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Abstract. SSA/DSSA were introduced in SIGMOD’16 as the first algo-
rithms that can provide rigorous 1−1/e−ε guarantee with fewer samples
than the worst-case sample complexity O(nk logn

ε2OPTk
). They are order of

magnitude faster than the existing methods. The orginal SIGMOD’16
paper, however, contains errors, and the new fixes for SSA/DSSA, refer-
red to as SSA-fix and D-SSA-fix, have been published in the extended
version of the paper [11]. In this paper, we affirm the correctness on
accuracy and efficiency of SSA-fix/D-SSA-fix algorithms. Specifically, we
refuse the misclaims on ‘important gaps’ in the proof of D-SSA-fix’s ef-
ficiency raised by Huang et al. [5] published in VLDB in May 2017.
We also replicate the experiments to dispute the experimental discre-
pancies shown in [5]. Our experiment results indicate that implemen-
tation/modification details and data pre-processing attribute for most
discrepancies in running-time. 4

Keywords: Influence Maximization · Stop-and-Stare · Approximation
Algorithm.

1 Introduction

Given a network G = (V,E) and an integer k, the influence maximization (IM)
asks for a subset of k nodes, called seed set, that can influence maximum number
of nodes in the network under a diffusion model. The problem has produced a
long line of research results, e.g., those in [6, 3, 1, 16, 11] and references therein.

RIS framework. A key breakthrough for the problem is the introduction
of a novel technique, called reverse influence sampling (RIS), by Borgs et al. [1].
The RIS framework, followed by all works discussed in this paper [16, 11, 5], will

– Generate a collection {R1, R2, . . . , RT } of Reversed Reachability Sets (or RR
sets). Each RR set Ri is generated by selecting a random node u and perform

4 We requested the modified code from VLDB ’17 [5] last year but have not received
the code from the authors. We also sent them the explanation for the gaps they
misclaimed for the D-SSA-fix’s efficency proof but have not recieved their concrete
feedback.
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a reversed traversal from u to include into Ri all nodes that can reach to u,
i.e., can influence u.

– Find a subset S of k nodes that can cover a maximum number of RR sets
using the greedy algorithm for the maximum coverage problem.

– The returned solution S will be a (1− 1/e− ε) solution, for large T .

Worst-case Sample Complexity. The sample complexity, i.e., the number
of RR sets to guarantee a (1 − 1/e − ε) approximation factor is shown to be
θ(k, ε) = O(nk logn

ε2OPTk
) [17] where OPTk denotes the expected influence of an

optimal solution. Unfortunately, θ(k, ε) depends on OPTk, an unknown, thus, it
is challenging to know whether or not θ(k, ε) samples have been generated.

Tang et al. [16] proposed IMM algorithm that stops when θ(k, ε) samples
have been generated. Recently, a flaw in the analysis of IMM has been pointed
out by Wei Chen [2] together with a fix for IMM. Independently, we proposed in
[13] BCT, an algorithm that also stops within O(θ(k, ε)) samples for generalized
versions of IM, with heterogeneous cost and influence effect.

Unfortunately, even meeting the sample complexity θ(k, ε) is not efficient
enough for billion-scale networks. In several weighted models, such as Trivalency
or constant probability [11, 14, 15], IMM (and BCT) struggles for the largest test
networks such as Twitter and Friendster datasets. The main reason is that θ(k, ε)
is a worst-case sample complexity, thus, it is very conservative in practice. The
θ threshold needs to hold for all “hard” inputs, which rarely happens in practice.
Can we achieve (1 − 1/e − ε) approximation guarantee with fewer than θ(k, ε)
samples?

Stop-and-Stare and Instance-specific Sample Complexity. SSA and
D-SSA were introduced in our SIGMOD’16 [8] as the first algorithms that can
guarantee (1 − 1/e − ε) optimality with fewer than θ(k, ε) samples. For each
specific instance Π = (G = (V,E), k, ε) of IM, SSA and D-SSA aim to reduce
the sample complexity to some instance-specific thresholds. Unlike the worst-case
threshold θ, instance-specific thresholds adapt to the actual complexity of the
input including the information contained in network structure and influence
landscape. Thus, those thresholds can be several orders of magnitude smaller
than θ, especially, for ‘easy’ instances of IM. Consequently, algorithms that meet
this new thresholds are potentially 1,000 times (or more) faster than IMM [16]
and BCT [13].

Specifically, SSA and D-SSA were designed to provide 1− 1/e− ε guarantees

using only O(N
(1)
min and O(N

(2)
min samples where N

(1)
min > N

(2)
min, termed Type-1

and Type-2 minimum thresholds [8], respectively. N
(1)
min and N

(2)
min are instance-

specific lower-bounds on the number of necessary samples and can be many
times smaller than θ(ε, k) in practice. Specifically, they are the lower-bounds for
IM’s algorithms following “out-of-sample validation” approaches that: 1) conti-
nuously, generating two pools (of increasingly sizes) of samples, one for finding
a candidate solution and one for ‘validating’ the candidate solution; and 2) stop
when the discrepancies in the estimations of the candiate in the two pools are

sufficiently small. Unlike θ(ε, k), our new lower bounds N
(1)
min and N

(2)
min still vary

widely among inputs that share the parameters n, k, and OPTk.
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Table 1: Summary of papers related to SSA and D-SSA algorithms

Papers Date Contribution

Nguyen et al. SIGMOD’16 [8] 25 May 2016 Stop-and-Stare algorithms SSA/D-SSA
proposed.

Personal communication Jul. 2016

We identified the issues in the proof of
SSA/D-SSA thanks to anonymous
reviewers for IEEE/ACM ToN. The
reviewers pointed out a similar mistake in
our submitted manuscript [10].

Nguyen et al. ArXiv-v2 [9] 7 Sep 2016 SSA-fix provided (D-SSA remained
broken)

Huang et al. VLDB [5] early version 15 Jan. 2017

Identified the errors in proofs for
approximation factor and sample
efficiency for SSA and D-SSA and
provided a similar SSA-fix

Nguyen et al. ArXiv-v3 [11] 22 Feb 2017
Provided D-SSA-fix and correct proofs for
approximation factor and sample
efficiency for SSA-fix and D-SSA-fix

Huang et al. VLDB’17 [5] May 2017

Adding a claim on the flaw in the proof
for D-SSA-fix’s sample efficiency in [11].
No concerns raised for the proof on
SSA-fix/D-SSA-fix approximability and
SSA-fix’s sample efficiency.

This paper Oct. 2018
Affirmed the D-SSA-fix’s sample
efficiency, rejecting the doubt raised in
Huang et al. [5]

In summary, the key contribution in [11] is that SSA/D-SSA are not only
(1 − 1/e − ε) approximation algorithms but also are asymptotically optimal in
terms of the proposed instance-specific sample complexities.

Our work in [8] consists of 4 major proofs:

– SSA’s and D-SSA’s approximability: showing that SSA and D-SSA re-
turn 1− 1/e− ε solutions with high probability (2 proofs).

– SSA’s and D-SSA’s efficiency: showing that SSA and D-SSA using only
cT1 and cT2 samples where θ(k, ε) � T1 > T2 are instance-specific sample
complexities and c is a fixed constant (2 proofs).

Errors in our proofs [8] and fixes. Our proofs contain flaws which comes
from the applying of concentration inequalities in which the parameters, such as
ε, δ and the number of samples, may depend on the generated samples.
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The errors were brought to our attention through two channels: 1) the same
flaw pointed out by anonymous reviewers for one of our submission (not the
published version) to IEEE/ACM Transaction to Networking [10] in Jul. 2016
and 2) an early manuscript of Huang et al. [5] in Jan. 2017 and concerns on the
martingales sent to us by the authors of [5].

Upon discovering the errors, we uploaded the fix for SSA, called SSA-fix, on
Arxiv on Sep. 2016 [9] and the fix for D-SSA, called D-SSA-fix, with corrected
proofs in Feb. 2017 [11].

The final version of Huang et al. [5], while not giving any comments on
the 3 proofs for SSA-fix’s approximability, SSA-fix’s efficiency, and D-SSA-fix’s
approximability, claims “important gaps” in our proof for D-SSA-fix’s efficiency.
While we appreciated the errors pointed out in Huang et al. [5] for our original
paper in SIGMOD’16 [8], we found the claim on “important gaps” of D-SSA-fix’s
efficiency is a misclaim.

This paper aims to affirm the correctness of D-SSA-fix’s efficiency in [11],
explaining the ‘important gaps’ claimed in Huang et al.[5] (and their extended
version [4]) and explain the discrepancies in experiments claimed by Huang et
al.[5]. We summarize the timeline of publication and correspondence in Table 1.

Organization. We first summarize our fixes for SSA/DSSA in our Arxiv
[11]. Then we provide justification for the claimed by [5] on the “important
gaps” for D-SSA-fix’s efficiency. Finally, we present the experiment to explain
the observed discrepancies in [5].

Algorithm 1: SSA-fix

Input: Graph G, 0 ≤ ε, δ ≤ 1, and a budget k
Output: An (1− 1/e− ε)-optimal solution, Ŝk with at least (1− δ)-probability

1 Choose ε1, ε2, ε3 satisfying Equation 18 in [11];

2 Nmax = 8 1−1/e
2+2ε/3

Υ
(
ε, δ

6
/
(
n
k

))
n
k

; imax = dlog2
2Nmax
Υ (ε3,δ/3)

e;
3 Λ1 ← (1 + ε1)(1 + ε2)Υ (ε3,

δ
3imax

)

4 R← Generate Λ1 random RR sets
5 repeat
6 Double the size of R with new random RR sets

7 <Ŝk, Î(Ŝk)>← Max-Coverage(R, k, n)

8 if CovR(Ŝk) ≥ Λ1 then . Condition C1

9 δ′2 = δ2
3imax

;Tmax = 2|R| 1+ε2
1−ε2

ε23
ε22

10 Ic(Ŝk)← Estimate-Inf(G, Ŝk, ε2, δ
′
2, Tmax)

11 if Î(Ŝk) ≤ (1 + ε1)Ic(Ŝk) then . Condition C2

12 return Ŝk
13 until |R| ≥ Nmax;

14 return Ŝk
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Algorithm 2: The original D-SSA algorithm [8]

Input: Graph G, 0 ≤ ε, δ ≤ 1, and k
Output: An (1− 1/e− ε)-optimal solution, Ŝk

1 Λ← 2c(1 + ε)2 log( 2
δ
) 1
ε2

2 R← Generate Λ random RR sets by RIS

3 <Ŝk, Î(Ŝk)>← Max-Coverage(R, k)
4 repeat
5 R′ ← Generate |R| random RR sets by RIS

6 Ic(Ŝk)← CovR′(Ŝk) · n/|R′|
7 ε1 ← Î(Ŝk)/Ic(Ŝk)− 1
8 if (ε1 ≤ ε) then
9 ε2 ← ε−ε1

2(1+ε1)
, ε3 ← ε−ε1

2(1−1/e)

10 δ1 ← e
−

CovR(Ŝk)·ε23
2c(1+ε1)(1+ε2)

11 δ2 ← e
−

(CovR′ (Ŝk)−1)·ε22
2c(1+ε2)

12 if δ1 + δ2 ≤ δ then

13 return Ŝk
14 R← R∪R′

15 <Ŝk, Î(Ŝk)>← Max-Coverage(R, k)

16 until |R| ≥ (8 + 2ε)n
ln 2
δ
+ln (nk)
kε2

;

17 return Ŝk

Algorithm 3: D-SSA-fix

Input: Graph G, 0 ≤ ε, δ ≤ 1, and k
Output: An (1− 1/e− ε)-optimal solution, Ŝk

1 Nmax = 8 1−1/e
2+2ε/3Υ

(
ε, δ6/

(
n
k

))
n
k ;

2 tmax = dlog2(2Nmax/Υ (ε, δ3 ))e; t = 0;

3 Λ1 = 1 + (1 + ε)Υ (ε, δ
3tmax

);

4 repeat
5 t← t+ 1;
6 Rt = {R1, . . . , RΛ12t−1};
7 Rct = {RΛ12t−1+1, . . . , RΛ12t};
8 < Ŝk, Ît(Ŝk) >← Max-Coverage(Rt, k);

9 if CovRct (Ŝk) ≥ Λ1 then . Condition D1

10 Ict(Ŝk)← CovRct (Ŝk) · n/|Rct |;
11 ε1 ← Ît(Ŝk)/Ict(Ŝk)− 1;

12 ε2 ← ε
√

n(1+ε)

2t−1Ict(Ŝk)
; ε3 ← ε

√
n(1+ε)(1−1/e−ε)
(1+ε/3)2t−1Ict(Ŝk)

;

13 εt = (ε1 + ε2 + ε1ε2)(1− 1/e− ε) + (1− 1
e )ε3;

14 if εt ≤ ε then . Condition D2

15 return Ŝk;

16 until |Rt| ≥ Nmax;

17 return Ŝk;
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2 Summary of SSA-fix and D-SSA-fix [11]

First, we summarize the errors and our fixes for SSA/D-SSA algorithms and refer
to the extended version of our SIGMOD paper in [11] for complete proofs.

2.1 Fixes for SSA algorithm

The main idea of SSA (and the Stop-and-Stare framework) is to 1) generate a
collection of samples R and find a candidate solution Ŝk using the greedy algo-
rithm; 2) measure the difference between (biased) influence of Ŝk with samples
in R and an unbiased estimation of Ŝk on another set of samples; and 3) the al-
gorithm stops if the difference is small enough, otherwise, it doubles the number
of generated samples.
Summary of errors for SSA. The influence for candidate solution Ŝk is esti-
mated multiple times. And the error probability did not take this fact into the
account.
Summary of changes in SSA-fix. As highlighted in Algorithm 1, to account for
the multiple influence estimates by Estimate-Inf procedure, we decrease the error
probability by a factor imax = O(log n). Specifically, Algorithm 1 introduces
the factor imax and divides the probability guarantee δ2 by imax in Lines 2
and 9. Through union bound, we can show that this sufficiently accounts for
the cumulative error in Estimate-Inf while insignificantly affecting the number of
samples.

Note that [5] provides the same fix by decreasing the error probability by a
factor O(log n).

2.2 Fixes for D-SSAalgorithm

Summary of errors for D-SSA. In the orginial D-SSA, presented in Algo-
rithm 2, the computations of δ1 and δ2 depend on ε1, ε2 and ε3, which, in turn,
depend on the generated samples. This dependency on the generated samples
make the proof incorrect as the of Chernoff’s inequality.
Summary of changes in D-SSA-fix. Our D-SSA-fix, shown in Algorithm 3,
set δ1 = δ2 = c′δ for a fixed constant c′. The Chernoff’s bounds are applied to
bound the errors ε1 and ε2 at the fixed points when the number of samples are
Λ12i, for i = 1, 2, . . . , dlogNmaxe. This change is reflected in the Lines 9-14.

We compute ε1, the discrepancy of estimating using two different collections
of RR sets, i.e. R and R′; ε2 and ε3 bound the maximum estimation errors
with high probability. At a first glance, ε2 and ε3 still seem to depend on the

generated RR sets in Rct . However,
Ict(Ŝk)
1+ε serves as a lower-bound for I(Ŝk) with

high probability and can be used in the bounding of ε2 and ε3.

3 Affirming the correctness in D-SSA-fix’s efficiency [11]

The final version of Huang et al. [5] claims “important gaps” in our proof for
D-SSA-fix’s efficiency. Here we provide the details showing this misclaim and
affirm the correctness for D-SSA-fix’s efficiency proof.
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3.1 Gap in showing ε2 ≤ ε0/3 and explanation

Gap claimed by Huang et al. [5, 4]. The first gap claimed by Huang et al.
[4] (Page 14, B.1 Misclaim) is about Eqs. (93) and (94), in the proof of Theorem
6, in [11]. Below we quote those two equations in [11].

Apply the inequalities 2t−1 ≥ α n
OPTk

a, Eq. (88),

and I(Ŝk) ≥ (1− 1/e− ε)OPTk, Eq. (87).

For sufficiently large α > 9(1+ε)
(1−1/e−ε) , we have

ε2 = ε

√
n(1 + ε)

2t−1Ict(Ŝk)
≤ ε0/3 ≤ ε∗b/3 (93)

ε3 = ε

√
n(1 + ε)(1− 1/e− ε)
(1 + ε/3)2t−1Ict(Ŝk)

≤ ε0/3 ≤ ε∗b/3 (94)

a The Eq. (88) in [11] states 2t−1 ≥ α n
OPTk

ε2

ε20
. Here,

the factor ε2

ε20
were missed due to a typo.

Figure 1.1: Proof of Theorem 6 in [11]. Huang et al. [4] claimed im-
portant gaps for Eqs. (93) and (94).

Huang et al. raised the concern that their derivation using Eqs. (87) and (88)
do not lead to Eqs. (93) and (94).

Our response. The ommitted detail is that Ict(Ŝk) is an unbiased estimator of I(Ŝk),

thus, its value concentrates around I(Ŝk). In fact, from Eq. (89), ε̃t ≤ ε0
3 , and

Eq. (90), Îct(Ŝk) ≥ (1− ε̃t)I(Ŝk), it follows that

Îct(Ŝk) ≥ (1− ε0
3

)I(Ŝk) ≥ (1− ε

3
)I(Ŝk) (since ε0 = min{ε, ε∗b)}) (1)

Thus, picking a sufficiently large constant α = 100(1+ε)
(1−1/e−ε) , we have

ε2 = ε

√
n(1 + ε)

2t−1Ict(Ŝk)
≤ ε
√

n(1 + ε)

2t−1(1− ε
3 )I(Ŝk)

≤ ε

√√√√ n(1 + ε)

α n
OPTk

ε2

ε20
(1− ε

3 )I(Ŝk)
(by Eq. 88)

<
ε0
3

√
(1− 1/e− ε)OPTk

I(Ŝk)
≤ ε0

3
(by Eq. 87) (93)

Since ε3 < ε2, we also have ε3 ≤ ε0/3 ≤ ε∗b/3, i.e., Eq. (94) follows.
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...
In addition, the proof assumes that we can set
the constant α to be larger than 9(1+ε)

(1−1/e−ε) , but
this assumption does not always hold. In particu-
lar, as shown in Equation 27, α must ensure that

2t−1 ≥ α n
OPTk

ε2

ε20
, which leads to

α ≤ 2t−1OPTkε
2
0

nε2
. (2)

Therefore, we can set α ≥ 9(1+ε)
(1−1/e−ε) , only if

9(1 + ε)

(1− 1/e− ε) ≤
2t−1OPTkε

2
0

nε2
. (3)

This inequality is never established in the proof.

Figure 1.2: Argument in [4] on the gap of setting constant α

3.2 Gap on setting of α and explanation.

Gap claimed by Huang et al. [4]. The second gap is shown in Figure 1.2.
Huang et al. raised the concern that the constant α may not exist due to bounded

range between 9(1+ε)
(1−1/e−ε) and

2t−1OPTkε
2
0

nε2 .

Our response. We first select a fixed and sufficiently large constant α, e.g.,

setting α = 100(1+ε)
(1−1/e−ε) . There is no need to choose α to satify the inequality

2t−1 ≥ α n
OPTk

. Indeed, for a fixed constant α at some sufficiently large iteration

t such that |R| = Λ2t−1 ≥ TD-SSA ≥ αΥ (ε0,
δ

3tmax
) n
OPTk

, the inequality 2t−1 ≥
α n

OPTk
will hold. The alternative will be the algorithm stops ‘early’ due to the

condition |Rt| ≥ Nmax on line 16, Algorithm 3, thus, T2 = O(Nmax) = O(θ(k, t))
and we can still conclude the efficiency of D-SSA-fix.

4 Experimental discrepancies and explanations

Huang et al. [5] shown some discrepancies in our experiments in [8]. We replicate
the modifications in [5] and rerun all experiments in [8] and conclude that most
anomalies found in [5] are attributed to different experimental settings and data
processing. We were unable to reproduce some results in [5] due most likely to
unknown modifications in [5].

4.1 Experimental settings

We follow the settings in [5] with the following exceptions:
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– Modifications of SSA and D-SSA. We sent a request to the authors of [5]
for the modifications they made on SSA and D-SSA, however, we have waited
for 5 months without responses. Following [5], we removed all the practical
optimizations we made in our code and only kept exactly what are described
in our paper [8] including the larger constants, adding RIS samples one by
one (not in batch of fixed size as before), starting the number of samples from
Υ1. We published our implementation in [12] for reproducibility purposes.

– Experiment Environment. We ran all the experiments in our Linux ma-
chine which has a 2.30Ghz Intel(R) Xeon(R) CPU E5-2650 v3 40 core pro-
cessor and 256GB of RAM.

– 5 runs of each experiment: We repeat each experiment 5 times and report
the average.

– New results of SSA and D-SSA fixes: We also include new results for
the fixes of SSA and D-SSA algorithms. The modified implementation can
be found in [12].

Formating the input networks. We download most of the raw networks
from the well-known Stanford SNAP dataset collection except the large network
Twitter that was obtained from [7] when it was still available for download.
In our original experiments in SIGMOD ’16 [8], we directly took the networks
and compute the edge weights according to the Weighted Cascade (WC) model.
In addition, instead of using the plain-text format, we convert the network to
binary format for fast I/O communication (a significant speedup, e.g. 2 minutes
to read the whole Twitter network compared to almost an hour for IMM using
plain-text). The performance for all comparing IM algorithms on those weighted
networks are presented subsequently. Note that, we did not add the I/O time to
the results on running time.

Later, we noticed that on some large undirected networks, e.g. Orkut, only
one direction of the edge is stored in the raw data. However, for smaller networks,
e.g. NetHEPT, NetPHY, both directions are kept. We run our experiments again
and found certain matching results with [5] and suspect the discrepancies in [5]
are partially caused by the data formatting. Nevertheless, all the algorithms are
run on the same data set and fair comparisons are made. Note that [5] also
ignored the data formatting details.

4.2 Experiments rerun

To confirm the experimental results in both our original work in SIGMOD ’16
[8] and the discrepancies found in VLDB ’17 [5], we replicate both of these
experiments following exactly their settings as described as follows:

– SIGMOD ’16 - Rep: Rerun of experiments in our work SIGMOD ’16 [8]
where the original implementations of SSA and D-SSA are used.

– VLDB ’17 -Rep: Rerun of experiments in VLDB ’17 paper [5] where we
follow their descriptions to modify SSA and D-SSA algorithms, i.e. removing
all the optimization we made in our original implementations.
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– VLDB ’17 -Rep (undirected): Also a rerun of experiments in VLDB ’17
paper [5] but the network input is formated as undirected, i.e. for each edge
(u, v), add the other direction (v, u).

For comparison, we add the results in our SIGMOD ’16 paper [8] and VLDB ’17
paper [5] and denote them as SIGMOD ’16 [8] and VLDB ’17 [5], respectively
in our results.

4.3 Possible explanations for the discrepancies

We compare the experiments’ settings between our paper [8] and [5] and found
the following mismatches:

– Code modifications: A major point is that the authors of [5] has modi-
fied our code, thus, affected the performance of our code. Since we did not
received the modified code from [5] after 5 months of waiting, we follow the
description in [5] to modify SSA and D-SSA.

– Directed/Undirected network formats: The Orkut and Friendster net-
works are undirected networks downloaded from SNAP library but we treat
them as directed networks. All algorithms (IMM, TIM+) were run on this
same directed network and, thus, the comparison were fair. The oversight of
treating Orkut/Friendster as directed networks is due to the expectation that
the edges in those networks are doubled, i.e., both (u, v) and (v, u) are pre-
sent in the input. Unfortunately, unlike other smaller undirected networks,
this is not the case for Orkut and Friendster.

– Measures of the number of samples: We measure the number of samples
used by each algorithm. For SSA, we show the number of samples used in
finding the max-coverage.

(a) k = 1 (b) k = 500 (c) k = 1000

Fig. 1: Number of samples generated on Enron network (See Sub-
section 4.2 for legend details)
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(a) k = 1 (b) k = 500 (c) k = 1000

Fig. 2: Number of samples generated on Epinions network (See Sub-
section 4.2 for legend details)

(a) k = 1 (b) k = 500 (c) k = 1000

Fig. 3: Number of samples generated on Orkut network (See Sub-
section 4.2 for legend details)

4.4 Experimental results

We replicate two sets of experiments in [5] based on which they claimed the
discrepancies in our experiments in [8]. The first set focuses on the number of
RR sets generated by different algorithms on three networks, i.e. Enron, Epinions
and Orkut, and the results are presented in Figures 1, 2 and 3. The second set of
experiments is solely about the running time of IM algorithms on the case k = 1
and tests on 6 networks, namely NetHEPT, NetPHY, Epinions, DBLP, Orkut
and Twitter. The results for these experiments are shown in Table 2. Based on
our results, we draw the following observations:
• Our results in the SIGMOD ’16 paper [8] are reproducible given

specific implementation settings. The results in Figures 1, 2 and 3 show
that our primary experimental results in SIGMOD ’16 paper [8] are very similar
to our rerun. Here we used exactly the same implementation published online in
[12]. There is slight random fluctuation due to the fact that in [8], we only run
each experiment once but on our rerun, we take the average over 5 runs.
• Data processing has substantial impact on the experimental re-

sults and may cause the discrepancies found in [5]. From Figure 3 on
Orkut network that we had the network format problem, we see the sharp diffe-
rences when the network is formated as directed and undirected. This explains
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Table 2: Relative running time of SSA, D-SSA, SSA fix and D-SSA fix
to IMM for k = 1

LT model IC model

Nets SSAD-SSA
SSA
fix

D-SSA
fix

IMM SSAD-SSA
SSA
fix

D-SSA
fix

IMM

NetHEPT 4.1 2.1 1.0 0.9 1 4.9 3.7 2.6 1.1 1

NetPHY 5.4 3.5 1.3 1.2 1 4.9 4.1 2.5 2.0 1

Epinions 3.0 2.2 1.3 1.0 1 4.3 4.0 1.2 0.9 1

DBLP 4.5 2.7 1.2 1.0 1 5.4 5.0 1.3 1.1 1

Orkut 2.1 1.4 0.7 0.7 1 5.3 4.5 1.2 1.0 1

Twitter 0.7 0.6 0.4 0.4 1 5.7 3.6 1.3 1.3 1

the discrepancies on Orkut found in the VLDB ’17 paper [5]. Moreover, when
formating correctly as an undirected network, our results largely agree with those
in [5] on Orkut dataset.
• Some experimental results in [5] are not replicable: From Figures 1,

2 and 3, we see that compared to the results reported in [5], our rerun of [5] are
2 times smaller on Enron and Epinions datasets. These differences can only be
explained by the unknown modifications made in [5] that were not documented
in their paper and unknown to us.

On the case of k = 1, in [5], the authors show that IMM always runs faster
than SSA and D-SSA, however, from Table 2, on the largest network, i.e. Twitter,
SSA and D-SSA are faster than IMM under LT model.

The number of samples generated by SSA and D-SSA in our reruns are se-
veral times higher than that reported in our conference paper [8]. This is totally
expected since we ignore all the optimizations made in our prior implementati-
ons.
• New results: D-SSA fix, SSA fix and IMM for k = 1 have similar

running time. From Figures 1, 2 and 3, we also include the results for SSA fix
and D-SSA fix and observe that SSA fix and D-SSA fix use fewer samples than
IMM even for k = 1. For larger value of k, SSA fix and D-SSA fix are significantly
more efficient than IMM in sample usage. From Table 2, we see that namely SSA
fix and D-SSA fix use roughly the same amount of time as IMM for k = 1 and
run faster than IMM on large networks, e.g. Orkut, Twitter, on the LT model.
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