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ABSTRACT

Question: How does the risk of infectious disease transmission affect individual habitat
selection decisions and the resulting spatial distributions of populations?

Mathematical method: We use a differential equation model to describe disease dynamics in
two habitats coupled by natal dispersal and use an evolutionary game theoretical approach to
calculate the evolutionarily stable strategy for habitat choice.

Key assumptions: Natal dispersal by offspring with ideal knowledge of habitats. Habitats
differ only in resource quality. Fecundity is proportional to intake rate, which decreases with
density. We assume density-dependent disease transmission, with infection reducing fecundity
or lifespan. Disease may be present in both habitats or the high-quality habitat only.

Conclusions: In the absence of disease, our model predicts input matching (i.e. the distribution
of individuals matches the distribution of resource inputs). The negative fitness consequences
of infection can result in undermatching (underuse of the high-quality habitat compared with
input matching), but stable overmatching (overuse of the high-quality habitat) is never
predicted. Increasing the risk of transmission increases the degree of observed undermatching
when only the high-quality habitat is infected but reduces undermatching when both habitats
present a risk of disease. Increasing the cost of infection by reducing fecundity reduces use of
the high-quality habitat (undermatching) in both cases. Increasing the cost of infection by
increasing mortality rates also reduces the use of the high-quality habitat when both habitats
are infected; if only the high-quality habitat is infected, undermatching may initially increase
with mortality but eventually decreases.

Keywords: habitat selection, ideal free distribution, infectious disease transmission,
undermatching.

INTRODUCTION

Animals must consider many factors when choosing where to spend their time, including
the properties of potential habitats as well as the location of others in the population.
Individuals may benefit from choosing habitats that offer greater availability of food or
resources; however, if others in the population make the same choice, foragers in habitats of
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high intrinsic quality may experience greater competition for the same resource. Therefore,
the payoff to each individual for using a habitat depends both on the habitat itself as well as
the strategy of others in the population. If individuals act to maximize their own fitness, the
resulting equilibrium spatial distribution is one where fitness is equal in all habitats – an
ideal free distribution (Fretwell and Lucas, 1969). The equilibrium strategy is a Nash equilibrium
(Nash, 1951) of a habitat selection game against the field and is stable if no individual can
increase its fitness by changing strategy and modifying its habitat usage. The equilibrium
can correspond to a fraction of the population using each habitat exclusively, or each
individual spending a fraction of its time in each habitat (Hamilton, 2010).

Ideal free distribution (IFD) theory assumes that all individuals have complete knowledge
about the distribution of resources among habitats, are free to move between habitats
with no cost, are equal competitors, and competition occurs through resource depletion
only. If fitness is determined by intake rate of a resource that continuously enters
each habitat and is immediately consumed, the spatial distribution of a population at
equilibrium is predicted to match the distribution of resource inputs [habitat matching or
input matching (Parker, 1978)]. Habitat matching can also occur if fitness is any monotonically
increasing function of per capita resource use (Fagen, 1987), not only when fitness is
proportional to intake rate.

The IFD maximizes individual fitness; given our assumptions and an IFD, if any indi-
vidual tries to change habitats, or spend more time in a habitat, the per capita intake rate of
that individual will decrease. The densities in each habitat yielding equal expected fitness
can be found by plotting the habitat isodar (Morris, 1988). For fixed population sizes, the IFD
is also an evolutionarily stable strategy [ESS (Maynard Smith, 1982)] provided fitness decreases
with density in a habitat, i.e. the equilibrium cannot be invaded by mutants using another
strategy (Cressman and Křivan, 2006). Cressman and Křivan (2010) generalized this result
to density-dependent population games. An IFD can be achieved through conditional
dispersal between habitats (Morris et al., 2004), as well as through population dynamics alone
with no dispersal, as fitness is equal in all habitats at equilibrium (Cressman and Křivan, 2006).

While many theoretical and experimental studies on habitat selection support the
prediction of input matching (Milinski, 1979, 1994; Harper, 1982; Godin and Keenleyside, 1984; Parker and

Sutherland, 1986; Abrahams, 1989; Kacelnik et al., 1992), an undermatching effect is often observed (Kennedy

and Gray, 1993; Earn and Johnstone, 1997; Baum and Kraft, 1998), where the density in the high-quality
habitat is not as high as expected under input matching. This may be due to violation of
one or more of the assumptions of IFD theory, such as differences in competitive
weight between individuals (Grand, 1997), competition resulting from mechanisms other than
depletion of resources or other forms of interference, cost of movement between habitats,
or perceptual constraints (Abrahams, 1986; Tregenza, 1995; Tregenza et al., 1996).

Undermatching may also be caused by increased risk in higher quality habitats associated
with higher population sizes. Aside from starvation and competition, individuals can face
additional risks such as predation and food theft by kleptoparasites, both of which can
influence the spatial distribution of a population. Several models predict that predators
(Hugie and Dill, 1994; Sih, 2005) and kleptoparasites (Parker and Sutherland, 1986; Hamilton, 2002) will
congregate in habitats with higher resource availability for their prey or hosts. When
predation risk is high, habitat riskiness can become a more important determinant for
habitat use than resource levels (Gilliam and Fraser, 1987; Luttbeg and Sih, 2004; Dupuch et al., 2009).

Infection by a pathogen or parasite may also be a risk individuals consider when choosing
a habitat. The risk of infection increases with density (and number of contacts) for many

Robertson and Hamilton52



diseases (Anderson and May, 1979; Dwyer, 1991; McCallum et al., 2001; Elliot and Hart, 2010). Since habitats with
more resources can support a larger population than poor-quality habitats, they may
present a greater risk of disease transmission along with associated physiological or
behavioural costs. Infection can lower fitness via a direct impact on fecundity or mortality.
Physical malformations or behavioural changes of infected individuals may render them
more susceptible to predation (Bakker et al., 1997; Goodman and Johnson, 2011), and reduced activity
levels of infected individuals can result in decreased intake rates and fecundity (Hart, 1988).
Parasites can also induce behavioural changes in their host (Moore, 1984; Lafferty and Morris, 1996),
which increase their own fitness at the expense of their host.

Several species appear to adjust habitat selection when faced with the risk of exposure
to infectious disease (Hart, 1994). The giving-up densities of white-tailed deer Odocoileus
virginianus increase with the density of larval lone star ticks Amblyomma americanum,
but not predators (Allan et al., 2010). Many species also appear to reduce parasitism rates by
using non-foraging sites for defecation (Gilbert, 1997). The eastern grey kangaroo Marcropus
giganteus and sheep Ovis aries avoid foraging from contaminated sites (Hutchings et al., 2001;

Garnick et al., 2010), and the bat Myotis bechsteinii and the great tit Parus major choose
uninfected roosts and nesting sites (Christe et al., 1994; Reckardt and Kerth, 2007). The grey treefrog
Hyla versicolor lays fewer eggs in pools containing snails infected with the trematode
Pseudosuccinea columella (Kiesecker and Skelly, 2000), and bullfrog (Rana catesbeiana) tadpoles
avoid conspecifics infected by Candida humicola (Kiesecker et al., 1999).

In this study, we consider how predictions about habitat selection may be altered by
incorporating the risk of infection by pathogens or parasites, and investigate whether a
change in behaviour in response to this risk can lead to undermatching as observed in field
studies and experiments. We use a two-habitat susceptible-infected differential equation
model to calculate the optimal strategy for habitat choice when disease is present in
either one or both habitats. We compare our model predictions to input matching and
investigate how factors influencing the risk of infectious disease and cost of infection affect
equilibrium habitat choice and the corresponding observed spatial distribution. Specifically,
we consider the effect of infected fecundity, infected mortality, transmission rate of the
disease, resource input rates, recovery rate, and the probability of vertical transmission or
inherited immunity.

THE MODEL

We consider habitat selection by a single population with a choice between two habitats
differing only in resource input. Let Q1 denote the input rate of resources available in
habitat 1 and Q2 denote the input rate of resources in habitat 2. Without loss of generality,
we assume habitat 1 is the habitat of higher quality (i.e. Q1 > Q2). We also assume resources
are divisible and are consumed immediately upon entering the habitat [continuous input
(Parker and Sutherland, 1986)], and birth rates are directly proportional to the intake rate, Ri = Qi/Ni,
where Ni is the density in habitat i (i = 1, 2).

We model a system characterized by natal dispersal only; individuals disperse at birth and
then choose a habitat and remain there for life. We note that at this scale, we may expect to
see only the high-quality habitat occupied at low densities, if resource input rates exceed the
maximum intake rate of single individuals (Morris, 1994). However, here we are interested in the
case where equilibrium densities are large enough so both habitats are occupied, and disease
is supported in the population.
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We let the trait p denote the probability that newborns choose to settle in habitat 1 and
1 – p denote the probability of choosing habitat 2. We assume the strategy p is genetically
determined, with heritability equal to 1. All newborns are susceptible to infection, and
individuals become infected through contact with infectious individuals. We consider a
disease where the rate of transmission is proportional to the number of infected individuals
in a habitat [density-dependent transmission (McCallum et al., 2001)], rather than the proportion
of the population that is infected [frequency-dependent transmission (Hethcote, 2000)]. We write
a differential equation model for the change in the number of susceptible and infected
individuals over time:

Ṡ1 = p� bSQ1

S1 + I1

S1 +
bSQ2

S2 + I2

S2 +
bIQ1

S1 + I1

I1 +
bIQ2

S2 + I2

I2� − βI1 S1 − µSS1

İ1 = βI1 S1 − µII1
(1)

Ṡ2 = (1 − p)� bSQ1

S1 + I1

S1 +
bSQ2

S2 + I2

S2 +
bIQ1

S1 + I1

I1 +
bIQ2

S2 + I2

I2� − βI2S2 − µSS2

İ2 = βI2S2 − µII2

where bS and bI are the birth rate constants for conversion of resources into offspring for
susceptible and infected individuals, respectively. The mortality rates of susceptible and
infected individuals are represented by µS and µI, respectively, and the transmission rate of
the disease is given by β. We assume infection by the disease may lower the birth rates
of infectious individuals (bS ≥ bI), or it may shorten their lifespan by increasing mortality
rates (µS ≤ µI). A list of parameters is given in Table 1.

Note that total population size is not constant for this model, but rather depends upon
parameters such as the quality of the habitats, the probability of infection, as well as the
consequences of becoming infected. When there is no disease in the population, the model
equilibrates to the following disease-free equilibrium (DFE):

(S*1, I*1, S*2, I*2) = �p
bS(Q1 + Q2)

µS

, 0, (1 − p)
bS(Q1 + Q2)

µS

, 0� . (2)

Table 1. Parameters for models (1) and (8)

Parameter Description

bS Susceptible birth rate constant
bI Infected birth rate constant
bR Recovered birth rate constant
µS Susceptible mortality rate
µI Infected mortality rate
µR Recovered mortality rate
β Transmission rate of disease
Q1 Resource level in habitat 1
Q2 Resource level in habitat 2
τ Probability of vertical transmission
γ Recovery rate
δ Probability of inheriting immunity (from recovered parent)
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The DFE is locally asymptotically stable for values of the basic reproductive number

R0 �
max(p, 1 − p) βbS(Q1 + Q2)

µIµS

< 1 and unstable for R0 > 1, where R0 represents the

expected number of new infections produced by introducing one infected individual
into a completely susceptible population. As R0 increases past 1, the disease can first
be supported in only one habitat, but eventually the disease is able to persist in both
habitats.

We assume individuals choose habitats to maximize their fitness. We define the fitness of
an individual choosing habitat i to be the expected number of offspring produced over the
course of its lifetime, given that habitat i was chosen at birth. Note the habitat choice of the
offspring has no direct impact on the fitness of the parent, as we assume the population is at
equilibrium and next-generation offspring do not contribute to fitness. If all individuals are
born susceptible, the expected number of offspring produced by an individual in habitat i,

denoted E(Oi), is found by multiplying the susceptible birth rate �bSQi

N*i � by the expected

amount of time spent susceptible � 1

µS + βI*i� , and adding it to the probability of becoming

infected � βI*i
µS + βI*i� times the infected birth rate �bIQi

N*i � multiplied by the expected amount

of time spent infected � 1

µI
� . The susceptible and infected birth rates in each habitat depend

on the total density in that habitat (N*i ), and the probability of infection in each habitat
depends on the number of infected individuals in that habitat (I*i ). We assume the evolution
of the strategy p occurs on a longer timescale than the population dynamics. Therefore,
the fitness of an individual using each habitat is a function of the equilibrium density
of susceptible and infected residents; these densities depend on initial conditions and
parameter values, including p. The fitness for using habitat i is given by:

Fi =
bSQi

N*i

1

µS + βI*i
+

bIQi

N*i

1

µI

βI*i
µS + βI*i

. (3)

The equilibrium p* can be found by solving F1 = F2 for p. Individual fitness is maximized in
the sense that if all individuals are using the strategy p*, no individual can increase its fitness
by changing strategies. The equilibrium p* is evolutionarily and convergent stable
(see Appendix 1). The value of p*, or the fraction of the population choosing habitat 1 at
birth for which individual fitness is maximized, does not necessarily correspond to the

fraction of the population observed in habitat 1 at equilibrium �n* =
N*1

N*1 + N*2�, as birth and

death rates may differ with the level of disease in the two habitats.
When there is no disease in the population, we can substitute the DFE (2) into

equation (3) and solve F1 = F2, finding input matching: p* = n* =
Q1

Q1 + Q2

. In the

following sections, we consider three possible ways in which a disease may affect a
population, always with a negative impact on fitness, and investigate how p* and n* deviate
from the disease-free input matching prediction. First, infection may increase mortality
rates. Second, the disease may lower fecundity or sterilize infected individuals. We also
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consider the case where the disease affects both birth and death rates. For each, we consider
the case where both habitats are infected (denoting equilibria p*b, n*b) as well as when only
the higher quality habitat is infected (denoting equilibria p*0, n*0). Results are summarized in
Table 2.

Case 1: Disease affects only host mortality

In general, we cannot find a mathematically tractable closed form solution for the endemic
equilibrium of model (1). However, if infection by disease has no effect on host fecundity,
then we let bS = bI = b, and we can solve for the equilibrium number of susceptible and
infected individuals in each habitat (denoted by asterisks) when the disease is present in
both habitats:

(S*1, I*1, S*2, I*2) = �µI

β
,

pb (Q1 + Q2)

µI

−
µS

β
,

µI

β
,

(1 − p)b (Q1 + Q2)

µI

−
µS

β � . (4)

This endemic equilibrium (4) is stable for parameter values resulting in
min(p, 1 − p) βbS(Q1 + Q2)

µIµS

> 1, or equivalently, parameter values for which (4) is positive.

There are two additional equilibria corresponding to the disease being present in only one
habitat. We are interested in the case where choosing the high-quality habitat, habitat 1, is
associated with a risk of disease transmission and the low-quality habitat is disease free:

(S*1, I*1, S*2, I*2) = �µI

β
,

pb (Q1 + Q2)

µI

−
µS

β
, (1 − p)

b (Q1 + Q2)

µS

, 0� . (5)

Table 2. Effect of increasing model parameters on equilibria p*b, p*0, n*b and n*0

Parameter p*b p*0 n*b n*0

Infected mortality rate (bI = 1) µI 0 0 − − then +
Infected mortality µI − then + + − − then +
Infected birth rate (µI = 0.1) bI + + + +
Infected birth rate bI + + + +
Transmission rate β + − + −
Total resource level Q1 + Q2 + − + −
Recovery rate γ + + + +
Probability of vertical transmission τ + .. + ..

Probability of inheriting immunity δ + + + +

Note: Unless otherwise indicated, parameter values used are: bS = 1, bI = 0.5, Q1 = 10, Q2 = 5, bR = 1, µS = 0.1,
µI = 0.2, µR = 0.1, β = 0.01, γ = 0, τ = 0, δ = 0. To calculate the equilibrium strategy, we use MATLAB
(version R2011b) to find the value of p for which F1 = F2, obtaining S*1, I*1, S*2 and I*2 as a function of p
by numerically solving the differential equations (1) (or (8) if γ > 0) and observing the limiting behaviour.
To find p*b we use initial conditions of S1 (0) = S2 (0) = 100, I1 (0) = I2 (0) = 1. To find p*0 we use initial conditions
of S1 (0) = 100, S2 (0) = 101, I1 (0) = 1, I2 (0) = 0. The observed proportion of the population in habitat 1 at

equilibrium n*b (n*0) is then 
S*1 + I*1

S*1 + I*1 + S*2 + I*2
, with equilibrium values calculated from the respective initial

conditions.
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Equilibrium (5) is stable for parameter values resulting in 
pβbS(Q1 + Q2)

µIµS

> 1 and

(1 − p)βbS(Q1 + Q2)

µIµS

< 1, or equivalently, parameter values for which equilibrium (5) is

non-negative but (4) is not; it becomes unstable when 
(1 − p)βbS(Q1 + Q2)

µIµS

> 1, but for this

parameter range we can consider the situation where one habitat is disease free as long as
no infected individuals are introduced into that habitat (or the habitat is kept disease free
via management). Recall that with the model we are considering, the disease cannot
spread between habitats, since residency is determined at birth and all individuals are

born susceptible. When 
pβbS(Q1 + Q2)

µIµS

< 1, the disease-free equilibrium (2) is stable and the

disease cannot persist in either habitat.
We first consider habitat selection when both habitats are infected. Substituting the

endemic equilibrium (4) into equation (3), we find both habitats yield equal fitness when

p*b =
Q1

Q1 + Q2

. Recall the probability of a newborn individual choosing to reside in habitat 1

is not necessarily equal to the fraction of the population in habitat 1 at equilibrium. When
both habitats are infected,

N*1
N*2

=
bβQ1 + µI(µI − µS)

bβQ2 + µI(µI − µS)
. (6)

We see 
N*1
N*2

<
Q1

Q2

 and thus n*b <
Q1

Q1 + Q2

 if µI > µS. Therefore, habitat 1 is underused

(undermatched) compared with the input matching expected in the absence of disease,
provided infection increases mortality rates. As the infected mortality rate µI increases from
the susceptible mortality rate µS, the equilibrium strategy p*b does not change, whereas the
observed fraction of the population in habitat 1 at equilibrium, n*b, decreases (Fig. 1). The
same fraction of offspring are choosing habitat 1 at birth, but fewer are present in habitat 1
at equilibrium compared with the disease-free case. Fitness is equal in the two habitats as
individuals trade off shorter lifespan for a higher reproductive rate in habitat 1.

A larger infected mortality rate also implies a shortened infectious period, reducing the
amount of time available to spread the disease. As µI increases, the equilibrium densities of
susceptibles in both habitats (S*1 and S*2) increase at the same constant rate, whereas the
density of infecteds in habitat 1 (I*1) decreases faster than those in habitat 2 (I*2). Therefore,
while we do not see a change in habitat selection in response to the risk of infectious
disease (p*b remains the input matching prediction), undermatching is still observed because
infection depends on density.

If the disease is only present in the high-quality habitat (habitat 1), the value of p that

yields equal fitness is p*0 =
Q1

Q1 + Q2

. If we look at the population sizes in the two habitats at

equilibrium, we see an observed ratio of

N*1
N*2

=
µS

bQ2
�bQ1

µI

+
µI − µS

β � . (7)
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Assuming µI > µS, this fraction is less than the input matching fraction of 
Q1

Q2

, so

n*0 <
Q1

Q1 + Q2

, for 
βbQ1

µSµI

> 1. We note this condition is equivalent to R0 > 1 with p =
Q1

Q1 + Q2

.

Fig. 1. The effect of infected mortality (µI) on the equilibrium probability of choosing habitat 1 at
birth (p*b when both habitats are infected, p*0 when only habitat 1 is infected) and the fraction of the
population observed in habitat 1 at equilibrium (n*b when both habitats are infected, n*0 when only
habitat 1 is infected). In (a) disease affects host mortality only (bI = bS = 1), whereas in (b) disease
affects both mortality and fecundity (bI = 0.5). Other parameter values: bS = 1, µS = 0.1, β = 0.01,
Q1 = 10, Q2 = 5, γ = 0, τ = 0, δ = 0.
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Thus the equilibrium proportion of the population choosing habitat 1 at birth again
remains the same as input matching predictions, yet undermatching is again observed. As µI

increases from µS, the population size in disease-free habitat 2 remains constant at N*2, and
undermatching first increases and then decreases along with the population size in habitat 1,
N*1. Furthermore, for a fixed set of parameter values, the proportion of the population in
habitat 1 is much lower when the disease is only present in habitat 1 than when both habitats
are infected (Fig. 1a).

Case 2: Disease affects only host fecundity

If the disease does not affect mortality, so µI = µS, and instead lowers birth rates, so bI < bS,
then the value of p for which individual fitness is maximized (F1 = F2) is no longer

necessarily the input matching prediction of 
Q1

Q1 + Q2

. To calculate the equilibrium strategy

without an analytical expression for the population dynamics equilibrium, we use
MATLAB (version R2011b) to find the value of p for which F1 = F2, obtaining S*1, I*1, S*2
and I*2 as a function of p by numerically solving the differential equations (1) and observing
the limiting behaviour. As the birth rate of infected individuals decreases (relative to
susceptible birth rate), we see a decrease in relative use of the high-quality habitat. Both
p*b and p*0 are less than the input matching prediction, with p*0 < p*b (Fig. 2a; Table 2).
However, since mortality rates are not affected by infection, the observed fraction of the
total population in habitat 1 at equilibrium is now equal to the fraction choosing habitat 1
at birth (n*b = p*b and n*0 = p*0). In this case, undermatching is caused by a behavioural change
in response to the risk of infectious disease, rather than direct density effects of infection.

Case 3: Disease affects both mortality and fecundity

In the case where both mortality and birth rates are negatively affected by pathogen
or parasite infection, we see a combination of the density and behavioural effects
for cases 1 and 2 (Figs. 1b and 2b). The equilibrium fraction of the population
choosing habitat 1 at birth may be lower than the input matching prediction, and the
observed fraction of the population inhabiting habitat 1 at equilibrium may be even less

�n*0 ≤ p*0 ≤
Q1

Q1 + Q2

, n*b ≤ p*b ≤
Q1

Q1 + Q2
� . Again, undermatching is greatest when habitat 2

is disease free (n*0 ≤ n*b, p*0 ≤ p*b).

Role of transmission rate and resource input rate

The parameters bI and µI determine the severity of fitness consequences for an individual
who becomes infected with the disease. However, other model parameters may also affect
the overall risk or cost of infection and can influence how an animal changes its habitat
selection strategy to avoid becoming infected. In this section, we explore the effect of
changes in transmission rate and resource input rates on the equilibrium strategy and
distribution of the population.

Increasing the transmission rate of the disease (β) increases the probability an individual
will become infected, either by increasing the contact rate or chance of transmission per
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contact, and thus increases the level of disease that can be sustained in the population. If
both habitats are infected, increasing the transmission rate leads to an increase in the
relative use of the high-quality habitat (increased p*b and n*b; Fig. 3; Table 2). We note that
for higher values of µI, there may be an initial decrease in the proportion of individuals

Fig. 2. The effect of infected birth rate on the equilibrium probability of choosing habitat 1 at birth
(p*b when both habitats are infected, p*0 when only habitat 1 is infected) and the fraction of the
population observed in habitat 1 at equilibrium (n*b when both habitats are infected, n*0 when only
habitat 1 is infected). In (a) disease affects fecundity only (µI = µS = 0.1), whereas in (b) disease affects
both mortality and fecundity (µI = 0.2). Other parameter values: bS = 1, µS = 0.1, β = 0.01, Q1 = 10,
Q2 = 5, γ = 0, τ = 0, δ = 0.
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choosing habitat 1 (p*b) for low β; when β is large enough, p*b increases with β. If only habitat
1 is infected, increasing the transmission rate causes a decrease in both p*0 and n*0 (Fig. 3;
Table 2), resulting in a decrease in the use of habitat 1.

Increasing the total input level of resources (Q1 + Q2) increases fecundity for both
susceptible and infected individuals, along with the total population size and level of disease
that can be sustained in both habitats. An increase in density, and incidence of disease, leads
to an increased use of the high-quality habitat when both habitats are infected (but a
decreased use of the high-quality habitat when it is the only habitat infected). Increasing the
overall resource input level (while maintaining a 2:1 ratio) affects p*b, p*0, n*b and n*0 in the
same way as increasing β (Fig. 3; Table 2).

When both habitats are infected, increasing β results in a lower total population size in
each infected habitat by reducing the equilibrium number of susceptibles and increasing the
equilibrium number of infecteds. Increasing Q1 + Q2 increases total population size by
increasing the equilibrium number of infected individuals, and has no effect on susceptible
density. In both cases, I*1 increases more quickly than I*2, leading to an increase in n*b and
reducing observed undermatching. At low values of Q1 + Q2 and β, the prevalence of
disease, and corresponding risk of infection, may increase more quickly in habitat 1 than
habitat 2 when µI is large, causing an initial decrease in p*b despite the increase in n*b. We still
observe an increase in the use of habitat 1, even though a small proportion of newborns are
choosing to settle there. As Q1 + Q2 or β increases, the proportion of the population infected
at equilibrium increases, approaching 1 in both habitats; p*b increases towards the input

Fig. 3. The effect of transmission rate (β) and total resource input (Q1 + Q2) on the equilibrium
probability of choosing habitat 1 at birth (p*b when both habitats are infected, p*0 when only habitat 1 is
infected) and the fraction of the population observed in habitat 1 at equilibrium (n*b when both
habitats are infected, n*0 when only habitat 1 is infected). Resource inputs are fixed at a 2:1 ratio
between habitats 1 and 2. Figure generated by fixing β = 0.01 and varying Q1 + Q2 from 3 to 150, and
by fixing Q1 + Q2 = 15 and varying β from 0.002 to 0.1. Other parameter values: bS = 1, bI = 0.5,
µS = 0.1, µI = 0.2, γ = 0, τ = 0, δ = 0.
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matching prediction as the risk associated with choosing the high-quality habitat over the
low-quality habitat is reduced.

When only habitat 1 is infected, both p*0 and n*0 decrease with Q1 + Q2 or β. As disease
prevalence rises in habitat 1 while habitat 2 remains disease free, the difference in risk
between the two habitats increases and the relative use of habitat 1 decreases. The degree of
observed undermatching is again much greater when infection is only in habitat 1 compared
with both habitats.

Extended model

Up to this point, we have assumed that all individuals are born into the susceptible class,
with the only means of disease transmission via contact with an infected individual. Also,
once individuals are infected by the disease, they are infected for life. In this section, we relax
these assumptions by incorporating vertical as well as horizontal transmission of the
disease, allowing recovery from the disease, and including the possibility of inherited
immunity from a recovered parent.

To investigate the effect on habitat choice if the disease can be transmitted from parent to
offspring at birth (Anderson and May, 1979; Jones et al., 2011), we assume individuals inherit the disease
from an infected parent with probability τ. We also assume infection status does not affect
habitat choice. That is, newborns choose a habitat at birth to reside in for life, with p again
representing the probability of choosing habitat 1 for all newborns.

We allow infected individuals to recover from the disease at a rate γ. We assume that when
individuals recover they enter a recovered class, subscripted by R, and thereafter have

Fig. 4. The effect of recovery rate (γ) on the equilibrium probability of choosing habitat 1 at birth
(p*b when both habitats are infected, p*0 when only habitat 1 is infected) and the fraction of the
population observed in habitat 1 at equilibrium (n*b when both habitats are infected, n*0 when only
habitat 1 is infected). Parameter values: bS = 1, bI = 0.5, bR = 1, µS = 0.1, µI = 0.2, µR = 0.1, β = 0.01,
τ = 0, δ = 0.
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lifelong immunity. Recovered individuals have a birth rate constant bR and a death rate µR,
which we will assume to be equal to the analogous parameters for susceptible individuals.

If parents are in a high-risk environment, they may invest some of their resources into
immunity for their offspring (Tschirren et al., 2004). We consider the case where offspring have
a non-zero probability of inheriting immunity from a parent in the recovered class. Let the
parameter δ denote the fraction of offspring of recovered individuals born with immunity
to the disease (joining the recovered class). Then 1 − δ is the probability these offspring are
born susceptible.

Model (1) with these modifications is given by the following set of differential equations:

Ṡ1 = p�bSQ1

N1

S1 +
bSQ2

N2

S2 + (1 − δ)�bRQ1

N1

R1 +
bRQ2

N2

R2� +

(1 − τ)�bIQ1

N1

I1 +
bIQ2

N2

I2�� − βI1 S1 − µSS1

İ1 = τp�bIQ1

N1

I1 +
bIQ2

N2

I2� + βI1 S1 − γI1 − µII1

Ṙ1 = pδ�bRQ1

N1

R1 +
bRQ2

N2

R2� + γI1 − µRR1 (8)

Ṡ2 = (1 − p)�bSQ1

N1

S1 +
bSQ2

N2

S2 + (1 − δ)�bRQ1

N1

R1 +
bRQ2

N2

R2� +

(1 − τ)�bIQ1

N1

I1 +
bIQ2

N2

I2�� − βI2S2 − µSS2

İ2 = τ (1 − p)�bIQ1

N1

I1 +
bIQ2

N2

I2� + βI2S2 − γI2 − µII2

Ṙ2 = (1 − p)δ�bRQ1

N1

R1 +
bRQ2

N2

R2� + γI2 − µRR2

where Ni = Si + Ii + Ri, i = 1, 2. We note that by setting τ = 0, γ = 0, and δ = 0, the model
reduces to equations (1) provided R1(0) = R2(0) = 0.

Our measure of fitness is again lifetime reproductive success, and the fitness function (3)
can be modified to take into account these changes to the model (see Appendix 2). We can
again numerically determine the value of p for which the fitness functions in the two
habitats are equal, and compute the corresponding proportion of the equilibrium
population in habitat 1. Figures 4–6 illustrate how p*b, p*0, n*b and n*0 change with the
length of the infectious period, probability of vertical transmission, and the probability of
inheriting immunity from a recovered parent.

As the recovery rate (γ) increases, the time spent infectious decreases; this results in
an increase in both p* and n* regardless of whether one or both habitats are infected
(Fig. 4; Table 2). A faster recovery rate reduces the negative impact on fitness from
becoming infected, as well as the amount of time infectious individuals are able to transmit
the disease, reducing the risk of infection to others as well. Thus increasing γ reduces the
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relative cost of choosing habitat 1 over habitat 2 and leads to a distribution closer to input
matching. If γ is sufficiently high, the disease can be eliminated from the low-quality habitat
or even both habitats.

Fig. 5. The effect of the probability of vertical transmission (τ) on the equilibrium probability of
choosing habitat 1 at birth (p*b) and the fraction of the population observed in habitat 1 at equilibrium
(n*b). Parameter values: bS = 1, bI = 0.5, µS = 0.1, µI = 0.2, β = 0.01, τ = 0, δ = 0.

Fig. 6. The effect of the probability of inheriting immunity (δ) on the equilibrium probability of
offspring choosing habitat 1 at birth (p*b when both habitats are infected, p*0 when only habitat 1 is
infected) and the fraction of the population observed in habitat 1 at equilibrium (n*b when both
habitats are infected, n*0 when only habitat 1 is infected). Parameter values: bS = 1, bI = 0.5, bR = 1,
µS = 0.1, µI = 0.2, µR = 0.1, β = 0.01, τ = 0, γ = 0.1.

Robertson and Hamilton64



Certain pathogens and parasites can be passed from parent to offspring at birth (Knell and

Webberley, 2004). Increasing the probability of vertical transmission of the disease (τ) increases
the overall prevalence of the disease, causing an increase in p*b and n*b (Fig. 5; Table 2). Only
the results for both habitats infected are shown, as habitat 2 cannot be kept disease free
when newborns can be born infected. While the risk of infection increases in both habitats
with τ, the difference in risk between the two habitats decreases, causing an increase in
the relative use of habitat 1. For the extreme case when τ = 1, or offspring of infected
individuals are always born infected, susceptible levels may be reduced to zero if infected
mortality levels are low enough. When the entire population is infected, the risk of disease
no longer influences habitat selection and there are no differences in mortality rates between
habitats, so the equilibrium distribution returns to input matching. If infected mortality
rates are high enough to maintain a positive level of susceptibles, then undermatching is still
observed for p*b and n*b when τ = 1.

Finally, we consider the effect of recovered individuals transferring immunity to their
offspring. Increasing the probability of acquiring immunity at birth from a recovered parent
(δ) leads to an increase in p*b, p*0, n*b and n*0 (Fig. 6; Table 2). For individuals born immune,
disease poses no risk and should not influence their habitat selection. Increasing the
probability of inheriting immunity (when there is a positive recovery rate) increases the
amount of otherwise susceptible individuals removed from the at-risk population and
decreases overall levels of disease.

DISCUSSION

Our results show that the risk of infectious disease can have a substantial impact on habitat
selection and the resulting spatial distribution of populations across habitats differing only
in resource quality (and thus in potential risk of disease). When infection by a pathogen
or parasite has a negative impact on fitness, our model predicts decreased use of the
high-quality habitat compared with input matching. Overmatching, or overuse of the high-
quality habitat, is never predicted by our model, as we assume disease has only negative
fitness consequences. The undermatching observed at equilibrium may be due to a change
in optimal habitat selection or direct density effects of infection occurring after natal
dispersal. The degree to which the high-quality habitat is underused varies with the
fitness consequences of becoming infected with the disease as well as the risk of infection
associated with each habitat.

The degree of undermatching increases with the difference in risk between the habitats.
An increase in disease prevalence in both habitats can reduce undermatching if it reduces
the relative cost of choosing the higher quality habitat. The implication is that the risk of
disease plays less of a role in habitat selection as equilibrium density increases, when all
potential habitats harbour disease. Some other models predict that undermatching becomes
more pronounced at high densities (where populations are not necessarily at equilibrium).
For example, in a model of habitat selection under perceptual constraints, individuals are
less able to gather accurate information about their choices for habitat selection at high
densities and become more likely to choose randomly (Abrahams, 1986), a result confirmed
experimentally in zebra fish by Gillis and Kramer (1987).

If only the high-quality habitat is infected, then an increase in disease prevalence
increases the difference in risk between the habitats, causing a decrease in the use of the
infected habitat. For a given set of parameter values resulting in a stable endemic
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equilibrium, we see the largest difference in risk between the two habitats when one habitat
is disease free. Disease-free habitats can result in extreme undermatching due to the diseased
habitat being unable to maintain large population sizes. Recall the disease-free equilibrium
for the low-quality habitat is often unstable, and any introduction of disease would result in
an outbreak of infected individuals.

In our model, undermatching is caused by decreased use of the high-quality habitat
rather than overuse of the low-quality habitat. Therefore, the individuals using habitat 1
have a higher intake rate over a shorter lifespan. If a similar, competing species (or mutant
of the original species) is immune to the disease, it would have an advantage in the high-
quality habitat. The species susceptible to infection might then use the low-quality habitat,
with the immune species alone using the high-quality habitat. Habitat selection could thus
cause extinction of the disease from the high-quality habitat, but also the differential
susceptibility of the competing species may provide a mechanism to allow for co-existence
(Holt, 2010).

Our findings indicate that infectious disease can affect the spatial distributions of
populations through more than just direct effects on fecundity and mortality. Disease can
also influence density through habitat selection that affects the ability of the disease to
transmit itself. Avoidance of a diseased habitat may lower susceptible density and reduce R0

for the disease in that habitat with implications for the evolution of pathogen virulence, and
the co-evolution of host and pathogen. Also, when there is no mixing between habitats, and
all dispersing newborns are susceptible, the transmissibility and virulence of the disease is
likely to evolve differently in each habitat.

There are many parallels between predators and parasites/pathogens, and recently there
have been efforts to describe their ecological similarities and differences (Hatcher et al., 2006;

Borer et al., 2007; Johnson et al., 2008; Raffel et al., 2008; Rohr et al., 2009). The threat of predation is known
to affect habitat choice (Hugie and Dill, 1994; Grand and Dill, 1999; Luttbeg and Sih, 2004) and can also
lead to undermatching. If predators as well as prey are free to move between habitats,
a ‘leapfrogging’ effect is predicted, where predators distribute themselves in proportion to
the prey’s resource levels (Hugie and Dill, 1994; Sih, 2005). Thus larger numbers of predators gather
in high-resource habitats, resulting in fewer numbers of prey in those habitats, relative to
input matching (Hammond et al., 2007). Our results show that animals may also adjust habitat
selection in response to the risk of infectious disease in a similar manner, and one must
consider the possibility that undermatching observed in nature is caused by the presence of
parasites or pathogens as well as predators, especially when potential habitats differ in their
risk of infection.

The risks of parasitism and predation are not always independent, and may
simultaneously affect habitat selection. Infection often results in behavioural changes
(Moore, 1984; Hart, 1988; Levri, 1999) that influence the risk of predation. Reduced activity may
minimize predation risk (Hart, 1988), while parasitic infections may induce behavioural or
physiological changes in their hosts that facilitate further transmission of the parasite (Bakker

et al., 1997; Levri, 1999; Johnson et al., 2006; Goodman and Johnson, 2011), often by harming the host and
increasing the probability of predation. The behavioural choices individuals make to avoid
predation risk can also affect their vulnerability to infection or the probability of becoming
infected (Decaestecker et al., 2002). When individuals experience both the risks of predation and
infection, defences against one type of enemy may result in increased susceptibility to the
other (Rigby and Jokela, 2000). Furthermore, if parasites can pass from prey to predators, diseased
prey might potentially be easier to capture while posing a threat of infection to the predator
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(Lafferty, 1992). The interaction between the risks of predation and parasites/pathogens and the
behavioural changes in response to these risks likely all play a role in habitat selection, and
present many possibilities for future research.
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APPENDIX 1: STABILITY OF p*

Evolutionary stability

In this appendix, we show evolutionary stability of the equilibrium p* found by setting
F1 = F2, where Fi is as in equation (3). We let p* be the resident strategy and p̃ denote
the strategy of a potential invader (0 ≤ p*, p̃ ≥ 1). Assuming a small fraction δ of the
population is using the invader strategy and 1 − δ is using the resident strategy, the state
of the population is given by

σ = σ( p̃, p*) = δp̃ + (1 − δ)p*. (A1)

The strategy p* is an evolutionarily stable strategy (ESS) if the relative fitness of an
invader is maximized at p̃ = p* in a resident population with strategy p*. We need to check
that

∂
∂ p̃

(W ( p̃, σ) − W (p*, σ)) | p̃ = p* = 0 (A2)

and

∂ 2

∂ p̃2 (W ( p̃, σ) − W (p*, σ)) | p̃ = p* < 0 (A3)

where

W ( p̃, σ) = p̃F1 (σ) + (1 − p̃)F2(σ) (A4)

and W (p*, σ) is defined similarly. Taking the derivative of W ( p̃, σ) − W (p*, σ) with respect
to p̃, we have

∂
∂ p̃

(W ( p̃, σ) − W (p*, σ)) =

F1(σ) − F2(σ) + p̃
∂F1

∂σ
δ + (1 − p̃)

∂F2

∂σ
δ − p*

∂F1

∂σ
δ − (1 − p*)

∂F2

∂σ
δ.

(A5)

Evaluating at p̃ = p*, (A5) is equal to 0, since F1(σ) = F2(σ). Therefore, (A2) holds.
To show (A3) holds, we take the derivative of (A5) with respect to p̃ and evaluate

at p̃ = p*:

∂
∂ p̃

(F1 (σ) − F2 (σ)) | p̃ = p* + δ�∂F1

∂σ
−

∂F2

∂σ � | p̃ = p* < 0 (A6)

since 
∂F1

∂N1

< 0, 
∂N1

∂σ
> 0, 

∂F2

∂N2

< 0, and 
∂N2

∂σ
> 0 implies 

∂F1

∂σ
=

∂F1

∂N1

∂N1

∂σ
< 0 and

∂F2

∂σ
=

∂F2

∂N2

∂N2

∂σ
> 0, where Ni is the equilibrium population size in habitat i for the

population distribution given by (A1).
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Convergence stability

Knowing that p* is an ESS is not enough to guarantee that the population approaches
this equilibrium. To show that p* is convergent stable (that is, if the population is using a
nearby strategy, it will move towards p*), we must also check that the following expression
(McGill and Brown, 2007)

∂ 2

∂ p̃2 (W ( p̃, σ) − W (p*, σ)) +
∂ 2

∂ p̃∂p*
(W ( p̃, σ) − W (p*, σ)) +

∂ 2

∂ p̃∂N
(W ( p̃, σ) − W (p*, σ))

∂N*

∂p*
(A7)

is less than zero when evaluated at p̃ = p*. The first term of (A7) is equal to (A6), which
is negative. To compute the second term, we take the derivative of (A5) with respect to p*
and evaluate at p̃ = p*:

∂
∂p*

(F1 (σ) − F2 (σ)) | p̃ = p* + δ�∂F1

∂σ
−

∂F2

∂σ � | p̃ = p* < 0 (A8)

similarly to the calculation for (A6). The last term of (A7) is zero if a change in strategy has
no effect on population size. However, for our model, an increase in the fraction of
the population choosing habitat 1 at birth can affect the population size in each habitat.
Numerical results show an increase in population strategy p* results in a lower equilibrium
total population size:

∂N*

∂p*
| p̃ = p* < 0. (A9)

Also, assuming an increase of size ∆N corresponds to an increase of n*∆N in habitat 1
and (1 − n*)∆N in habitat 2, numerical results show

∂ 2

∂ p̃∂N
(W ( p̃, σ) − W (p*, σ)) | p̃ = p* =

∂
∂N

(F1 (σ) − F2 (σ)) | p̃ = p* > 0. (A10)

Therefore, (A7) is negative and p* is convergent stable.

APPENDIX 2: EXTENDED FITNESS FUNCTIONS

The fitness functions for each habitat must be modified for the extended model (8). We
again measure fitness for an individual using habitat i by the expected number of offspring
(E(Oi)) produced over the course of the individual’s lifetime. Individuals are born
susceptible (BS), born infected (BI), or born recovered (BR), so

Fi = E(Oi) = P (BS)E(Oi |BS) + P(BI)E(Oi |BI) + P (BR)E(Oi |BR). (A11)

An individual can be born susceptible if its parent is susceptible (PS), if the parent is
infected (PI) and offspring do not inherit the disease (DN), or if the parent has recovered
(PR) and offspring do not inherit immunity (IN). Then

P(BS) = P(PS) + P(PI ∩ DN) + P(PR ∩ IN) =
P(PS) + P(DN |PI)P(PI) + P(IN |PR)P(PR) (A12)
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where P(DN |PI) = 1 − τ and P(IN |PR) = 1 − δ. An individual is born infected only if the
parent is infected (PI) and if offspring inherit the disease (DI). Thus

P(BI) = P(PI ∩ DI) = P(DI |PI)P(PI) (A13)

where P(DI |PI) = τ. An individual is born recovered if the parent is recovered (PR) and the
offspring inherit immunity (II). Then

P(BR) = P(PR ∩ II) = P(II |PR)P(PR) (A14)

where P(II |PR) = δ. We will need to calculate the probability that a parent was susceptible
(PS), infected (PI), or recovered (PR) for a randomly chosen offspring. The probability that
an individual in habitat 1 was born to a susceptible (infected, recovered, respectively) parent
is equal to the total number of offspring produced by susceptible (infected, recovered,
respectively) individuals that choose habitat 1 divided by the total number of offspring
choosing habitat 1. Then

P (PS) =

bS Q1

N*1
S*1 +

bS Q2

N*2
S*2

bS Q1

N*1
S*1 +

bS Q2

N*2
S*2 +

bI Q1

N*1
I*1 +

bI Q2

N*2
I*2 +

bRQ1

N*1
R*1 +

bRQ2

N*2
R*2

(A15)

and the equations for P(PI) and P(PR) are similar. If the probability of choosing a habitat
at birth is independent of infection, the probability of having a susceptible, infected, or
recovered parent will be the same in both habitats.

Finally, we need to calculate the expected number of offspring given that an individual
is born into each class. For an individual born susceptible, we must add the expected
number of offspring produced while susceptible (susceptible birth rate times the
expected amount of time spent susceptible), the probability of becoming infected
times the expected number of offspring produced while infected (infected birth rate times
expected time spent infected), and the probability of reaching the recovered stage
times the expected amount of offspring produced while recovered (recovered birth rate
times expected time spent recovered). For an individual born infected, we add the expected
number of offspring produced while infected to the probability of reaching the recovered
stage times the expected amount of offspring produced while recovered. For an individual
born recovered, the expected number of offspring is simply the expected number of
offspring produced while recovered:

E(Oi |BS) =
bSQi

N*i

1

µS + βI*i
+

bI Qi

N*i

βI*i
µS + βI*i

1

µI + γ
+

bRQi

N*i

βI*i
µS + βI*i

γ

µI + γ

1

µR

,

E(Oi |BI) =
bIQi

N*i

1

µI + γ
+

bRQi

N*i

γ

µI + γ

1

µR

, (A16)

E(Oi |BR) =
bRQi

N*i

1

µR

.
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