CDS.

configuration and dual-CON configuration. For solo-CON
configuration, the benchmarks run on only one CON domain
with the rest three idle HIT domains. While, in dual-CON
configuration, the benchmarks run on two CON domains
concurrently with the rest two idle HIT' domains.

C. Experiment Results

First, we conduct the LU benchmark experiment. We run
LU benchmark on the Credit Scheduler, CS, CDS, PCS and
BCS schemes respectively. For each scheme, we run LU
benchmark with two configurations respectively. Fig. 4 shows
the experimental results in execution time for solo- and dual-
CON configurations.

LU benchmark is a concurrent CPU-intensive application,
and does not have many I/O accesses. From the experimental
results, for solo-CON configuration, all the co-scheduling
schemes (including CS, CDS, PCS, BCS) achieve better
performance than Credit Scheduler. The execution time in CS,
CDS, PCS, and BCS reduces from 26.47s to 21.41s, 21.17s,
19.93s, and 20.88s respectively, which is about 26% faster
than underlying Credit Scheduler on average. It testifies that
the hybrid co-scheduling is an effective method for concurrent
applications, and PCS and BCS maintain the advantages of
hybrid co-scheduling in performance aspect. In contrast, for
dual-CON configuration, neither CS or CDS performs well,
the execution times on CS and CDS are 54.34s and 46.82s,
45.91s and 63.85s, almost 1X longer than Credit Scheduler.
Moreover, the fairness of CS and CDS is not good enough for
dual-CON configuration, especially on CDS. The execution
time differences between the two concurrent domains are
7.52s and 17.94s (16.06% and 39.08%) in CS and CDS
respectively. Compared to CS and CDS, our optimizations
PCS and BCS perform better for dual-CON configuration.
Their execution times achieve a reasonable level, which are
23.13s and 25.94s, 24.39s and 23.68s, only about 14% slower
than solo-CON configuration because more virtualization cost
are needed. Both PCS and BCS are about 8% faster than
Credit Scheduler, and about 1X faster than CS and CDS
on average. Additionally, PCS and BCS also achieve good
fairness between the two concurrent domains, especially in
BCS. The execution time differences are 2.81s and 0.71s
(12.14% and 2.99%) in PCS and BCS respectively.

50004 |—CS —CDS —PCS —BCS
2000 4
1000 —
Coscheduling 500 —

Times 200 -

100 —
50—

M__\,_-W/

I T T f
0 5 10 15 20
Time in seconds

(a) Solo-CON configuration

5000 —

[—Cs —cDs —PCS —BCS |

2000

1000 —

Coscheduling 500 —
Times
200 4

100 4

0 20 40 60

Time in seconds

(b) Dual-CON configuration

Fig. 5. Co-scheduling frequency for solo- and dual-CON configurations.
Higher co-scheduling frequency show more scheduling fragments and con-
tention exists in system. For solo-CON configuration, the co-scheduling
frequency of PCS and BCS are almost the same as CS, while for dual-CON
configuration, the co-scheduling frequency of PCS and BCS are lower than
CS and CDS, that shows less scheduling fragments and lower contention with
PCS and BCS.

We also use LU benchmark to measure the co-scheduling
frequency on different co-scheduling strategies. Fig. 5 shows
the measurement results for solo- and dual-CON configura-
tions. Fig. 5(a) shows that for solo-CON configuration, the co-
scheduling frequencies are nearly the same among CS, PCS,
and BCS, approximately 60—70 /second. It illustrates that PCS
and BCS maintain the advantages of hybrid co-scheduling. The
co-scheduling frequency of CDS is much higher than other
strategies, about 300 — 1000 /second on average because of the
stricter rule in CDS. Fig. 5(b) shows the results for dual-CON
configuration, where CS and CDS display their unstableness
because of the contention between concurrent domains. The
co-scheduling frequency of CS is about 150 —400 /second, and
frequnecy of CDS is about 200 — 3000 /second. This increased
co-scheduling frequency causes more processor execution time
consumed on the scheduling critical path, increasing the hy-
pervisor occupied time, and finally causes the performance
degradation in guest system. The two C'ON domains in
CS and CDS must share running time serially, and serious
performance degradation occurs for these two domains. The
fluctuation makes the system more unstable and unpredictable,
especially in CDS. In constrast, the co-scheduling frequency
of PCS is about 150 — 200 /second on average and the co-
scheduling frequency of BCS is about 100 — 180 /second
on average. Not only the co-scheduling frequency is lower
than CS and CDS, but also they are more stable. The lower
co-scheduling frequency means less contention and better
performance. The stableness means that PCS and BCS are
predictable. Furthermore, the two CON domains in PCS and
BCS can run in parallel, that brings extra performance benefit.
The execution time results in Fig. 4 also support our analysis

1

0.8 —

0.6 —
Cumulative
Density 4

0.2~

0

T T T T T T
0 1 2 3 4 5
BCS Time Edge Difference in ms

Fig. 6. Cumulative density of BCS time edge difference between two virtual
CPUs in concurrent domains. More than 99% of the time edge difference are
less than 1ms, so that we can ignore such time edge difference.

from co-scheduling frequency, that PCS and BCS perform
better than CS and CDS.

To confirm our conclusion which we have mentioned in
Section V-A that the co-scheduling time edge difference
among VCPUs in concurrent domain does not affect the co-
scheduling features in BCS, we measure the scheduling time
edge difference between the two VCPUs in concurrent domain
in LU benchmark experiment. Fig. 6 shows the measurement
results in cumulative density. It is clear that almost all time
differences are less than 1ms. The scheduling period in Xen’s
Credit Scheduler is 30ms, all the time edge differences in
our experiment on BCS are much shorter than the scheduling
period. Hence, although the co-schedulings are not precisely
aligned, the time difference in BCS is so small that it can
be negligible. BCS remains the features of co-scheduling that
VCPUs in concurrent domain are scheduled simultaneously in
most situations.

Besides SPLASH2 LU benchmark experiment, we conduct
the experiments using NPB benchmarks. We select 6 bench-
marks in NPB to run on Credit Scheduler and the four co-
scheduling schemes, CS, CDS, PCS, and BCS, respectively.
We measure their execution time with solo- and dual-CON
configurations. The 6 benchmarks selected are BT, CG, EP,
FT, LU, and MG. Fig 7 shows the execution time results of
the NPB benchmarks.

BT [19] is a simulated CFD application to solve 3D
compressible Navier-Stokes equations. Fig. 7(a) shows the
execution time results of BT and SP respectively. For solo-
CON configuration, all the co-scheduling schemes speed
up the application. The execution time of BT reduces from
197.67s in Credit Scheduler to about 180s in hybrid co-
scheduling schemes which speeds up about 9.4%. However,
for dual-CON configuration, CS and CDS performs terrible.
The execution time of BT in CS and CDS increases to about
375s, 3.5X to Credit Scheduler 106.13s. In contrast to CS and
CDS, PCS achieves a high performance. The execution time of
BT in PCS is 84.90s, 25% faster than Credit Scheduler, 3.7X
faster than CS and CDS on average. BCS performs worse than
PCS because of its imprecise scheduling time alignment. In
such cross domain concurrency, the impreciseness is enlarged
to the extent that cannot be negligible. The execution time in
BCS are 335.11s, which is still better than CS and CDS.

CG [19] is a kernel test in NPB benchmarks, which
computes an approximation to the smallest Figen value of
a large sparse unstructured matrix with Conjugate Gradient

method. EP [19] generates pairs of Gaussian random de-
viates as specified by certain scheme. LU [19] is also a
simulated CFD application with symmetric successive over-
relaxation method. The execution time results of these three
benchmarks are displayed in Fig. 7(b), 7(c) and 7(d). These
three benchmarks are all CPU-intensive application. For solo-
CON configuration, similar to the results of BT, co-scheduling
schemes speed up these benchmarks. The execution time of
CG, EP, and LU in co-scheduling schemes are about 45s,
43s, and 53s respectively, speed up 23.8%, 19.4%, and 20.2%
to Credit Scheduler respectively. However, for dual-CON
configuration, the results are different. Performance in CS and
CDS degrades seriously. The execution time of CG, EP, LU
in CS are about 1.6X, 1.7X and 1.5X to the Credit Scheduler
respectively; and the execution time in CDS are about 1.9X,
2.0X, 1.9X to Credit Scheduler respectively. In contrast, PCS
and BCS perform better, the execution time of PCS are about
17.5%, 20.4%, and 15.8% faster than Credit Scheduler, about
1.0X, 1.2X, and 0.87X faster than CS and CDS on average,
and the execution time of BCS are about 11.4%, 22.9%,
and 17.7% faster than Credit Scheduler, about 0.96X, 1.2X,
and 0.88X faster than CS and CDS on average respectively.
Because contention confuses the steps of scheduling in CS
and CDS, the fairness are sacrificed additionally. All these
three figures show bad fairness in CS and CDS with dual-
CON configuration, the execution time differences between
two concurrent domains are 17.8%, 8.6%, 15.1% in CS, and
47.4%, 30.7%, 30.2% in CDS respectively. However, PCS and
BCS perform good fairness in these three benchmarks. The
time differences are 1.3%, 0.4%, 0.17% in PCS, and 0.03%,
0.3%, 0.12% in BCS respectively, which are much less than
in CS and CDS.

FT [19] is a 3D fast Fourier Transform-based spectral
method. MG [19] finds the solution of the 3D scalar Poisson
equation with V-cycle Multi-Grid method. The execution time
results show in Fig. 7(e) and 7(f). Different from the above
four benchmarks, FT and MG have more disk accesses, so
they are I/O-intensive. The limited I/O access channel is a
bottleneck on the performance for dual-CON configuration.
The performance for dual-CON configuration is about 2.5X
and 4X lower of FT and MG respectively than for solo-CON
configuration in any scheduling scheme. Even though in I/O
channel contention environment, PCS and BCS benefit the
concurrent domain scheduling to some extent. In both FT and
MG experiments, PCS and BCS achieve better performance
than Credit Scheduler, CS and CDS. The execution time of FT
and MG is about 9.1% and 26.1% faster in PCS and BCS than
in other scheduling schemes respectively on average. PCS and
BCS achieve better fairness than CS and CDS. The execution
time difference of FT and MG is about 1.8%, 1.1% in PCS,
and 0.4%, 1.9% in BCS respectively.

VII. RELATED WORK

The co-scheduling scheme is proposed by Ousterhout [7]
to address the scheduling problems in concurrent system. The
traditional co-scheduling suffered from some drawbacks, such

100

350
120 4
300

250 - 0 4
200 -
60

100
30 4

501

solo-CON

(a) BT benchmark

dual-CON solo-CON

(b) CG benchmark

120 4

dual-CON solo-CON

(c) EP benchmark

dual-CON

150

1204

solo-CON solo-CON

(d) LU benchmark

dual-CON

(e) FT benchmark

6000
5500
5000
4500
4000
3500
3000
2500
2000
1500
1000 4

500 4

0-
solo-CON

(f) MG benchmark

dual-CON dual-CON

Fig. 7. Execution time in seconds of NPB benchmarks. For all these benchmarks, PCS and BCS keep the benefits brought by CS for solo-CON configuration.
For dual-CON configuration, PCS speeds up the system and avoids the performance degradation as CS and CDS for all these benchmarks. BCS achieves
the same results expect BT which is a cross domain parallel application. Both PCS and BCS achieves better fairness because of their small execution time

difference.

as the low CPU utilization, and the exclusion to other sched-
ulers. VMWare Communities [11] introduced co-scheduling
into VE and implemented it in VM Ware products using stricter
co-scheduling strategy called co-descheduling, where the con-
current VCPUs need to not only be scheduled concurrently
but also be descheduled concurrently. However, it causes many
scheduling fragments and introduces serious contention among
domains. Weng et al [8] proposed a hybrid scheduling frame-
work in VE, which combines an underlying high-throughput
guarantee scheduler and co-scheduling scheme together. The
hybrid scheduling framework allows non-concurrent domains
in a system, alleviates exclusiveness of the co-scheduling. But
if there are multiple concurrent domains, the contention still
exists, which motivates us to propose PCS and BCS. Jiang
et al [6] proposed some optimization of scheduler in KVM
virtualization environment. In their work, they introduce the
idea of voluntary approach, and proposed Approximate Co-
scheduling, which motivates us to proposed BCS. While in
our BCS the benefits of PCS are achieved. In their work,
co-descheduling scheme is also mentioned. Xu and Bai et al
[12], [13] proposed an automatic concurrent domain detection
method for CPU intensive domains, based on their research on
performance evaluation of parallel programming in VE. They
implemented hybrid co-scheduling scheme as the underlying
scheduling support. Although their work releases the adminis-
trator from system configuration, there is no optimization for
co-scheduling, and their detection method only works for CPU
intensive domains.

There are some work on the LHP problem besides co-
scheduling. Uhlig et al [4] proposed a lock-aware scheduler,
which schedules VCPUs according to spin lock detection in

guest OS. The lock-aware scheduler delay to preempt the
determined lock-holder till the lock released. But it introduces
a complex computation in lock detection. Additionally, some
fault detection will cause a long CPU preemption. Friebel
et al [5] based on lock-aware idea proposed the method
that prevents unnecessary active waiting instead of the delay
preemption. Jiang et al [6] brought the similar idea which
called waiting yield method. Neither their work avoids the
complex lock detection which is not needed in co-scheduling
scheme.

Another strategy for LHP problem is gang-scheduling pro-
posed by Feitelson et al [9], whose idea is very similar to
co-scheduling. It schedules related threads simultaneously on
different processors based on Ousterhout Matrix. Hence, gang-
scheduling is stricter than co-scheduling. Wang et al [20]
implemented gang-scheduling into IBM parallel system. Fei-
telson [10] proposed an optimization using multiple packing
sets of processors instead of single packing set. Jette et al
[21] analyzed the performance of gang-scheduling systemat-
ically. Compared to co-scheduling, gang-scheduling employs
Ousterhout Matrix to align the scheduling steps, so it imposes
restrictions in practice, and introduces exclusiveness to other
scheduling schemes.

There are some work on schedulers in VE for parallel or
concurrent applications in multi-processor or cluster system
recently. Here we list some of them that we are interested. So-
mani et al [22] proposed isolation analysis method for sched-
ulers. Govindan et al [23], [24] proposed a communication-
aware scheduler which brings more precise CPU time account
for I/O operation. Liu et al [25] proposed a method that use
dedicated CPU cores to handle the I/O events to alleviate

the frequency of the scheduler tickle and context switch-
ing. Chen et al [26] proposed dynamic switching-frequency
scheduling scheme using various scheduling time slice to
address the performance degradation for the over-commit
domain. Merkel et al [27] introduced the pattern recognition
method to detection the resource competition and tried to
reduce the energy consumption through contention avoidance.
Kazempour et al [28] proposed an asymmetry-aware scheduler
for VE on Asymmetric Multi-Processors (AMP) hardware
platform, which gives guest OS in VE an effective sight of
AMP platform.

VIII. CONCLUSION AND FUTURE WORKS

To alleviate exclusiveness and contention among multi-
ple concurrent domains in current versions of hybrid co-
scheduling, we present two optimizations named PCS and BCS
using finer space granularity. PCS raises the CPU scheduling
signals only for the necessary CPUs in co-scheduling operation
instead of for all online CPUs; while BCS uses voluntary
approach that boosts the priorities for co-scheduled VCPUs
to induce the scheduler to pick the appropriate VCPUs. Ac-
cording to the analyses and experimental results, PCS and BCS
maintain the advantages of hybrid co-scheduling, and benefit
virtual machines performance and fairness further, especially
when there are multiple concurrent domains in a system.
However, PCS exactly follows the hybrid co-scheduling cri-
teria, while it introduces more complexity; BCS simplifies
the implementation, while it looses the co-scheduling rules,
that does not perform well in some situation such as cross-
domain concurrency. The experimental results show that, when
two domains run concurrent CPU-intensive applications si-
multaneously in a virtualized system, PCS and BCS improve
the performance by approximately 25% compared to non-
co-scheduling underlying scheduler, and double the perfor-
mance compared to existing hybrid co-scheduling and co-
descheduling. The execution time difference between the two
concurrent domains is less than 3% on average.

Some related topics are worth our further investigation.
First, the co-scheduling scheme limits the number of VCPUs
in one domain. Therefore, how to overcome the over-commit
restriction, especially with multiple concurrent domains, is one
of our future effort. Second, AMP system gets more and more
attention due to many-core processors. We plan to investigate
the problems of co-scheduling and parallel computing in AMP
virtualized environments in future.

REFERENCES

[1] The Message Passing Interface (MPI) standard. [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpi/

[2] PVM: Parallel Virtual Machine.
http://www.csm.ornl.gov/pvm/

[3] OpenMP.org. [Online]. Available: http://openmp.org/wp/

[4] V. Uhlig, J. LeVasseur, E. Skoglund, et al, “Towards scalable multi-
processor virtual machines,” in Proceedings of the 3rd Virtual Machine
Research and Technology Symposium, 2004, pp. 1-14.

[Online]. Available:

[5] T. Friebel and S. Biemueller. (2008) How to
deal with lock holder preemption. [Online]. Avail-
able: http://www.amd64.org/fileadmin/user_upload/pub/2008-Friebel-

LHP-GI_OS.pdf

[6]

[8]

[9]

(10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

W. Jiang, Y. Zhou, Y. Cui, et al, “CFS optimizations to KVM threads
on multi-core environment,” in International Conference on Parallel and
Distributed Systems, 2009, pp. 348-354.

J.K. Ousterhout, “Scheduling techniques for concurrent systems,” in
Proc. of the 3rd International Conference on Distributed Computing
Systems, 1982, pp. 22-30.

C. Weng, Z. Wang, M. Li, et al, “The hybrid scheduling framework for
virtual machine system,” in Virtual Execution Environments, 2009, pp.
111-120.

D.G. Feitelson and L. Rudolph, “Gang scheduling performance benefits
for fine-grain synchronization,” Journal of Parallel and Distributed
Computing, vol. 16, no. 1, pp. 306-318, 1992.

D.G. Feitelson, “Packing schemes for gang scheduling,” in Job Schedul-
ing Strategies for Parallel Processing, Lecture Notes in Computer
Science, 1996, pp. 89-110.

VMWare Communities. (2008) Co-scheduling smp vms in vmware esx
server. [Online]. Available: http://communities.vmware.com/docs/DOC-
4960

C. Xu, Y. Bai and C. Luo, “Performance evaluation of parallel program-
ming in virtual machine environment,” in International Conference on
Network and Parallel Computing, 2009, pp. 140-147.

Y. Bai, C. Xu and Z. Li, “Task-aware based co-scheduling for virtual
machine system,” in Symposium On Applied Computing, 2010, pp. 181—
188.

Yaron. (2007) Credit Scheduler. [Online]. Available:
http://wiki.xensource.com/xenwiki/CreditScheduler
Xen hypervisor source. [Online]. Available:

http://xen.org/download/index_4.0.1.html

P. Barham, B. Dragovic, K. Fraser, et al, “Xen and the art of virtualiza-
tion,” in ACM Symposium on Operating Systems Principles, 2003, pp.
164-177.

Stanford Parallel Applications for Shared Memory (SPLASH). [Online].
Available: http://www-flash.stanford.edu/splash/

S. Woo, M. Ohara, E. Torrie, et al, “The SPLASH-2 programs: charac-
terization and methodological consideration,” in Proceedings of the 22nd
Annual International Symposium on Computer Architecture (ISCA),
1995, pp. 24-36.

H. Jin, M. Frumkin and J. Yan, “The OpenMP implementation of
NAS Parallel Benchmarks and its performance,” NASA Ames Research
Center, Tech. Rep. NAS-99-011, October 2003.

F. Wang, H. Franke, M. Papaefthymiou, et al, “A gang scheduling
design for multiprogrammed parallel computing environments,” in Job
Scheduling Strategies for Parallel Processing, Lecture Notes in Com-
puter Science, 1996, pp. 111-125.

M.A. Jette, “Performance characteristics of gang scheduling in multi-
programmed environments,” in Supercomputing 97, 1997, pp. 1-12.

G. Somani and S. Chaudhary, “Application performance isolation in
virtualization,” in IEEE International Conference on Cloud Computing,
2009, pp. 41-48.

S. Govindan, A.R. Nath, A. Das, et al, “Xen and co.: communication-
aware CPU scheduling for consolidated Xen-based hosting platforms,”
in Virtual Execution Environments, 2007, pp. 126-136.

S. Govindan, J. Choi, A.R. Nath, et al, “Xen and co.: communication-
aware CPU management in consolidated Xen-based hosting platforms,”
IEEE Transactions on Computers, vol. 58, no. 1, pp. 1111-1125, 2009.
J. Liu and B. Abali, “Virtualization polling engine (VPE): using ded-
icated CPU cores to accelerate I/O virtualization,” in International
Conference on Supercomputing, 2009, pp. 225-234.

H. Chen, H. Jin, K. Hu, et al, “Dynamic switching-frequency scaling:
scheduling overcommitted domains in xen vmm,” in International Con-
ference on Parallel Processing, 2010, pp. 287-296.

A. Merkel, J. Stoess and F. Bellosa, “Resource-conscious scheduling
for energy efficiency on multicore processors,” in Proceedings of the
5th European Conference on Computer Systems, 2010, pp. 153-166.
V. Kazempour, A. Kamali and A. Fedorova, “AASH: an asymmetry-
aware scheduler for hypervisor,” in Virtual Execution Environments,
2010, pp. 85-96.

