ASA: An Adaptive Space Allocation Algorithm for Cache Management
in Multi-level Cache Hierarchy

Li Ou, Karthik Sankar,Xubin (Ben) He,
Department of Electrical and Computer Engineering
Tennessee Technological University
lou21 @tntech.edu, kksankar21 @tntech.edu, hexb @tntech.edu

Abstract— Multi-level cache hierarchies are widely used in
high-performance storage systems to improve I/O performance.
However, traditional cache management algorithms are not
suited well for such cache organizations. Recently proposed
exclusive caching works well with single or multiple-client, low-
correlated workloads, but suffers serious performance degra-
dation with multiple-client, high-correlated workloads. In this
paper, we propose a new cache space management algorithm,
Adaptive Space Allocation (ASA), which implements both ex-
clusive and inclusive caching and manages storage caches by
providing optimal inclusive cache space adaptively according to
the characteristic of input workloads. Ours results show that
ASA increases the cumulative cache hit ratios dramatically for
both high and low-correlated workloads.

I. INTRODUCTION

Caching is a common technique for improving the per-
formance of I/O systems. Researchers have developed many
algorithms to manage the buffer cache, such as LRU [1],
LFU, 2Q [2], LIRS [3], and ARC [4]. These algorithms were
designed for local cache replacement because they do not
need any information from other caches. They worked well
for a single system. In a distributed I/O environment, buffer
caches are mostly organized as multi-level cache hierarchies
residing on multiple machines. We refer to upper level
storage client caches as L1 buffer caches and lower level
storage caches as L2 buffer caches [5]. The access patterns
of L2 caches show weak temporal locality [5] after filtering
from L1 caches, which implies that a cache replacement
algorithm, such as LRU, may not work well for L2 caches.
Additionally, local management algorithms used in L2 caches
are inclusive [6], which keep blocks that have been cached
by L1 caches, and waste aggregate cache space.

Several attempts have been made to improve cache per-
formance of multi-level buffer caches for distributed I/O
systems. Recent research [6], [S], [7], [8], [9] character-
izes the behavior of accesses to L2 caches, and introduces
multiple algorithms based on the characteristics to improve
the L2 cache hit ratio. Except for multi-queue replacement
[5], all other algorithms try to achieve exclusive caching [6]
through quick eviction of duplicated blocks in L2 caches.
Implementing aggressive exclusive caching may get a high
hit ratio in case of a single storage client, but multiple-
client systems introduce a new complication: the sharing
of data among clients. It may no longer be a good idea
to discard a recently read block from the L2 cache after

it has been sent to a client cache, because the block may be
referenced again by other clients in the recent future. Real
workloads show behavior between two extremes: disjoint
workloads, in which the clients each issue references for non-
overlapping parts of the aggregate working set, and conjoint
workloads, in which the clients each issue exactly the same
references in the same order at the same time [6]. Nearly
disjoint workloads are low-correlated workloads, and nearly
conjoint workloads are high-correlated. For low-correlated
workloads, aggressive exclusive caching is effective, but for
high-correlated workloads, since the same blocks may be
referenced by multiple clients within a relatively short time
period, inclusive caching is more attractive. Thus, for a
multiple-client system, it is important to design an algorithm
which balances between aggressive exclusive caching and
inclusive caching according to workload characteristics.

In this paper, we propose a new cache space management
algorithm, Adaptive Space Allocation (ASA), for multi-level
I/O systems to provide high cumulative hit ratios in multiple
storage client cache systems, for both high-correlated and
low-correlated workloads. The main idea of ASA is to
implement exclusive caching in storage servers to increase
utilizations of aggregate cache spaces, while allocate a
small inclusive cache to improve local hit ratios for blocks
frequently referenced by multiple clients. The size of the
small inclusive cache needs to be tuned carefully to balance
between high-correlated and low-correlated workloads. ASA
manages storage cache and provides optimal inclusive cache
space adaptively according to the characteristic of input
workloads. We compare the ASA algorithm with the tradi-
tional LRU and other typical multi-level cache management
algorithms such as exclusive caching [6], [5], 2Q [2], and
SLRU [6], using simulations under different workloads. The
results show that compared to LRU, ASA can dramatically
increase the overall cache hit ratios.

II. DESIGN OF ASA

Exclusive caching increases cache hit ratios for single
client systems or multiple-client systems with low-correlated
workloads, while inclusive caching provides better per-
formances for multiple-client systems with high-correlated
workloads. One way to achieve high hit ratios for both single
client and multiple-client systems is to divide cache space
into two part and implement both inclusive caching and

exclusive caching, but the size of the two caches need to
be adjusted dynamically according to the characteristics of
input workloads. Furthermore, in a multiple-client system, a
higher correlation of workloads means that it is more likely
that a block requested by one client is found in caches of
other clients, because a block used by one client may have
been or will be referenced by other clients within a limited
time period, so cooperative client caches [10] could be used
with the inclusive cache of storage servers to improve hit
ratios of high-correlated workloads.

In our design, we implement an exclusive cache in the stor-
age server to improve hit ratios of low-correlated workloads,
and use cooperative client caches to provide high hit ratios
for high-correlated workloads, which means requests do not
result cache hits in the storage server could be redirected
to a client cache. We define cumulative hit ratios as hit
ratios provided by both the storage cache and cooperative
client caches, and local hit ratios as hit ratios provided
only by the storage cache. Combination of exclusive caches
in the storage server and cooperative client caches may
achieve high cumulative hit ratios, but suffers local hit ratio
degradation in the case of high-correlated workloads. We use
a small inclusive cache, like LRU cache, in the storage side,
to improve local hit ratios by caching blocks used frequently
by multiple clients, but the size of the small inclusive cache
needs to be tuned carefully to avoid sacrificing cumulative
hit ratios too much, since duplicated blocks exist in both the
inclusive cache of storage server and client caches. ASA try
to maintain high cumulative hit ratios while increase local
hit ratios by adjusting the size of the inclusive cache and
exclusive cache in the storage server dynamically according
to the characteristic of input workloads.

In high-correlated workloads, ASA increases the size of
the inclusive cache because the number of reused blocks is
relatively large. In low-correlated workloads, ASA decreases
the size of the inclusive cache because blocks are seldom
reused by multiple clients. In the case of single client system,
or disjoint workloads, since there is no reused blocks at all,
ASA try to allocate the entire storage cache space to exclusive
caching as quickly as possible. In our design, we use a LRU
cache as the inclusive cache in the storage side. One hit of
the LRU cache will increase its size by one block, and one
hit of the exclusive cache will shrink its size by one block
(at the same time, the size of the exclusive cache increases
by one block). Since we need to maintain high cumulative
hit ratios, a ghost cache which simulates a totally exclusive
storage cache is implemented to provide a reference for each
moment of accesses. We compare the actual cumulative hit
ratio and the reference provided by ghost cache periodically.
If the current cumulative hit ratio is too low compared to
that of the ghost cache, the LRU cache size will be reduced.
Fig. 1 outlines the ASA algorithm.

III. SIMULATION METHODOLOGY

We use trace-driven simulation to compare cumulative
L2 cache hit ratios of ASA and other algorithms, including
LRU, 2Q [2], exclusive caching [6], and SLRU [6]. We have

/* procedure to be invoked upon a reference to block b */

blockGet(block b)
{
if b is in exclusive cache {
remove b from exclusive cache;
increase size of exclusive cache by 1;

else if bisin LRU cache {
remove b from LRU cache;
increase size of LRU cache by 1;

}

else
read b from disk;

put b to tail of LRU queue;

}

/* procedure to be invoked upon every 1000 references to
cache */

adjustcache()
{
calculate cumulative hit ratio of real cache and ghost;
if hit ratio of ghost is much larger than real cache
decrease size of LRU by n; // nis a tunable parameter.

}
/* procedure to be invoked upon a eviction of block b */
blockPut(block b)

{
if b in LRU cache
remove b from LRU cache;
put b into exclusive cache;
put b into ghost cache;

}

Fig. 1. ASA algorithm.

TABLE I
CHARACTERISTICS OF TRACES

Trace Clients | IOs (millions) | Volume | Correlation
Cello92 1 0.5 per day 10.4GB high
HTTPD 7 1.1 0.5GB high

DB2 8 3.7 5.2GB low

developed a simulator to simulate two-level buffer cache
hierarchies with multiple clients and one storage system.
LRU is used as the replacement algorithm in the L1 caches,
and multiple algorithms mentioned before are implemented
in the L2 cache. Thus in our simulations, when referring to
LRU, we talk about LRU-LRU (L1-L2 caches). In our study,
we use 4KB as the cache block size for our experimental
evaluation. We have examined other block sizes, with similar
results. Three traces are chosen to represent different types of
workloads: high-correlated and low-correlated. Table I shows
the characteristics of traces.

The HP Cello92 trace was collected at Hewlett-Packard
Laboratories in 1992 [11]. It captured all L2 disk I/O requests
in Cello, a timesharing system used by a group of researchers
to do simulations, compilation, editing, and e-mail, from
April 18 to June 19. We use the trace collected on April 18 as
the workload for the single client simulation. Since requests
of the traces collected in different days access the same
data set, we also use them as workloads for the multiple-
client simulation: each trace file collected within one day
acts as the workload of one client. These workloads are high-
correlated. The HTTPD workload was generated by a seven-
node IBM SP2 parallel web server [12] serving a 524MB data
set. Multiple http servers share the same files. We use the
HTTPD workload as the high-correlated workloads for the

multiple-client simulation. The DB2 trace-based workload
was generated by an eight-node /BM SP2 system running an
IBM DB?2 database application that performed join, set and
aggregation operations on a 5.2GB data set. Each DB2 client
accesses disjoint parts of the database. No blocks are shared
among the eight clients. We use the DB2 workload as the
low-correlated workload for the multiple-client simulation.

Since L1 buffer cache sizes clearly affect an L2 cache’s
performance, we carefully set the L1 buffer cache sizes for
the three traces to achieve a reasonable L1 hit ratio. The
cache size of HP 9000/877 server is only 10-30MB, which
is very small by current standard. The Cello92 trace and the
HTTPD trace show high temporal locality, and a small client
cache may achieve a high hit ratio. In the simulations, we
assume the cache size of each client is 16MB for the Cello92
traces, and 8MB for the HTTPD trace, providing an L1 hit
ratio of approximately 50%. The DB2 trace shows very low
temporal locality, and a 512MB client cache just provides
an L1 hit ratio of no more than 15%. But if the cache size
increases to 600MB, the L1 hit ratio suddently increases to
75%, because reuse distances [S] of most blocks are less
than 150KB(600MB divided by block size 4KB). To reserve
enough cache misses for L2 caches, we assume the cache size
of each client for the DB2 trace is 512MB. Since the number
of compulsory cache misses in the DB2 trace is large, we
use approximately 10% of the requests to warmup the cache
space.

IV. SIMULATION RESULTS
A. Single client and low-correlated traces

We use the Cello92 trace as the workload of a single
client system, and DB2 trace as low-correlated workload
for a multi-client system. Actually, DB2 trace is a disjoint
workload since there is no block reused among multiple
clients. Fig. 2(b) and Fig. 2(d) show the hit ratios under
those two workloads.

It is obvious that there is almost no difference between
hit ratios of ASA and purely exclusive caching under both
workloads. It is the results exactly we expect, since in single
client or disjoint workload, ASA should quickly allocate
entire cache space to exclusive caches. We record the per-
centage of exclusive cache in the storage cache space under
different time of simulation for the single client Cello92
trace. The result is shown in Fig. 3(a). At the beginning
of the simulation, since there are no eviction operations (the
client caches are not full), ASA allocates most cache space
to inclusive caches. After clients begin to evict blocks to
the storage cache, ASA quickly reallocate cache space to the
exclusive cache, and only within the time of 2% of total
simulation, the size of exclusive cache is already more than
98% of the entire cache space, then reaches almost 100%
quickly and maintains until the end of the simulation.

B. High-correlated traces

We use the Cello92 trace and the HTTPD trace as multiple-
client high-correlated workloads. Fig. 2(a) and Fig. 2(c)
shows the hit ratios of different algorithms. The ASA always

provides the best hit ratio among all the algorithms. LRU
provides a relatively high hit ratio because each block in an
LRU cache has a long life before it is discarded, and thus
has a high possibility to be referenced again and again by
different clients with high-correlated workloads. The gain
of ASA becomes smaller as the storage cache is larger,
since a large cache size retains a block for a long enough
time, within which it is accessed by most clients. Exclusive
caching suffers serious performance degradation even com-
pared to LRU, because discarding a block immediately after
it is referenced once causes many cache misses for following
references from other clients.

ASA balances well between the local storage hit ratio and
the cumulative hit ratio. Fig. 4 compares the cumulative and
storage hit ratios of LRU, exclusive caching, and ASA under
various configurations. We intentionally change replacement
algorithms for exclusive caching and LRU to add cooperative
client caches and provide cumulative hit ratios. We have
mentioned before that entirely exclusive caching in storage
with cooperative client caches provides maximal cumula-
tive hit ratio, but very low storage hits in high-correlated
workloads. When compared with exclusive caching, we find
that cumulative hit ratio of ASA is almost same, while local
storage hit ratio is much higher. We also find that even with
cooperative client caches, LRU can not provide satisfying
cumulative cache hits, because most blocks in the storage
cache and cooperative client caches are same, and aggregate
cache space is wasted. ASA provides both satisfying local
hit ratios, almost same to typical inclusive caching, and high
cumulative hit ratios.

In high-correlated traces, ASA should maintain the balance
between the size of the exclusive cache and inclusive cache,
according to the characteristic of input workloads. We also
record the percentage of exclusive cache in the storage cache
space under different time of simulation for the 7 client
HTTPD trace. The result is shown in Fig. 3(b). After the
warm up of the cache space (about 10% of total simulation),
the size of the exclusive cache remains at about 70% of
the storage cache space. ASA allocate about 30% of the total
cache space to the inclusive cache for keeping most requently
reused blocks. This is why ASA could provide both satisfying
local hit ratios and high cumulative hit ratios.

V. RELATED WORK

L2 caches have poor hit ratios as demonstrated in [5]
and [6]. Many new algorithms have been proposed re-
cently to improve cumulative hit ratios, such as MQ [5],
Demotion-based algorithm [6], Global L2 buffer cache man-
agement [5], X-Ray [8], and client-controlled cache replace-
ment [9]. Chen et al. [7] classified all those algorithms
into two types: hierarchy-aware caching, and aggressively-
collaborative caching, and compared the performance among
typical algorithms belonging to the two types. Ari et al. pro-
posed ACME [13] to adaptively select the best replacement
policy for each cache-level to achieve high accumulative
hit ratios. Our work in multi-level cache hierarchies builds
upon but is different from previous studies because the ASA

Hit Ratio

Hit Ratio

Percentage of Exclusive

—eo— ASA —a— Exclusive —¥— SLRU
——2Q —a— L RU
80.00%
60.00% 4
40.00% A /
20.00% 4
0.00% } } } }
64 96 128 192 256

100.00%
80.00%
60.00%

40.00% A

20.00%
0.00%

Fig.

120.0%
100.0% -
80.0% —+
60.0%
40.0% 1
20.0% +

Cache

Storage Cache Size (MB)

(a) 4 clients under Cello92 trace

32 48 64 96 128

Storage Cache Size (MB)

(c) 7 clients under HTTPD trace

Hit Ratio

Hit Ratio

80.00%
60.00%
40.00% -

20.00%

0.00%

(®)

60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

32 48 64 96 128

Storage Cache Size (MB)

Single client under Cello92 trace

zzn_———‘,ﬁ::

————t } t
1024 1536 2048 3072 4096
Storage Cache Size (MB)

(d) 8 clients under DB2 trace

2. L2 cache hit ratio with various number of clients under the Cello92 traces, the HTTPD trace, and the DB2 trace.

0.0% +o=—+——+— —t I I

(

Fig. 3.

0% 1% 2%

Progress

a) Single client under Cello92 trace

Percentage of Exlusive

100.0%

80.0% +

Cache

20.0% T

60.0% +
40.0% +

0.0%

- T T T T T T T T T T

0% 10% 30% 50% 70% 90%

Progress

(b) 7 clients under HTTPD trace

The percentage of the exclusive cache in the storage cache space according to the progress of simulation under various workloads.

O Storage Cache M Cooperative Cache

80.00%

60.00% -
=2 -
£ 40.00%
T 20.00% -

0.00% r T

LRU Exclusive ASA
Algorithm

(a) 4 clients under Cello92 trace

100.00% O Storage Cache M Cooperative Cache
80.00%
S]
= 60.00% 4
z e
= 40.00% -
= 4
20.00% A
0.00% T T
LRU Exclusive ASA
Algorithm

(b) 7 clients under HTTPD trace

Fig. 4. Comparison of cumulative and storage cache hit ratio among LRU with cooperative caches, exclusive caching with cooperative caches, and ASA
under the Cello92 trace in 128M storage cache size (a), and the HTTPD trace in 64M storage cache size (b).

algorithm is adaptive to multiple-client systems, with either
high-correlated workloads or low-correlated workloads.

Researchers have considered using adaptive algorithm to
adjust the cache size according to input workloads. Megiddo
and Modha [4] dynamically set size of two cache queues to
quickly evict cold blocks, while keep frequently used blocks.
Wong and Wilkes [6] adaptively insert evictions and loading
blocks into various points of cache space to improve hit ratios
of storage server caches in multi-client systems. Our work
is related to but different from those previous algorithms,
because we combine exclusive caching, inclusive caching,
and cooperative client caching together. ASA allocate cache
space dynamically to the inclusive cache and exclusive cache
to balance cumulative and local hit ratios.

VI. CONCLUSIONS

In this paper, we propose a new buffer cache management
algorithm: ASA, to improve performance of L2 caches in
multi-level cache hierarchies for both single client sys-
tems and multi-client systems with high-correlated and low-
correlated workloads. ASA combines both exclusive caching
in storage caches to improve hit ratios for low-correlated
workloads, and cooperative client caching to improve hit
ratios for high-correlated workloads. ASA allocates cache
space dynamically between the inclusive caches and exclu-
sive cache to maintain cumulative hit ratios and improve local
hit ratios according to various workloads.

We have evaluated our ASA algorithm and other typ-
ical multi-level caching algorithms using simulations un-
der both high-correlated and low-correlated workloads. The
results show that ASA achieves high hit ratios for both
low-correlated high-correlated workloads, and dramatically
increases the cumulative cache hit ratio over LRU.

ACKNOWLEDGMENT

This work was supported in part by the US National Sci-
ence Foundation under a REU grant SCI-0453438, Research
Office under a faculty research grant, and the Center for

(1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]
[12]

[13]

Manufacturing Research at Tennessee Technological Univer-
sity.

REFERENCES

A. Dan and D. Towsley, “An approximate analysis of the LRU and
FIFO buffer replacement schemes,” in ACM SIGMETRICS, May 1990,
pp. 143-152.

T. Johnson and D. Shasha, “2Q: A low overhead high performance
buffer management replacement algorithm,” in Proc. Twentieth Inter-
national Conference on Very Large Databases, 1995, pp. 439-450.
S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference recency
set replacement policy to improve buffer cache performance,” in Proc.
ACM SIGMETRICS, 2002, pp. 31-42.

N. Megiddo and D. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proc. Second USENIX Conf. File and Storage
Technologies, 2003.

Y. Zhou, Z. Chen, and K. Li, “Second-level buffer cache management,”
IEEE Transactions on Parallel Distributed Systems, July 2004.

T. Wong and J. Wilkes, “My cache or yours? Making storage more
exclusive,” in Proc. USENIX Ann. Technical Conf., 2002.

Z. Chen, Y. Zhang, and Y. Zhou, “Empirical evaluation of multi-level
buffer cache collaboration for storage systems,” in ACM SIGMETRICS,
2005.

L. N. Bairavasundaram, M. Sivathanu, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “X-RAY: A non-invasive exclusive caching
mechanism for RAIDs,” in Proc. 31th Annual International symposium
on Computer Architecture, June 2004, pp. 176-187.

S. Jiang and X. Zhang, “ULC: A file block placement and replacement
protocol to effectively exploit hierarchical locality in multi-level buffer
caches,” in Proceedings of the 24th International Conference on
Distributed Computing Systems, Mar 2004.

M. Dahlin, R. Wang, T. Anderson, and S. Patterson, “Cooperative
Caching: Using remote client memory to improve file system perfor-
mance,” Operating Systems Design and Implementation, 1994.

C. Ruemmler and J. Wilkes, “Unix disk access patterns,” in Proc.
Winter 1993 USENIX Conf.

E. D. Katz, M. Butler, and R. McGrath, “A scalable HTTP server:
The NCSA prototype,” Computer networks and ISDN systems, vol. 27,
no. 2, pp. 155-164, Nov 1994.

I. Ari, A. Amer, R. Gramacy, E. L. Miller, S. A. Brandt, and D. E.
Long, “ACME: Adaptive caching using multiple experts,” in Proc. in
Informatics, vol. 14, 2002, p. 14158.

