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Abstract—Online social networks have been one of the most effective
platforms for marketing and advertising. Through the “world-of-mouth”
exchanges, so-called viral marketing, the influence and product adoption
can spread from few key influencers to billions of users in the network. To
identify those key influencers, a great amount of work has been devoted
for the Influence Maximization (IM) problem that seeks a set of k seed
users that maximize the expected influence. Unfortunately, IM encloses
two impractical assumptions: 1) any seed user can be acquired with the
same cost, 2) all users are equally interested in the advertisement. In
this paper, we propose a new problem, called Cost-aware Targeted Viral
Marketing (CTVM), to find the most cost-effective seed users who can
influence the most relevant users to the advertisement. Since CTVM is
NP-hard, we design an efficient (1 — 1/+/e — €)-approximation algorithm,
named BCT, to solve the problem in billion-scale networks. Compar-
ing with IM algorithms, we show that BCT is both theoretically and
experimentally faster than the state-of-the-arts while providing better
solution quality. Moreover, we prove that under the Linear Threshold
model, BCT is the first sub-linear time algorithm for CTVM (and IM)
in dense networks. We carry a comprehensive set of experiments on
various real-networks with sizes up to several billion edges in diverse
disciplines to show the absolute superiority of BCT on both CTVM and
IM domains. Experiments on Twitter dataset, containing 1.46 billions of
social relations and 106 millions tweets, show that BCT can identify key
influencers in trending topics in only few minutes.

Index Terms—Viral Marketing, Influence Maximization, Sampling Alg.

1 INTRODUCTION
WITH billions of active users, Online social networks
(OSNs) such as Facebook, Twitter and LinkedIn have
become critical platforms for marketing and advertising.
Through the “word-of-mouth” exchanges, information, in-
novation, and brand-awareness can disseminate widely
over the network. Many notable examples includes the ALS
Ice Bucket Challenge, resulting in more than 2.4 million up-
loaded videos on Facebook and $98.2m donation to the ALS
Association in 2014; the customer initiative #PlayltForward
of ToyRUs on Twitter that draws more than $35.5m; and the
unrest in many Arab countries in 2012. Despite the huge
economic and political impact, viral marketing in billion-
scale OSNSs is still a challenging problem due to the huge
numbers of users and social interactions.
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A central problem in viral marketing is the Influence Max-
imization (IM) problem that seeks a seed set of k influential
individuals in a social network that can (directly and indi-
rectly) influence the maximum number of people. Kempe
et al. [1] was the first to formulate IM as a combinatorial
optimization problem on the two pioneering diffusion mod-
els, namely, Independent Cascade (IC) and Linear Threshold
(LT). Since IM is NP-hard, they provide a natural greedy
algorithm that yields (1 — 1/e — ¢)-approximate solutions
for any € > 0. This celebrated work has motivated a vast
amount of work on IM in the past decade [2]-[8].

Unfortunately, the formulation of viral marketing as the
IM problem encloses two impractical assumptions: 1) any
seed user can be acquired with the same cost and 2) the
same benefit obtained when influencing one user. The first
assumption implies that incentivizing high-profile individu-
als costs the same as incentivizing common users. This often
leads to impractical solutions with unaffordable seed nodes,
e.g., the solutions in Twitter often include celebreties like
Katy Perry or President Obama. The second assumption
can mislead the company to influence “wrong audience”
who are neither interested nor potentially profitable. In
practice, companies often target not all users but specific
sets of potential customers, decided by the factors like age
and gender. Moreover, the targeted users can bring different
amount of benefit to the company. Thus, simply counting
the number of influenced users, as in the case of IM, does
not measure the true impact of the campaign and lead
to the choosing of wrong seed set. A few recent works
attempt to address the above two issues separately. In [9]
the authors study the Budgeted Influence Maximization (BIM)
that considers an arbitrary cost for selecting a node and
propose an (1 — 1/4/e — €) approximation algorithm for the
problem. However, their algorithm is not scalable enough
for billion-scale networks. Recently, there is a serial works
in [10], [11] investigating the Targeted Viral Marketing (TVM)
problem, in which they attempt to influence a subset of users
in the network. Unfortunately, all of these methods rely on
heuristics strategy and provide no performance guarantees.

In this paper, we introduce the Cost-aware Targeted Viral
Marketing (CTVM) problem which takes into account both
arbitrary cost for selecting a node and arbitrary benefit
for influencing a node. Given a social network abstracted
by a graph G = (V,E), each node u represents a user
with a cost c(u) to select into the seed set and a benefit
b(u) obtained when u is influenced. Given a budget B, the



goal is to find a seed set S with total cost at most B that
maximizes the expected total benefit over the influenced
nodes. CTVM is more relevant in practice as it generalizes
other viral marketing problems including TVM, BIM and
the fundamental IM. However, the problem is much more
challenging with heterogeneous costs and benefits. As we
show in Section 3, extending the state-of-the-art method for
IM in [8] may increase the running time by a factor |V,
making the method unbearable for large networks.

We introduce BCT, an efficient approximation algo-
rithm for CTVM for billion-scale networks. Given arbitrarily
small € > 0, our algorithm guarantees a (1 — 1/\/e — ¢)-
approximate solution in general case and a (1 — 1/e — ¢)-
approximate solution when nodes have uniform costs. BCT
also dramatically outperforms the existing state-of-the-art
methods for IM, e.i., IMM, TIM/TIM+, when nodes have
uniform costs and benefits. In particular, BCT only takes
several minutes to process a network with 41.7 million
nodes and 1.5 billion edges.

Our contributions are summarized as follows:

e We propose the Cost-aware Targeted Viral Marketing
(CTVM) problem that consider heterogeneous costs
and benefits for nodes in the network. Our problem
generalizes other viral marketing problems including
TVM, BIM, and the fundamental IM problems.

o We propose BCT, an efficient algorithm that returns
(1—1/+/e—¢)-approximate solutions for CTVM with
a high probability. Moreover, the algorithm meets the
theoretical thresholds in [14] on the sufficient number
of samples. Also, BCT is a sub-linear time algorithm
for CTVM (and IM) in dense graphs, under the LT
model.

e We provide extensive experiments on various real
networks. The experiments suggest that BCT, con-
sidering both cost and benefit, provides significantly
higher quality solutions than existing methods, while
running several times faster than the state-of-the art
ones. Further, we also demonstrate the ability of BCT
to identify key influencers in trending topics in a
Twitter dataset of 1.5 billion social relations and 106
million tweets within few minutes. The experiments
also indicate that BCT is robust against noise and
various schemes to assign node costs.

Related works. Kempe et al. [1]] is the first to formulate

IM as an optimization problem. They show the problem to
be NP-complete and devise an (1 — 1/e — €) approximation
algorithm. Also, IM cannot be approximated within a factor
(1 — L 4 ¢€) [17] under a typical complexity assumption.
Later, computing the exact influence is shown to be #P-hard
[3]. Leskovec et al. [2] study the influence propagation in
a different perspective in which they aim to find a set of
nodes in networks to detect the spread of virus as soon as
possible. They improve the simple greedy method with the
lazy-forward heuristic (CELF), which is originally proposed
to optimize submodular functions in [18], obtaining an (up
to) 700-fold speed up.

Several heuristics are developed to derive solutions in
large networks. While those heuristics are often faster in
practice, they fail to retain the (1 — 1/e — €)-approximation
guarantee and produce lower quality seed sets. Chen et al.
[19] obtain a speed up by using an influence estimation for
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the IC model. For the LT model, Chen et al. [3] propose
to use local directed acyclic graphs (LDAG) to approximate
the influence regions of nodes. In a complement direction,
there are works on learning the parameters of influence
propagation models [20], [21].

Recently, Borgs et al. [13] make a theoretical break-
through and present an O(kI%(m + n)log®n/e?) time al-
gorithm for IM under IC model. Their algorithm (RIS)
returns a (1 — 1/e — ¢)-approximate solution with proba-
bility at least 1 — n~!. In practice, the proposed algorithm
is, however, less than satisfactory due to the rather large
hidden constants. Tang et al. [8] reduces the running time to
O((k + 1)(m + n)logn/e?) and present the first algorithm
that is scalable for billion-size networks. The key result is

that only 6 = (8 + 26)71% samples (RR sets) are
needed to guarantee (1 —1/e — es approximate solution.

In the Tang et al. [8], a remaining challenge is to esti-
mate the unknown OPT}, the maximum influence spread.
The two heuristics TIM/TIM+ provided in [8] may incur
many times more samples, thus, are not efficient enough
for large networks. Compared with TIM/TIM+ on IM prob-
lem, our conference paper in [22], based on a different
approach of stopping condition, both improves the the-
oretical threshold of the sufficient number of samples to
guarantee (1 — 1/e — €)-solution quality by a factor of
more than 6 and guarantees that our actual number of
generated samples concentrated around a small constant
times the threshold while TIM/TIM+ fail to provide any
guarantee. Independently with our work, IMM, proposed
in [14], follows the framework of TIM/TIM+ but improve
further the threshold by a factor of up to 5. IMM also
provides a guarantee on achieving some constant times the
threshold, however, the guarantee is quite loose. That is
their expected number of samples is at least 3 times larger
than the theoretical threshold. In this paper, we adopt a
stopping condition approach and prove that our method
theoretically and practically surpasses all other methods.

In another direction, Nguyen and Zheng [15] investi-
gate the BIM problem in which each node can have an
arbitrary selecting cost. They proposed a (1 — 1//e — ¢)
approximation algorithm (called BIM) based on a greedy
algorithm for Budgeted Max-Coverage in [23] and two other
heuristics. However, the greedy algorithm relies on massive
simulations and thus, severely suffers from scalability while
the two heuristics have no approximation guarantee. In
contrast, we aim towards efficient approximation algorithm
with 1—1/e—e guarantee running on billion-scale networks.
Instead of massive simulation, we employ the advanced
technique of reverse influence sampling combined with the
optimal stopping condition in Monte Carlo estimation [24].

A line of works in [10], [11], [25] consider Topic-aware
Influence Maximization problem in which edges are asso-
ciated with a topic-dependent user-to-user social influence
strengths. The problem also asks for a set of k users that
maximize user adoptions. However, all of the proposed
methods do not possess any theoretical guarantee on the
solution quality. For a comprehensive overview, we provide
the summary of the related algorithms in Table

There have also been a number of interesting studies on
area related to our problem. [26]-[28] focus on designing
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TABLE 1: Main results of related methods (& is the number of seed nodes, n, m are the numbers of edges and edges, Approx.
indicates whether the algorithm provides guarantee i.e., 1 — 1/e — € optimal with (1 — §)-probability where § = 1/n!).

Method IM BIM TIM CTVM Approx. Model Time Complexity
Naive Greedy [1] v v LT+IC O(kmnR), R is the #Monte Carlo simulations (typically 10000)
CELF [12] v v LT+IC O(kmnR), empirically faster than Naive Greedy
CELF++ [5] v v LT+IC O(kmnR), optimized CELF
Simpath [4] v LT O(kmnR), empirically faster than Naive Greedy
LDAG [3] v MIA O(n? + kn?log(n)) (see [3] for details)
Borgs’s method [13] v/ v LT+IC O(KI?(m + n)log?(n)/€®)
TIM+ [8], IMM [14] v v LT+IC O((k +1)(n + m)log(n) /e?)
BIM [15] v v LT+IC O(n?(log(n) + d) + kn(1 + d)) (d is max in-degree)
KB-TIM [16] v v IC

2
BCT (this paper) a /v v LT+IC { O((k+ l)nlog(n)/e for the LT model

O((k +1)(n+m)log(n)/e?)  for the IC model

data mining or machine learning algorithms to extract in-
fluence cascade model parameters from real datasets. [29]
study the problem of adaptive seeding which, given a
budget, asks for policy of selecting nodes in two stages to
maximize the total influence: a portion of the given budget
is spent on the first stage to reveal more available nodes for
seeding and the rest is used for selecting nodes later.

Organization. The rest of the paper is organized as fol-
lows. In Section 2} we present network model, propagation
models, and the problem definitions. Section [3| presents our
BCT algorithm for CTVM. We analyze BCT approximation
factor and time complexity in Section#} Experimental results
are shown in Section 5] We conclude in Section [l

2 MODELS AND PROBLEM DEFINITIONS

In this section, we formally define the CTVM problem and
present an overview of the Reverse Influence Sampling
approaches in Borgs et al. [13] and Tang et al. [8]], [14]. For
readability, we focus on the Linear Threshold (LT) propaga-
tion model [1] and summarize our similar results for the
Independent Cascade (IC) model in Subsection [4.5]

2.1 Model and Problem Definition

Let G = (V, E, ¢, b,w) be a social network with a node set
V and a directed edge set E, with |V| = n and |E| = m.
Each node u € V has a selecting cost ¢(u) > 0 and a benefit
b(u) if w is influenced. Each directed edge (u,v) € E is
associated with an influence weight w(u,v) € [0, 1] such
that >0 o w(u,v) < 1.

Our model assumes that all the parameters, c(u), b(u)
Yu € V and w(u,v) Y(u,v) € E are given. In fact, these
can be estimated depending on the specific context when
applying our method. The cost of node u, c¢(u), manifests
how hard (how much effort) it is to initially influence the
respective person, e.g., convince him to adopt the product.
Thus, ¢(u) is usually regarded proportionally to some cen-
trality measures, e.g., the degree centrality [15].

Similarly, the node benefit b(u) refers to the gain of
influencing node u and hence is context-dependent, e.g.,
in targeted viral marketing, b(u) is assigned 1 if u is in
our targeted group and 0 outside [10], [11]] or learned from
the interest level on the relevant topic, e.g., number of
tweets/retweets with specific keywords on Twitter network.
Additionally, w(u, v) indicates the probability of u influenc-
ing v which is widely evaluated as the interaction frequency
from u to v [1f], [8] or learned from action logs [28].

Given a graph G and a subset S C V, referred to as
the seed set, in the LT model the influence cascades in G

as follows. First, every node v € V independently selects a
threshold A\, uniformly at random in [0, 1]. Next the influence
propagation happens in round ¢t = 1,2, 3, . ..

e At round 1, we activate nodes in the seed set S and
set all other nodes inactive. The cost of activating the
seed set S is given ¢(S) = >, cq c(u).

e Atroundt > 1, an inactive node v is activated if the
weighted number of its activated neighbors reaches
its threshold, i.e., 3=, iive neighbor u W(Us V) = Av.

¢ Once a node becomes activated, it remains activated
in all subsequent rounds. The influence propagation
stops when no more nodes can be activated.

Denote by I(S) the expected number of activated nodes
given the seed set S, when the expectation is taken among
all A\, values from their uniform distributions. We call I(.S)
the influence spread of S in G under the LT model.

The LT is shown in [1]] to be equivalent to the reachability
in a random graph ¢, called live-edge graph or sample graph,
defined as follows: Given a graph G = (V, E, w), for every
v € V, select at most one of its incoming edges at random,
such that the edge (u, v) is selected with probability w(u, v),
and no edge is selected with probability 1 —> ", w(u, v). The
selected edges are called live and all other edges are called
blocked. By claim 2.6 in [1]], the influence spread of a seed set
S equals the expected number of nodes reachable from S
over all possible sample graphs, i.e.,

I(S) = ) _ Prlg]|R(g, 5),
gEG

where C denotes that the sample graph g is generated from
G with a probability denoted by Pr[g|, and R(g,S) denotes
the set of nodes reachable from S in g.

Similarly, the benefit of a seed set S is defined as the
expected total benefit over all influenced nodes, i.e.,

B(S) = Z Pr[g] Z b(u).
gCG u€eR(g,S)

We are now ready to define our problem as follows.
Definition 1 (Cost-aware Targeted Viral Marketing -CTVM).
Given a graph G = (V, E, ¢, b,w) and a budget B > 0, find a
seed set S C V with total cost ¢(S) < B to maximize B(S).

CTVM generalizes the viral marketing problems:

M

@)

e Influence Maximization (IM): IM is a special case of
CTVM with ¢(u) = 1 and b(u) = 1Vu € V.

o Budgeted Influence Maximization (BIM) [15]: find a
seed set with total cost at most B, that maximizes
I(S). Thatis b(u) = 1Vu e V.



o Targeted Viral Marketing (TVM): find a set of k£ node
to maximize the number of influenced nodes in a
targeted set T'. This is c(u) = 1 Vu € V and benefits
c¢(v) =1ifv € T, and ¢(w) = 0 otherwise.

Since IM is a special case of CTVM, CTVM inherits
the IM’s complexity and hardness of approximation. Thus
CTVM is an NP-hard problem and cannot be approximated
within a factor 1 — 1/e + € for any € > 0, unless P = N P.

In Table 2} we summarize the frequently used notations.

TABLE 2: Table of Notations

Notation ‘ Description
n,m #nodes, #links in G, respectively
I(S),I(S, u) Influence Spread of seed set S C V and influ-

ence of S on anode v. Forv € V, I(v) = I({v})
r Sum of all node benefits, 3~ . b(v)

B(S) Benefit of seed set S C V
B(S) B(S) = de%ﬁl“ - an estimator of B(.S)
OPTy The maximum B(S) for any size-k seed set S

Sk An optimal size-k seed node, B(S;) = OPT}

my #hyperedges in hypergraph #

deg#(S), |#hyperedges incident at some node in S. Also,
SCV degy (v) forv eV

e a=+/In(1/6) +1n2

8 B=1/(1=1/e)- (in(}) +n(1/6) + In2)

c2 © = [O=1/mTR)

AL AL = (1 4 e) 3H22/DTANE/5) in ()

3
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2.2 Summary of the RIS Approach

The major bottle-neck in previous methods for IM [1]], [2], [4],
[15] is the inefficiency in estimating the influence spread. To
address this, Borgs et al. [13] introduced a novel approach
for IM, called Reverse Influence Sampling (RIS), which is
the foundation for TIM/TIM+ algorithms, the state-of-the-
art methods for IM [8].

Given a graph G = (V,E,c,b,w), RIS captures the

influence landscape of G through generating a hypergraph
H = (V,{&1,&2,...}). Each hyperedge &; € H is a subset of
nodes in V' and constructed as follows.
Definition 2 (Random Hyperedge). Given G = (V, E,w),
a random hyperedge E; is generated from G by 1) selecting a
random node v € V' 2) generating a sample graph g C G and 3)
returning E; as the set of nodes that can reach v in g.

Node v in the above definition is called the source of
&; and denoted by src(&;). Observe that £; contains the
nodes that can influence its source v. If we generate multiple
random hyperedges, influential nodes will likely appear
more often in the hyperedges. Thus a seed set S' that covers
most of the hyperedges will likely maximize the influence
spread I(S). Here a a seed set S covers a hyperedge &;, if
SN E; # 0. This is captured in the following lemma in [13].

We denote by my, the number of hyperedges in H.

Lemma 1. [13] Given G = (V, E, w) and a random hyperedge
&; generated from G. For each seed set S C V,

I(S) = nPr[S covers &;]. ©)]
RIS framework. Based on the above lemma, the IM problem
can be solved using the following framework.

o Generate multiple random hyperedges from G

o Use the greedy algorithm for the Max-coverage prob-
lem [23] to find a seed set S that covers the maximum
number of hyperedges and return S as the solution.

Thresholds for Sufficient Number of Samples. The core
issue in applying the above framework is that: How many
hyperedges are sufficient to provide a good approximation solu-
tion? For any €, € (0,1), Tang et. al. established in [8] a
theoretical threshold 1n2/6 + In (%)
_ n 0\
0= (8+2¢)n 20PT, (4)

and proved that when the number of hyperedges in H
reaches 0, the above framework returns an (1 — 1/e — ¢)-
approximate solution with probability 1 — J. Here OPT;,
denotes the maximum influence spread I(S).

Unfortunately, computing OPT,, is intractable, thus,
TIM/TIM+ in [8] have to approximate OPT}, by a heuristic
KPT* and thus, generate 0,°FTi hyperedges, where the
ratio 1? ;}’1 > 1 is not upper-bounded. That is TIM/TIM+
may generate many times more hyperedges than needed. In
contrast, our BCT algorithm in Section [3| guarantees that
the number of hyperedges is at most a constant time of
the theoretical threshold (with high probability). Thus, its
running time is smaller and more predictable.

The same group of authors further reduce the threshold
0 (Theorem 1 in [14]) to,

g_ 2 ((1-1/e)-a+p)? 5
N OPTk . 62 ’ (

a=4/In(1/6) +In2, and (6)
B=1/(1-1/e) (n(}) +In(1/8) +ln2). (@)
Define %

where

2= (1-1/e)a+ B’ ®)
then, the threshold 8 can be rewritten as follows,
0 2np?  (2—2/e)n(In () +1n(1/0) +In2) )
OPTye3 OPTye3

which is shown in [14] to be 5 times smaller than that
of Eq. @ IMM also improves the estimation of KPT™*
to be bounded by some constant times OPT}, with high
probability. However, the bound is loose and the estimation
process is complicated. On the other hand, the proposed
BCT algorithm in this paper adopts the better threshold in
[14] with our approach in [22] which: 1) avoids a possibly
complicated and expensive estimation phase, 2) achieves a
better bound on the actual number of samples and 3) solves
the more general CTVM problem (covers IM problem).

Remark. The most intuitive way to extend the RIS frame-
work to cope with benefit of the nodes is to modify the RIS
framework to find a seed set S that covers the maximum
weighted number of hyperedges, where the weight of a
hyperedge &; is the benefit of the source src(&;). However
following the same analysis in Tang et al. [8], [14], we need

g = ebmaxa (10)
where by,,4, = max{b(u)|u € V}.

Unfortunately, fp can be as large as n times 6 in the
worst-case. To see this, we can (wlog) normalize the node
benefit b(u) so that ) .y b(u) = n. Then note that by,q.
could be as large as >, oy b(u) = n.



3 BCT APPROXIMATION ALGORITHM

In this section, we present BCT - a scalable approximation
algorithm for CTVM. BCT combines two novel techniques:
BSA (Alg. [I), a sampling strategy to estimate the benefit
and a powerful stopping condition to smartly detect when
the sufficient number of hyperedges is reached.

Algorithm 1 BSA - Benefit Sampling Alg. for LT model

Input: Weighted graph G = (V, E, w).
Output: A random hyperedge £; C V.

1: &« 0;
2: Pick a node v with probability @ ;
3: repeat
4: Adduto&j;
5:  Attempt to select an edge (v, u) using live-edge model;
6: if edge (v, u) is selected then Set u < v;
7: until (u € £;) OR (no edge is selected);
8: return &;;
3.1 Efficient Benefit Sampling Algorithm - BSA

Due to the inefficiency of RIS when applying to CTVM
problem, we propose a generalized version of RIS, called
Benefit Sampling Algorithm - BSA, for estimating benefit
B(S). The BSA for generating a random hyperedge £; C V
under LT model is summarized in Algorithm [I} A similar
BSA procedure for IC model can be derived by changing the
generating of live-edges in the Lines 5 and 6 of Algorithm
to the equivalent live-edge model for IC [1]. The great deal
of difference of BSA from RIS is that it chooses the source node
proportional to benefit of each node as opposed to choosing
uniformly at random in RIS. That is the probability of
choosing node u is P(u) = b(u)/T with I' = Y~ i, b(v).
After choosing a starting node u, it attempts to select an in-
neighbor v of w according to the LT model and make (v, u) a
live edge. Then it “moves” to v and repeat the process. The
procedure stops when we encounter a previously visited
vertex or no edge is selected. The hyperedge is the set of
nodes visited along the process.

Note that the selection of a source node with the proba-
bility proportional to the benefit can be done in O(1) after an
O(n) preprocessing using the Alias method [30]. Similarly,
the selection of the live edge according to the influence
weight can also be done in O(1). In contrast, in the IC model
[13], it takes a time 6(d(v)) at a node v to generate all live
edges pointing to v. This key difference makes the generating
hyperedges in the LT model more efficient than that in the IC.

The key insight into why random hyperedges generated
via BSA can capture the benefit landscape is stated in the
following lemma.

Lemma 2. Given a fixed set S C V, for a random hyperedge &,

ggggev[g] ns#0= T (1)

The above lemma on computing benefit is similar to

Lemmal(T|on influence except having the normalizing constant

T in the place of n in Lemma [I} Thus, the RIS framework can

be applied and a similar result to Theorem 1 in [14] on the
threshold of hyperedges can be derived as follows.

Corollary 1. Let
Bo(e 6) — (2—-2/e)l'(In (}) +In(1/8) + In2)
p(&0) = OPT.} ‘

(12)
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For any fixed T > 0p, the RIS framework with T random
hyperedges, generated by BSA, will return an (1 — 1/e — €)-
approximate solution for the CTVM problem.

3.2 Solving Budgeted Max-Coverage Problem

Finding a candidate seed set Sy that appears most fre-
quently in the hyperedges is a special version of the Bud-
geted Max-Coverage problem [31]. Each hyperedge repre-
sents an element in the Budgeted Max-Coverage problem and
each node v € V is associated with a subset of hyperedges
that contains v. The cost to select a subset is given by the
cost to select the corresponding node into the seed set.

We use the greedy algorithm, denoted by Budgeted-Max-
Coverage, in [31] to find a maximum covering set within
the budget B is applied. This procedure considers two can-
didates and chooses the one with higher coverage. The first
one is taken from greedy strategy which sequentially selects
nodes with highest efficiency, i.e. ratio between marginal
coverage gain and its cost of selecting,

Vi=1.k,v; =arg max A(S;_1,v),5; = Si—1U{v;}

veV\Si_1

where A(S;_1,v) = COV(S’”U{:(];)))_COV(S"'”) and Cov(S;_1)
is the number of hyperedges incident to at least a node
in S;_;. The second solution is just a node with highest
coverage within the budget. [31]] proved that this procedure
returns a (1—1/+/€)-approximate cover if the nodes’ cost are
non-uniform, or, (1 — 1/e)-approximate cover, otherwise.

Note that we can improve the approximation ratio to
(1 — 1/e) for the case of non-uniform costs, however, the
time complexity (©2(n*)) becomes impractical.

Algorithm 2 BCT Algorithm

Input: Graph G = (V, E,b,c,w), budget B > 0, and two
precision parameters €,6 € (0,1).
Output: Si - An (1 — 1/e — €)-approximate seed set.
1 Ap = (1+€2) 725220 (e, 5/3)OPT,

(Or AL = A%*" in Eq. for non-uniform costs;)
22Ny =Ap; H+— (V,E=0);t+0;
3: repeat
4: forj=1to N — |€| do
5: Generate &; +BSA(G); Add &; to &;
6: end for
7
8

tA<— t+ 1; N; = QNt71;

Sy = Budgeted-Max-Coverage(H, B);
9: until degH(Sk) > Ar;
10: return Sy;

3.3 BCT - The Main Algorithm
BCT algorithm for the CTVM problem is presented in
Algorithm P| The algorithm uses BSA (Algorithm [I) to
generate hyperedges and Budgeted-Max-Coverage [22] to
find a candidate seed set S}, following the RIS framework.
BCT keeps generating hyperedges by BSA sampling
(Algorithm [I) until the degree of the seed set selected by
Budgeted-Max-Coverage exceeds a threshold Ay, (the stop-
ping condition). Specifically, at iteration 1 < ¢ < O(logn), it
consider the hypergraph H that consists of the first 2071 A,
hyperedges. That is the number of samples (aka hyper-
edges) are double after each iteration. In each iteration,
Budgeted-Max-Coverage algorithm is called to select a seed
set S within the budget B and stops the algorithm if the
degree of S, exceeds Ap, degH(S'k) > Apr. Otherwise, it
advances to the next iteration.




4 APPROXIMATION AND COMPLEXITY ANALYSIS

We prove that BCT will stop within O(fp) samples (aka hy-
peredges) and return an (1 — 1/e — €)-approximate solution.
Note that BCT can be used with any threshold for the
sufficient number of samples (not only the one in [14]). That
is if a better threshold 8’ < 8 exists, we can use 6’ in BCT to
guarantee BCT will stop within O(#’) samples whp.

4.1 Approximation Guarantee for uniform cost CTVM
Assume the case of uniform node cost. The proof consists
of two steps: 1) the “stopping time” (aka the number of
hyperedges) my; concentrates on an interval [T*,cT™*] for
some fixed ¢ > 4 (Lemma | and [B); and 2) for that interval
the candidate seed set Sy is a (1 — 1/e — €)-approximate
solution whp (Lemma [4).

Given a seed set S C V, denote by Br(S) and degr(S)
the estimate of B(.S) and the degree of S of the hypergraph
with the first T' random hyperedges, respectively

Lemma 3. Let T* = 2+262//393(6 209) = W hyper-
edges, where € is defined in Eq.[8|and 6, = §/6. We have,
Prlmy < T*] < 4s. (13)
+ 1 be the smallest iteration such that
2to—1A; > T*. The above lemma is equivalent to,

Pr[t < to] < da. (14)

For iterations t > t;, we now show that the candidate

solution S, will be an (1— 1 — ¢)-approximate solution whp.

Let ty = [logQ v —‘

Lemma 4. For any iteration t > to, the candidate solution Sk
satisfies that

Pr[B(S;) < (1 —1/e — €)OPT,] < (262) (15)
Proof. This is a direct consequence of Corollary [T} We can
verify that the number of samples in iteration ¢ is

€] = 2071 A, > 207 1005(e, 265) > Op(c, (262)2 ).

This yields the proof. O
The upper-bound on the number of hyperedges gener-

ated by BCT is stated in the following lemma.

Lemma 5. Fore € (0,1 —1/¢)and c= 4 —‘,

Primy > cT*] < 5. (17)

Finally, we prove the overall approximation guarantee of

BCT in the following Theorem

Theorem 1. Given 0 < e <1—1/e, 0<{5< 1,

Pr[mH = 0(93(6 (5)){17’1d B(Sk) (1 - — - E)OPTk] >1-9.

Proof. Assume that none of the followmg “bad” events in

Lemmas 3] 5| and [4] happens.

(16)

1+eo
1-1/e— %2

(b1)  Pr[my <T7] <6,

(b2) Pr[my >cr* ] < s

(b3) Vit > to, Pr[B(Sk) < (1—1/e — €)OPT,] < (205)* "

That is the following inequalities

(1) my =T,

(i2) my < cT*, and

(i3) Vit > to, (Sk) (1 - 1/8 - G)OPTk
hold together with probability at least

1 — [62 4 02 + (202 + (202) + (202)* +...)]

>1— (252 +

>1—
25)15

The last one is due to do = §/6 < 1/6.

From the above inequalities, we will have T* < my <
cT'*. And the algorithm will stop in one of (at most) log, c+1
iterations, starting from ¢y. Further, no matterwhat the itera-
tion that the algorithm will stop at, the candidate seed set Sy

satisfies B(S)) > (1 —1/e — €)OPTy. Since T* = O(f(e, 8),

1
Pr[my = O(05(e, 0))and B(Sy) > (1 — — — €)OPT,] > 1 — 6.
That completes the proofs. O

4.2 Time Complexity

The overall time complexity of BCT comprises of two com-
ponents: 1) for generating hyperedges and 2) for running
Greedy algorithm for Max-Coverage. The result is stated in
the following theorem and the proof is presented in our
conference paper [22].

Theorem 2. BCT has an expected running time for uniform cost
CTVM problem under LT model of O(M ).

Remark. From Theorem [2] under the LT model, the time
complexity does not depend on the number of edges in the
original graph, hence, uniform-cost BCT has a sub-linear
time complexity in dense graphs.

4.3 Sample Complexity and Comparison to IMM

Since the number of samples (hyperedges) decides the com-
plexity of BCT, IMM [14] and any algorithm using sampling
techniques, we compare number of hyperedges generated
by BCT with the current state-of-the-art IMM. We can prove
a tighter version of Lemma [5|as stated in the lemma below.

Lemma 6. Let d; € (0,1),0 < e < (1—1/e), BCT returns Sy,
(I4+e)-(2+ 262/3) log(6(})/d2)

degy(Sk) <2 L)
due to doubling hyperedges every round and,

p > < 9y =0/6. 19

= G A Te— g 1502 =0/6 A9

In comparison with IMM [14], BCT theoretically gen-
erates at least 3/2 times fewer samples than IMM. IMM
approaches the problem by trying to achieve an estimate
KPT™* of OPT}, such that K PTT < OPTj, and then deriv-
ing the sufficient number of samples by replacing OPT}, in
T* of Lemma [8|by K PT* and the constant (2 + 2¢2/3) by
(2—2/e) to get Ty . Thus, Lemma 9 in [14] states the number
of samples generated by IMM, | R/, as follows,

Pr[|R| < 3(“1/)6 max{T§, T5}] > 15,

where ¢ = v/2¢ and
7y = )08 () + Jos1/5) + oglogy (1) -n

Comparmg Eqs 20 and |1 we see that max{T5 ,T2} >

*and 3 11+‘1//§; > 2 (1—52)(11—1/e—e) (assume that € is small).
Thus, the number of samples generated by BCT is always
less than that of IMM and the ratio between the two is
approximately 3/2 (when € < v/2—1 > 0.4 which is usually
the case). In fact, our experiments show that BCT is up to

10x faster than IMM proving the practical efficiency.

(20)

4.4 Approximation Algorithm for Arbitrary Cost CTVM

We analyze the CTVM algorithm under the heterogeneous
selecting costs. First observe that in this case, the candidate
seed sets may have different sizes since the total cost of
each set must be less that the given budget B. However,
we can obtain an upper-bound k., = max{k : 35 C



V,1S| = k,c(S) < B} by iteratively selecting the smallest

cost nodes until reaching the budget B. We then guarantee

that all subsets of size up to k4, are well approximated.

The number of such seed sets is subsequently bounded

above by >, (}) < n*mer. Thus, the computation of

a and f3 at the step of calculating ¢; are updated to €/,
e/ (1 = 1/€)kmax log(n - 2/6)

(1= 1/€)v/108(2/0) + /(1 — 1/)Fimaz log(n - 2/0)

Thus, Ay, is also updated to A? as follows,

(1+€5) - (24 2¢5/3) - log(6(}) /)

2
)

In addition, the Weighted-Max-Coverage algorithm used
in CTVM only guarantees (1—1/+/e) approximate solutions,
as shown in [23]. Putting these modifications together, we
have the following Theorem [3} The proofs are similar to that
of Theorem [I|and 2] and is omitted for clarity.

Theorem 3. Given a budget B,0 < e < 1and 0 < § <1,BCT
for arbitrary cost CTVM problem returns a solution S that,
Pr[B(S) > (1 —1/ve —€)OPT] > 1 4,

log((l;)ﬂs) n).

7
€2

I
62—

At = (21)

(22)
and runs in time O(

4.5 Extension to IC model

When applying BCT for IC model, the only change is in
the BSA procedure to generate hyperedges following the IC
model, as originally presented in [13]. Thus, our results for
LT model translate directly over for IC model. Specifically,
the following theorem states the solution guarantee and
time complexity of BCT to the uniform cost version.

Theorem 4. Given a budget B, 0 < € S} and 0 < 4§ <1,BCT

for uniform cost CTVM problem returns S where
Pr[B(S) > (1—-1/e—€)OPT] >1—4,

log((})/9) (m + n)).

2

€2
Similar to Theorem [5] we obtain the performance guar-
antee for the arbitrary cost version under IC model in the

following theorem.
Theorem 5. Given a budget B,0 < e < land 0 < ¢ <1, for
arbitrary cost CTVM problem, BCT returns a solution S,

Pr[B(S) > (1 —1/ve—€)OPT] > 1 -4,

and runs in time O(W(m +mn)).
€2

(23)

and runs in time O(

(24)

5 EXPERIMENTS

In this section, we experimentally evaluate and compare
the performance of BCT to other influence maximization
methods on three aspects: the solution quality, the scalability,
and the applicability of BCT on various network datasets
including our case study on a billion-scale dataset with both
links and content.

5.1 Experimental Settings

All the experiments are carried on a Linux machine with a
2.2Ghz Xeon 8 core processor and 64GB of RAM.

Algorithms compared
We choose three groups of methods to test on:

(1) Designed for IM task, including the top four state-
of-the-art algorithms, i.e., IMM [14], TIM/TIM+ [8],
CELF++ [5] and SIMPATH [4].

(2) Designed for BIM task, namely, BIM algorithm [15].

(3) Our method BCT for the general CTVM problem.

7

In the first experiment, we will compare between these
groups of methods on CTVM problem and the second exper-
iment reports results on IM task. Our last set of experiments
are on Twitter - a billion-scale network where we first test
the scalability of BCT against IMM and TIM+ (the current
most scalable methods for solving IM problem) on IM task.
Next, we acquire a Twitter’s tweet dataset and extract two
groups of users who tweet/retweet the same topic and run
our BCT algorithm to find the users who attract the most
interested people in the same topics.

TABLE 3: Datasets’ Statistical Summary

Dataset #Nodes #Edges Type Avg. degree
NetHEPT [3] 15K 59K undirected 4.1
NetPHY [3] 37K 181K undirected 134
Enron [32] 37K 184K undirected 5.0
Epinions 3] 132K 841K directed 134
DBLP [3] 655K 2M undirected 6.1
Twitter [33] 41.7M 1.5G directed 70.5
Datasets

For a comprehensive experimental purpose, we select a di-
verse set of 6 datasets with sizes from thousands to millions
in various disciplines: NetHEPT, NetPHY, DBLP are citation
networks, Email-Enron is communication network, Twitter
and Epinions are online social networks. The description
summary of those datasets is provided in Table 3]

Parameter Settings

Computing the edge weights. Following the conventional com-
putation as in [4]], [8], [15], [34], the weight of the edge (u, v)
is calculated as follows,
’LU(’LL, U) = 1/dm (’U)
where d;,, (v) denotes the in-degree of node v.
Computing the node costs. Intuitively, the more famous one is,
the more difficult it is to convince that person. Hence, we
assign the cost of a node proportional to the out-degree:
c(u) = nd®"*(u)/ Z d°"*(v)
veV

where d°“*(v) is the out-degree of node v.
Computing the node benefits. In the first experiment, we
choose a random p = 20% of all the nodes to be the target
set and assign benefit 1 to all of them while in case studies,
the benefit is learned from a separate dataset.

In all the experiments, we keep ¢ = 0.1 and § = 1/n as
a general setting or directly mentioned otherwise. For the
other parameters, we take the recommended values in the
corresponding papers if available.
IM method’s Ianuence/Benefit- BIM method’s Influence/Benefit gy BCT’s Influence/Benefit gy

(25)

(26)

1000 1000 |

100 100
10 10
1 1
50 100 150 200 50 100 150 200
Budget (B) Budget (B)
(a) NetHEPT (b) NetPHY

Fig. 1: Comparisons on CTVM problem. The whole column
indicates influence of the selected seeds while the darker
colored portion reflects the benefit gained from that set.
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Fig. 2: Comparison on IM problem under the LT model.
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Fig. 3: Comparison on IM problem under the IC model.

5.2 Experimental results

We carry three experiments on both CTVM and IM tasks
to compare the performance of BCT with other state-of-
the-art methods. In the first experiments, we compare three
groups of algorithms, namely, IM based methods, BIM and
BCT on CTVM problem. We choose four algorithms in the
category of IM methods: CELF++, SIMPATH, TIM/TIM+
and IMM, which are well known algorithms for IM. The
results are presented in Fig. [1l We conduct the second and
third experiments on the classical IM task with different
datasets and various k values. The results are shown in
Table [4 and Fig. 2| for LT model and Fig. [3] for IC model.

TABLE 4: Comparison between different methods on IM

problem and various datasets (with e = 0.1,k = 50,6 = %).

Spread of Influence | Running Time (s)
Method Epin. Enron DBLP | Epin. Enron DBLP
BCT 16280 16726 108400 | 0.19 014 0.58
IMM 16290 16716 108430 2 1.5 3.5
TIM+ 16293 16732 108343 6 3 12
TIM 16306 16749 107807 8 4 17
Simpath | 16291 16729 103331 23 18 136

5.2.1 Comparison of solution quality on CTVM

Fig. 1| shows the results of the three groups of methods
(CELF++ with 10000 sampling times represents the first
group) for solving CTVM problem on NetHEPT and Net-
PHY networks. We see that BCT outperforms the other
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methods by a large margin on CTVM problem. With the
same amount of budget, CTVM returns a solution which is
up to order of magnitudes better than that of BIM and IM
based methods in terms of benefit. Because IM algorithms
only desire to maximize the influence and thus usually aim
at the most influential nodes, unfortunately, those nodes are
very expensive or have high cost. As a consequence, when
nodes have heterogeneous cost, IM methods suffer severely
in terms of both influence and benefit. On the other hand,
BIM optimizes cost and influence while ignoring benefit of
influencing nodes that causes BIM to select cheaper nodes
with high influence. Hence, the seed sets returned by BIM
have the highest influence among all but relatively low
benefit. Even though BCT returns seed set with lower value
of influence than BIM, the majority of the influenced nodes
are our target and thus achieves the most benefit.

5.2.2 Comparison of solution quality on IM

In the previous experiment, one can argue that CTVM per-
forms better because it focuses on optimizing the benefit
and the others do not. This experiment compares BCT to
the other algorithms with IM problem where the node costs
are all 1 and so as the node benefits on various datasets.
Fig.2land Fig.[8|display the spread of influence and running
time on NetHEPT and NetPHY under the LT and IC models
respectively. Table 4 shows the cross-dataset view of the
results when we fix a setting and run on multiple data.

Fig. 2} Fig. 3| and Table [4 reveal that all the tested algo-
rithms including BCT and the top methods on IM problem
achieve the same level of performance in terms of spread of
influence. Specifically, they all expose the phenomenon that
the first few seed nodes (< 25) can influence a large portion
of the networks and after that point, the gains of adding
more seeds are marginal. The phenomenon is explained by
the submodularity property of the influence function.

5.2.3 Comparison of running time

The experimental results in Fig. 2} Fig. [3] and Table [4] also
confirm our theoretical establishment in Section 4] that BCT
for uniform cost CTVM requires much less number of hy-
peredges needed by IMM, TIM and TIM+. As such, the
running time of BCT in all the experiments are significantly
lower than the other methods. In average, BCT is up to
10 and 50 times faster IMM and TIM/TIM+, respectively.
Since both Simpath and CELF++ require intensive graph
simulation, these methods have very poor performance
compared to BCT, TIM/TIM+ and IMM which apply ad-
vanced techniques to approximate the influence landscape.
That is illustrated by the distinct separation of two groups.

5.2.4 Robustness Testing

In this experiment, we test the robustness of our algorithm
against noise possibly incurred in computing the edge
weights in the diffusion model. We take NetHEPT with
the previously calculated edge weights as our ‘ground-
truth’ network and then add various noises, e.g., in different
levels and noise models to it. In particular, we consider
Gaussian and Uniform noise models where the added noise
follows either a Gaussian or Uniform distribution respec-
tively. To account for noise levels, we select 4 different
values 0.2,0.4,0.6,0.8, which correspond to 20% to 80%
noise since the edge weight is between 0 and 1, and assign
them to be the variance of the distribution (larger variance



signifies noisier data) while the mean values are set at 0.
Thus, each pair of noise level and model, we have a specific
distribution of noise and use that for generating noise. For
each such pair, we generate 30 noisy networks and run BCT
to find 50 seed nodes and then take the average over 30
runs. We then use the original HetHEPT without noise to
recompute the influence and quantify the effect of noise.
TABLE 5: Robustness results (% to true value).

Uniform Noise Gaussian Noise

e Tue 02 04 06 038 02 04 06 08

0.1 1588 99.7 99.2 98.6 979 989 98.0 96.7 957
0.2 1504 999 99.7 99.2 988  100.1 99.7 983 958
04 1312 999 995 984 98.8 1009 994 98.7 98.2

The experimental results under the IC model are de-
picted in Table [5| where the ‘true value’ refers to the results
run on the original network. Interestingly, BCT performs
very well under the noises introduced to the network. For
example, with 80% noise, the quality of BCT only degrades
by less than 2% with Uniform noise and 5% with Gaussian
case in average. In some rare cases on network with 20%
Gaussian noise, we see the qualities of over 100% compared
to true values. This happens when e is large implying the
provided solution guarantee 1 — 1/e — € is small. Thus, the
seed set found on small noisy network may get better than
that on the original. Moreover, different from the Uniform
case, Gaussian noise is highly concentrated at 0.

5.3 Twitter: A billion-scale social network

In this subsection, we design two case studies on Twitter
network: one is to compare the scalability of BCT with IMM
and TIM+ - the fastest existing methods and the another is
using BCT to find a set of users who have highest benefit
with respect to a particular topic in Twitter.

5.3.1 Compare BCT against IMM and TIM+
1500 — 12K ‘ :

@ P BCT W ) BCT — M — +
2 1000 Mmoo e gl O o?
£ TiM+ — @ £ ¢ y &
8’ * "——0 8’ ’,’/"
T 500 5y ee? T 4K |y ®
E et 5 eeer*?
o g g P 5 o gy & 009

otlﬂ!.‘.um Ll. AnEEREEN

0 25 50 75 100 0 25 50 75 100

Number of seeds (K) Number of seeds (K)
(a) LT model. (b) IC model.
Fig. 4: BCT, IMM and TIM+ on Twitter

Figure [4| shows the results of running BCT and TIM+
on Twitter network dataset using both LT and IC models
with % ranging from 1 to 100. Twitter has 1.5 billion edges
and all the other methods, except BCT, IMM and TIM+, fail
to process it within a day in our experiments. The results,
here, are consistent with the other results in the previous
experiments. Regardless of the values of k, in LT model,
BCT is always several times faster than IMM or TIM+ and
in IC model, this ratio is in several orders of magnitude
since influence in IC model is much larger and, thus, harder
for IMM or TIM+ to have a close estimate of the optimality
which decides the complexity of these algorithms.

We also measure the memory consumed by these two al-
gorithms and observe that, in average, BCT requires around
20GB but IMM and TIM+ always need more than 30GB.
This is a reasonable since in addition the memory for the
original graph, BCT needs much less number of hyperedges
than that generated by IMM or TIM+.

TABLE 6: Topics, related keywords

Topic Keywords #Users

1 bill cln.\ton, iran, north korea, 997K
president obama, obama

5 senator ted kenedy, oprah, kayne 507K

west, marvel, jackass

: I
@ 40 =S 8
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(b) Different Cost Schemes.

Fig. 5: Case Study on real-world Twitter
5.3.2 A Case Study on Twitter network.
We study the twitter network using BCT by extracting some
trending topics from the retrieved tweet dataset and find
who are most influential in those topics based on Twitter
network. First we choose two most popular topics with
related keywords (Table [6) as reported in [33]. Based on the
list of keywords, we use a Twitter’s tweet dataset to extract
a list of users who mentioned the keywords in their posts
and the number of those tweets/retweets. The number of
tweets/retweets reveals the interest of the user on the topic,
thus, we consider this as the benefit of that node. Lastly, we
run BCT on Twitter with the extracted parameters.

Fig.[5alshows the benefit percentage, which is computed
as the percentage of benefit gained by the selected seed set
over the total benefit. We see that apparently the very first
chosen nodes have high benefit and it continues increasing
later but with much lower rate. Looking into the first 5
Twitters chosen by the algorithm, they are users with only
few thousands of followers (unlike Katy Perry or President
Obama who got more than 50 millions followers) but highly
active posters in the corresponding topic. For example, on
the first political topic, the first selected users is a Canadian
poster, who is originally from Iran and has about 4000
followers and but generates more than 210K posts on the
movements of governments in the US and Iran.

On Twitter we test different schemes of assigning node
costs, i.e., proportional to a concave function. We e /ploy
square and fourth roots, denoted by ¢'/?(u) and ¢!
respectively, w.r.t. out-degree and run BCT on each case.
The results are presented in Figure We see that BCT is
relatively robust with different concave cost functions, e.g.,
70% of nodes returned in case of ¢!/?(u) overlaps with that
of c(u)-linear cost, and 60% overlap for the pair c¢'/4(u) to
c'/2(u). Another interesting result is that the number of se-
lected seeds gets smaller when the cost function gets farther
from linear, i.e., c(u) — ¢/?(u) and ¢/?(u) — /% (u).

6 CONCLUSION

In this paper, we propose the CTVM problem that general-
izes several viral marketing problems including the classical
IM. We propose BCT an efficient approximation algorithm
to solve CTVM in billion-scale networks and show that it is
both theoretically sound and practical for large networks.
The algorithm can be employed to discover more practi-
cal solutions for viral marketing problems, as illustrated
through the discovering of influential users w.r.t. trending
topics in Twitter media site.



ACKNOWLEDGMENT

We sincerely thank the reviewers for the insightful com-
ments. The work of Dr. My T. Thai was supported in part
by the NSF grants CNS-1443905 and CCF-1422116.

REFERENCES

[1] D.Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in KDD. ACM New York,
NY, USA, 2003, pp. 137-146.

[2] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance, “Cost-effective outbreak detection in networks,”
in KDD. New York, NY, USA: ACM, 2007, pp. 420—429.

[3] W.Chen, C. Wang, and Y. Wang, “Scalable influence maximization
for prevalent viral marketing in large-scale social networks,” in
KDD. New York, NY, USA: ACM, 2010, pp. 1029-1038.

[4] A. Goyal, W. Lu, and L. V. Lakshmanan, “Simpath: An efficient
algorithm for influence maximization under the linear threshold
model,” in ICDM. IEEE, 2011, pp. 211-220.

, “Celf++: optimizing the greedy algorithm for influence
maximization in social networks,” in WWW. ACM, 2011, pp.
47-48.

[6] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck, “Sketch-based
influence maximization and computation: Scaling up with guar-
antees,” in CIKM. ACM, 2014, pp. 629-638.

[7] N. Ohsaka, T. Akiba, Y. Yoshida, and K.-i. Kawarabayashi, “Fast
and accurate influence maximization on large networks with
pruned monte-carlo simulations,” in AAAI, 2014.

[8] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-
optimal time complexity meets practical efficiency,” in SIGMOD.
ACM, 2014, pp. 75-86.

[9] N.P. Nguyen, G. Yan, and M. T. Thai, “Analysis of misinformation
containment in online social networks,” Comput. Netw., vol. 57,
no. 10, pp. 2133-2146, Jul. 2013.

[10] N. Barbieri, F. Bonchi, and G. Manco, “Topic-aware social influence
propagation models,” KAIS, vol. 37, no. 3, pp. 555-584, 2013.

[11] S. Chen, ]. Fan, G. Li, J. Feng, K.-1. Tan, and J. Tang, “Online topic-
aware influence maximization,” VLDB, pp. 666-677, 2015.

[12] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
densification laws, shrinking diameters and possible explana-
tions,” in KDD. ACM, 2005, p. 187.

[13] C.Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in SODA. SIAM, 2014, pp. 946-
957.

[14] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in SIGMOD. ACM, 2015, pp. 1539-
1554.

[15] H. Nguyen and R. Zheng, “On budgeted influence maximization
in social networks,” [SAC, vol. 31, no. 6, pp. 1084-1094, 2013.

[16] Y. Li, D. Zhang, and K.-L. Tan, “Real-time targeted influence
maximization for online advertisements,” VLDB, pp. 1070-1081,
2015.

[17] U. Feige, “A threshold of In n for approximating set cover,” Journal
of ACM, vol. 45, no. 4, pp. 634-652, 1998.

[18] M. Minoux, “Accelerated greedy algorithms for maximizing sub-
modular set functions,” in Optimization Techniques, J. Stoer, Ed.
Springer, 1978, pp. 234-243.

[19] N. Chen, “On the approximability of influence in social networks,”
SIDMA, pp. 1400-1415, 2009.

[20] A. Goyal, F. Bonchi, and L. Lakshmanan, “Learning influence
probabilities in social networks,” in WSDM.  ACM, 2010, pp.
241-250.

[21] K. Kutzkov, A. Bifet, F. Bonchi, and A. Gionis, “Strip: stream
learning of influence probabilities,” in SIGKDD. ACM, 2013, pp.
275-283.

[22] H. T. Nguyen, T. N. Dinh, and M. T. Thai, “Cost-aware targeted
viral marketing in billion-scale networks,” in INFOCOM. IEEE,
2016, pp. 1-9.

[23] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum
coverage problem,” Inform. Process. Lett., pp. 3945, 1999.

[24] P. Dagum, R. Karp, M. Luby, and S. Ross, “An optimal algorithm
for monte carlo estimation,” SICOMP, pp. 1484-1496, 2000.

[25] C. Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates, “Online
topic-aware influence maximization queries.” in EDBT, 2014, pp.
295-306.

(5]

10

[26] M. Cha, A. Mislove, and K. P. Gummadi, “A measurement-driven
analysis of information propagation in the flickr social network,”
in WWW. New York, NY, USA: ACM, 2009, pp. 721-730.

[27] ]J. Tang, ]J. Sun, C. Wang, and Z. Yang, “Social influence analysis in
large-scale networks,” in SIGKDD. ACM, 2009, pp. 807-816.

[28] A. Goyal, E. Bonchi, and L. V. Lakshmanan, “Learning influence
probabilities in social networks,” in WSDM. ACM, 2010, pp. 241-
250.

[29] L. Seeman and Y. Singer, “Adaptive seeding in social networks,”
in FOCS. IEEE, 2013, pp. 459—468.

[30] A.]J. Walker, “An efficient method for generating discrete random
variables with general distributions,” TOMS, pp. 253-256, 1977.

[31] S. Khuller, A. Moss, and J. Naor, “The budgeted maximum cover-
age problem,” Inform. Process. Lett., pp. 3945, 1999.

[32] B. Klimt and Y. Yang, “Introducing the Enron corpus,” in First
Conference on Email and Anti-Spam (CEAS), 2004.

[33] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in WWW. ACM, 2010, pp. 591-600.

[34] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization
in social networks,” in KDD. New York, NY, USA: ACM, 2009,
pp. 199-208.

APPENDIX A

MARTINGALE VIEW ON BENEFIT ESTIMATION
To recognize the connection between the expected benefit
and martingales, we give a general definition as follows,

Definition 3 (Martingale). A sequence of random variables

Y1,Ya,... is a martingale if and only if E[Y;] < +oo and
E[Y;|[Y1,Y2,...,Yi 1] =Y 1.
For a random hyperedge £;, we define random variable,

X'*{ 1 ifSﬂ(‘:j?éw
771 0 otherwise

Thus, we have a sequence of random variables X, Xs, ...
corresponding to the series of random hyperedges. Then,
we define the second sequence of random variables based

on X1, Xy, ... as follows,
J

Z; =3 (X, — B(S)/T)

The sequence Z;, Z,, .. . ﬁas the following properties [14]:
(1) E[Z;] =0,Vj > 1 (since E[Z;] = B(S)/I',Vi > 1)
() E[Z;|Z1,Z, ..., Zj-1) = Zj—1
Thus, the two conditions (1) and (2) hold and make
the sequence Zi, Z5, ... a martingale. Hence the following
inequalities for martingales follow from [14].

Lemma 7. For any fixed T > 0 and € > 0, we have

—Tue?

Prii > (1+ )] < e i,

27)

(28)

and ~Tue?
Prlf < (1— ] < e %
h— i X ; _
where [i = ==+~ is an estimate of pu = B(S)/T".
APPENDIX B
PROOFS OF LEMMAS AND THEOREMS
B.1 Proof of Lemmalf2
We start with the definition of B(S) in Eq.[2| and prove the
equivalent formula B(S) =T Prycgucv [E5 NS # 0].
B(S) = Pr [u € R(g,S5)|b(u
(5) u;gga[ (9, 5)lb(u)
= Z Pr [3v € S such that v € &;(u)]b(u)
uGVggG
=T Z Pr [3v € S such thatv € S(u)]M
gCG 7 I
ueV
=I' Pr
gCGueV

= FgEC]zerGV[S N (‘:j ?é @]

[Fv € S such that v € &;]

(29)



The transition from the third to forth equality follows from
the distribution of choosing node u as a starting node of
BSA. Since we select u with probability P(u) = b(u)/T, the
forth equality contains the expected probability taken over
the benefit distribution. That completes our proof.

B.2 Proof of Lemmal3
Consider the first T* = (2+262/2 l;hl(( D/5) hyperedges,
for any set Sy, of k nodes, by Chernoff’s bound (Lemma7),
PT[BT* (Sk) Z B(Sk) + EQOPTk]
OPTy,
55 B
T*B(Sk) (2 55)*
2+ 3eagygs)T )

(2 + 262/3)TIn((}) /62)B <Sk>e30PTi)

OPT;e3B2(Sk) (2 + § a5 )T

= PI[BT* (Sk) >

<exp (—
=exp (—

(24 26/3)In((}) /82)

S
205 1 26,/3

(1—1-62

<d&/(y)- (30

=exp

Moreover,
PI‘[ T (Sk) > E(Sk) -+ GQOPTk]

> Pr[ 7+(Sk) > OPT, 4+ e20PTy]
=Prldegr~ (Sk)I'/T* > (1 4 €2)OPTy]
=Pr[degr~(Sk) > (1 + €2)OPT, T /T
=Prldegr-(Sk) = AL]
Combine Egs. [30]and [T} we obtain,
Prldegr~(Sk) > Ar] < 52/(2) (32)

Apply union bound over all seed sets S}, of size k, we have,

Pr[3Sk, degr«(Sk) > Ar] < 62 (33)

which means that with 7™ hyperedges, the probability of
having a seed set Sy, of k nodes with degr+(Sy) > Ay is less
than d». INote that BCT stops only when the returned seed
set Sk has degy > Ap that implies having a seed set with
the coverage at least Aj. Thus, the number of hyperedges
generated by BCT is at least 7 with probability of 1 — ds.

€]

B.3 Proof of Lemmal5]
Since ¢ > 1, with ¢T™ hyperedges, we have,
Pr{Ber- (S) < B(Sk) — 5 OPT,]

€2 OPT/~C

=P . 1-—= B

lBer- (S) < (1= 5 gt (S
cT*B (Sk)(j2 O(Zvrk))

< _

o T

B (2 + 262/3)I" - In ((}) /32) B(S))e30OPT;,
TP 9TB2(S),)OPT,e24

2+ 2e2/3) ln((Z)/52)OPTk> < (62 ()"
< (02/(;

- 9B(Sy )4

Thus, since there are at most (:) such sets of size k,
Pr[3Sk, Bor- (Si) < B(Sk) — %oka] </t (3
Moreover, since ¢ > 8, thus, ¢cT* > 8T*, with c¢T™

hyperedges, applying Corollary [I] with parameter settings
€e=¢/2and § = (20,)%/%,
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Pr(Bor- (Si) < (1 —1/e — ¢/2)OPT,] < (265)*  (35)
From Eqs. [34]and 35} consider two events:
(el) \Y/SkaE’gT* (Sk) > B(Sk) — % OPT,,
(62) ]BCT* (Sk) (]. - 1/6 - 6/2)OPTk 4
C,

which together happen with probability of at least 1 — 4,
(262)°/4 > 11— 152 462 =1 — 6o since ¢ > 1 and (52 =
§/6 <1/6.In that case, we further derive,

Ber~(Sk) > B(Sk) — —OPTk

& Bor+ (Sy) > (1—1/e — —)OPTk - fop-rk
r
* —>(1-1/e— - — =)OPT
= degCT (Sk)CT - ( /e 2 9 )O k
5 1—1/e— £ — 2)OPT,cT*
= degcT*(Sk)Z( /e 2r 2) k
. 1—1/e—€_¢e
& deger-(Sk) > U-le—3- 73 )cAL (36)
(1+e
Now, since we set ¢ = 4 {171}2_2752 > 4, then,
deger- (Sk) >4AL (37)

with probability 1 — J». Note that ¢ exists due to the
condition on € that e < (1 — 1/e) and €3 < €.
In other words, with a probability of at least 1 — dg, with

cT™ hyperedges where ¢ = 4 [(11/15%} , the stopping

condition in BCT will be satisfied. Thus, BCT generates at
most 1™ hyperedges with probability at least 1 — d5, or

Pr[mH < CT*] >1— 9. (38)
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